Problem 1.

\[a_{n+1} = \frac{1}{2}(a_n + b_n); \quad b_{n+1} = \sqrt{a_n b_n} \]

(a) Show \(\{a_n\} \) and \(\{b_n\} \) converge quadratically to \(M \).

First, we claim that \(\{a_n\}, \{b_n\} \rightarrow M \).

Proof. Consider the case when \(a_0 > b_0 \). By induction,

\[a_{n+1} = \frac{1}{2}(a_n + b_n) < \frac{1}{2}(a_n + a_n) = a_n \quad \forall \ n \in \mathbb{N} \]

Similarly for \(b_n \),

\[b_{n+1} = \sqrt{a_n b_n} > \sqrt{b_n b_n} = b_n \quad \forall \ n \in \mathbb{N} \]

Also, for \(a_0 > b_0 \), \((a_n + b_n)(a_n - b_n) > 0 \), so we can conclude

\[0 < (a_n + b_n)(a_n - b_n) \]
\[0 < a_n^2 - 2a_n b_n + b_n^2 \]
\[4a_n b_n < a_n^2 + 2a_n b_n + b_n^2 \]
\[a_n b_n < \frac{1}{4}(a_n^2 + 2a_n b_n + b_n^2) \]
\[\sqrt{a_n b_n} < \frac{1}{2}(a_n + b_n) \]
\[b_{n+1} < a_{n+1} \quad \forall \ n \in \mathbb{N} \]

In summary, given that \(a_0 > b_0 \), \(a_n \) is strictly decreasing and \(b_n \) is strictly increasing for all \(n \).

Additionally, we have shown that \(a_n \) is bounded below by \(b_n \) and that \(b_n \) is bounded above by \(a_n \). Therefore \(\{a_n\} \) and \(\{b_n\} \) are both convergent and we write \(a_n \rightarrow A \) and \(b_n \rightarrow B \).

It remains to show that \(A = B \). This is clear since

\[\lim_{n \to \infty} a_n = A \]
\[= \lim_{n \to \infty} \frac{1}{2}(a_n + b_n) \]
\[= \frac{1}{2}(A + B) \]
\[\implies A = B = M \]
Next, we show that the convergence of the sequences is quadratic. If the difference of a_n and b_n converges quadratically to 0, then we can say that each sequence converges quadratically to M.

Proof. Briefly, assume that a_n converges to M slower than quadratically yet the difference of a_n and b_n still converges quadratically 0. Even if we assume that $b_n = M \forall n$, the difference will not converge quadratically to 0. Hence, we have a contradiction and see that quadratic convergence of $a_n - b_n \to 0$ implies quadratic convergence of each sequence individually. □

Taking the definition of the asymptotic error constant, we have order of convergence α if λ exists in the limit and is finite. Taking $\alpha = 2$,

$$
\lim_{n \to \infty} \frac{|a_{n+1} - b_{n+1}|}{|a_n - b_n|^2} = \lim_{n \to \infty} \frac{|\frac{1}{2}(a_n + b_n) - \sqrt{a_nb_n}|}{|a_n - b_n|^2}
$$

$$
= \lim_{n \to \infty} \frac{\frac{1}{2}(\sqrt{a_n} - \sqrt{b_n})^2}{(\sqrt{a_n} + \sqrt{b_n})^2(\sqrt{a_n} - \sqrt{b_n})^2}
$$

$$
= \lim_{n \to \infty} \frac{1}{2(\sqrt{a_n} + \sqrt{b_n})^2}
$$

$$
= \frac{1}{2(2\sqrt{M})^2}
$$

$$
\lambda = \frac{1}{8M}
$$

Since the limit exists and is finite, we can conclude that the difference of a_n and b_n converges quadratically and therefore, each sequence alone converges quadratically. In the case that $b_0 > a_0$, we reach a similar result by the same methods.

(b) Taking $a_0 = 1 + x$ and $b_0 = 1 - x$ and expanding a_n and b_n about $x = 0$ for $n = 1, 2, 3, 4, 5$, we see that the first $2^n - 1$ terms in the series match exactly. That is,

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>coeffs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

(c) Yes, the expansions match exactly. Calculated in Mathematica,

$$
\frac{1}{M(1 + x, 1 - x)} \approx 1 + \frac{x^2}{4} + \frac{9x^4}{64} + \frac{25x^6}{256} + \frac{1225x^8}{16384} + \frac{3969x^{10}}{65536} + O[x]^{11}
$$

$$
\frac{1}{\pi} \int_0^{\pi} \frac{d\phi}{\sqrt{1 - x^2 \cos^2 \phi}} \approx 1 + \frac{x^2}{4} + \frac{9x^4}{64} + \frac{25x^6}{256} + \frac{1225x^8}{16384} + \frac{3969x^{10}}{65536} + O[x]^{11}
$$

Problem 2. Let $f(x) = e^{-\frac{1}{x^2}}$. The root is at zero and has infinite multiplicity.

(a) Where can we choose x_0 to guarantee convergence of Newton’s method?

The basin of attraction is $\{x_0 : |x_0| < 2\}$.

