Theorem: Let X be a metric space. A set $F \subseteq X$ is closed in X if and only if every convergent sequence (x_n) with $x_n \in F$ for all n converges to an element in F. (We say that “F contains all of its limit points”.)

Proof:

(\Rightarrow) Suppose that F is closed.

- Let (x_n) be a convergent sequence with $x_n \in F \ \forall \ n$ and let $x = \lim_{n \to \infty} x_n$.
- Suppose that $x \notin F$. Then $x \in F^c$.
- F open $\Rightarrow F^c$ open $\Rightarrow \exists \ \varepsilon > 0$ such that $B_\varepsilon(x) \subseteq F$.
- Since $x_n \to x$, we can find an $N \in \mathbb{N}$ such that $d(x_n, x), \varepsilon \ \forall \ n \geq N$.
- This implies that $x_n \in B_\varepsilon(x) \subseteq F^c$ for all $n \geq N$.
- But this contradicts the assumption that $x_n \in F \ \forall \ n$. Therefore, F must be open.

Proof:

(\Leftarrow) Suppose now that F contains all of its limit points.

- Suppose that F is not closed.
- Then F^c is not open.
- So, there exists an element $x \in F^c$ such that every ball of any radius centered at x contains at least one point in $(F^c)^c = F$.
- For $n = 1, 2, \ldots$, choose a point $x_n \in B_{1/n}(x) \cap F$.
- Then (x_n) is a sequence in F with a limit x that is not in F.
- This contradicts that F contains all of its limit points so F must be closed.