1. Compute the mean of the $\Gamma(\alpha, \beta)$ distribution by “integrating without integrating”.

2. Suppose that X is uniformly distributed on the interval $(0, 1)$. (We write $X \sim \text{unif}(0, 1)$.)

 (a) Define $Y = -\ln X$. Find the distribution of Y. (Name it!)

 (b) Without doing any extra work, find the distribution of $Y = -\ln(1 - X)$? Explain.

 (c) Find a transformation $y = g(x)$ such that $Y = g(X)$ has the exponential distribution with rate λ.

3. Suppose that X_1 and X_2 are independent random variables each with the normal distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$. We write $X_1, X_2 \sim \text{N}(0, 1)$. Find the distribution of X_1/X_2. (Name it!)

4. Suppose that $X_1, X_2 \sim \text{N}(0, 1)$.

 Show that $Y_1 := X_1 + X_2$ and $Y_2 := X_1 - X_2$ are independent.

5. Let X_1, X_2, \ldots, X_n be a random sample from the geometric distribution with parameter p. Use the geometric distribution that starts from 0. (i.e.: $X_1, X_2, \ldots, X_n \sim \text{geom}_0(p)$).

 (a) Find the distribution of $X_{(1)} := \min(X_1, X_2, \ldots, X_n)$. (Name it!)

 (b) Give an interpretation of $X_{(1)}$

6. Suppose that X_1, X_2, \ldots, X_n is a random sample from the $\text{Beta}(a, 1)$ distribution.

 Find $E[X_{(n)}]$, where $X_{(n)} := \max(X_1, X_2, \ldots, X_n)$.

 \times Derive the moment generating function for the exponential distribution with rate λ. Be sure to include an explanation as to why we need $t < \lambda$.

8. **Required for 5520 students only:** Suppose that X_1 and X_2 are independent random variables and that $Y_1 = g_1(X_1)$ and $Y_2 = g_2(X_2)$. Then Y_1 and Y_2 are independent. Sounds reasonable yes?

 Prove this in the case that X_1 and X_2 are continuous and g_1 and g_2 are invertible.

9. **Required for 5520 students only** Let U_1 and U_2 be independent $\text{unif}(0, 1)$ random variables.

 Show that X_1 and X_2 defined as

 \[
 X_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)
 \]

 \[
 X_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2)
 \]

 are independent standard normal random variables.

Problems with an \times through them have been canceled from this assignment. They will appear on the next assignment.