2
Proof. Constructing Newton’s method, \(f'(x) = \frac{2e^{\frac{1}{x^2}}}{x^3} \) so

\[x_{n+1} = x_n - \frac{x_n^3}{2} \]

In the basin of attraction, for some \(n \), we want every \(x_{n+1} \) to be closer to the root \((p = 0) \) than \(x_n \). That is, we want \(|x_{n+1} - p| < |x_n - p| \) \(\implies |x_{n+1}| < |x_n| \).

\[
|\frac{x_n - x_n^3}{2}| < |x_n| \\
|\frac{x_n}{2}| |1 - x_n^2| < |x_n| \\
\implies |2 - x_n^2| < 2
\]

Decomposing the absolute value, we see \(4 > x_n^2 > 0 \). Noting that \(\sqrt{x^2} \equiv |x| \),

\[|x_n| < 2 \]

(b) If we start with \(x_0 = 1 \), estimate how many iterations it will take to come within \(10^{-6} \) of the root.

We consider \(x_{n+1} = x_n - \frac{x_n^3}{2} \) and note that for a single iteration step \(\Delta n = 1 \) and \(\Delta x = -\frac{x_n^3}{2} \).

Writing as a differential equation,

\[\frac{dx}{dn} = \frac{x^3}{2} \]

We can separate and solve, giving us

\[\frac{1}{x^2} = n + c; \quad c = 1 \text{ since } x(n = 0) = 1 \]

This implies that for \(x = 10^{-6} \),

\[n = 10^{12} - 1 \]

Problem 3. Assume having a simple processor capable only of addition, subtraction, multiplication, and halving (I believe this is accomplished by a simple bit-shift operation). Devise a Newton-based algorithm to find \(\sqrt{a} \).

Let’s construct a function \(f \) that has a root at \(\frac{1}{\sqrt{a}} \).

\[f(x) = x^2 - a; \quad f\left(\frac{1}{\sqrt{a}}\right) = 0 \]

Setting up a Newton algorithm for fixed point root finding, \(f'(x) = -2x^{-3} \), so

\[x_{n+1} = x_n - \frac{x_n^2 - a}{-2x_n^3} = x_n + \frac{x_n^3}{2} - \frac{ax_n^3}{2} \]

We iterate this so \(x_n \to \frac{1}{\sqrt{a}} \) and then multiply the result by \(a \) to get the desired value.
Problem 4. Generalize Newton's method for better convergence. i.e. take more terms in the Taylor Series.

First, Taylor expand the function $f(x_{n+1})$ about the previous iterate x_n where $x_{n+1} = x_n + \Delta x$.

$$f(x_{n+1}) = f(x_n) + f'(x_n)\Delta x + \frac{f''(x_n)}{2} \Delta x^2 + \frac{f'''(x_n)}{6} \Delta x^3 + ...$$

Assume that once we add the correct Δx, $f(x_{n+1}) = 0$. Using the usual Newton definition for the second Δx

$$f(x_{n+1}) = 0 = f(x_n) + f'(x_n)\Delta x + \frac{f''(x_n)}{2} \left(\frac{f(x_n)}{f'(x_n)} \right)^2$$

Rearranging to solve for Δx, we obtain

$$\Delta x = -\frac{f(x_n) - f''(x_n) f(x_n)^2}{f'(x_n) - 2 f'(x_n)^3}$$

making the iterative equation

$$x_{n+1} = x_n - \frac{f(x_n) - f''(x_n) f(x_n)^2}{f'(x_n) - 2 f'(x_n)^3}$$

(1)

Equation (1) exhibits cubic convergence.

Proof. Following the same steps that we used to show quadratic convergence for the standard Newton's method, let $x_n = p + \varepsilon_n$ and $x_{n+1} = p + \varepsilon_{n+1}$.

$$p + \varepsilon_{n+1} = p + \varepsilon_n - \frac{f(x_n) - f''(x_n) f(x_n)^2}{f'(x_n) - 2 f'(x_n)^3}$$

Taylor expanding about p using the following Mathematica command,

Assuming $\left[f(p) = 0, \text{Simplify} \left[\frac{-\text{Series}[f(x), \{x, p, 3\}] - \text{Series}[f(x), \{x, p, 3\}]^2}{2\text{Series}[f'(x), \{x, p, 3\}]^3} \right] \right]$

$$\varepsilon_{n+1} = x_n - p - (- (x_n - p)) + \frac{(x_n - p)^3 (3 f''''(p)^2 - f^{(3)}(p) f'(p))}{6 f'(p)^2} + O((x_n - p)^4)$$

which, noting the $x_n - p = \varepsilon_n$ simplifies to

$$\varepsilon_{n+1} = -\frac{\varepsilon_n^3 (3 f''''(p)^2 - f^{(3)}(p) f'(p))}{6 f'(p)^2} + O(\varepsilon_n^4)$$

We have shown that for any n,

$$\frac{\varepsilon_{n+1}}{\varepsilon_n^3} = \frac{(3 f''''(p)^2 - f^{(3)}(p) f'(p))}{6 f'(p)^2} + O(\varepsilon_n)$$

In the limit as $n \to \infty$, $O(\varepsilon_n) \to 0$ since x_n is converging to p, so we have the definition of cubic convergence with asymptotic error constant $\frac{(3 f''''(p)^2 - f^{(3)}(p) f'(p))}{6 f'(p)^2}$. □