1. Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$. Find a $100(1 - \alpha)\%$ confidence interval for σ^2 based on the sample variance and a χ^2 critical value(s).

2. Let X_1, X_2, \ldots, X_n be a random sample from the exponential distribution with rate λ. Derive a $100(1 - \alpha)\%$ confidence interval for λ, based on \bar{X}, in terms of χ^2-critical values.

3. Suppose that $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \exp(rate = \lambda)$.

 (a) Give a test of size α for $H_0 : \lambda \leq \lambda_0$ versus $H_1 : \lambda > \lambda_0$ based on $X_{(1)}$, the minimum of the sample.

 (b) Find the power function for your test from part (a).

4. Suppose that $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \exp(rate = \lambda)$.

 Find a test of size α for $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda > \lambda_0$ based on the sample mean \bar{X}. Give your test in terms of a χ^2-critical value.

5. $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \text{unif}(0, \theta)$. Find an MME (method of moments estimator) of θ.

6. Let X_1, X_2, \ldots, X_n be a random sample from the $N(\mu, \sigma^2)$ distribution. Find MMEs (method of moments estimators) for μ and σ^2.

7. Suppose that X_1, X_2, \ldots, X_n is a random sample from the Poisson distribution with rate λ.

 Find the MLE (maximum likelihood estimator) for λ.

8. Suppose that X_1, X_2, \ldots, X_n is a random sample from the $\text{Pareto}(\gamma)$ distribution.

 (a) Find the MLE (maximum likelihood estimator) for γ.

 (b) Find an unbiased estimator of γ based on the MLE from part (a).

 (c) [Required for 5520 only] Show that your MLE is a consistent estimator of γ.

9. [Required for 5520 Students Only] Consider a random sample of size $n_1 = 9$ from the $N(\mu_1, \sigma_1^2)$ distribution and an independent random sample of size $n_2 = 12$ from the $N(\mu_2, \sigma_2^2)$ distribution. Suppose that the variances are unknown but, for some crazy reason you do know that $\sigma_1^2 = 3\sigma_2^2$. Define a random variable that has a t-distribution that can be used to find a $100(1 - \alpha)\%$ confidence interval for $\mu_1 - \mu_2$.