1. Work the following problems from the text:

 (a) Section 11.4: 19, 28, 30, 31, 34
 (b) Section 11.5: 20, 32, 34, 47, 48
 (c) Section 11.6: 22, 23, 26, 40, 42, 44

2. Two surfaces are called orthogonal at a point of intersection \(P \) if their normals are perpendicular at that point.

 (a) Show that surfaces with equations \(F(x, y, z) = 0 \) and \(G(x, y, z) = 0 \) are orthogonal at a point \(P \) where \(\nabla F \neq 0 \) and \(\nabla G \neq 0 \) if and only if

\[
F_x G_x + F_y G_y + F_z G_z = 0 \text{ at } P
\]

 (b) Use part (a) to show that the \(z^2 = x^2 + y^2 \) and \(x^2 + y^2 + z^2 = r^2 \) are orthogonal at every point of intersection.

 (c) Can you see why this is true without using calculus? If so, how?

3. Suppose that at a given point \(P \), the directional derivatives of \(f(x, y) \) are known in two nonparallel directions described by unit vectors \(\hat{u} \) and \(\hat{v} \). In particular, suppose that \(df/ds = A \) in the \(\hat{u} \) direction and \(df/ds = B \) in the \(\hat{v} \) direction. Is it possible to find \(\nabla f \) at the point \(P \)? If so, how do you do it?