(1) (40 pts) For this problem, assume A is a 4×4 matrix with:

$$\text{range}(A) = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} \right\}.$$

(a) (10 pts) Find an orthonormal basis for $\text{range}(A)$.

(b) (10 pts) Find $\text{rank}(A^T)$, $\text{dim}(\ker(A^T))$, $\text{dim}(\text{coker}(A^T))$, $\text{dim}(\text{range}(A^T))$, and $\text{dim}(\text{corange}(A^T))$.

(c) (10 pts) Find an orthogonal basis for $\text{coker}(A)$. Show all work.

(d) (10 pts) Would $Ax = b$ have a solution if $b = (-1, 2, -1, -1)^T$? What if $b = (-2, 3, 2, -3)^T$? Explain.

Solution:

(a) Using the Gram-Schmidt process, let $v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ and let

$$v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\|v_1\|^2} v_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

and now normalizing yields the orthonormal basis $\{u_1, u_2\} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \right\}$.

(b) From the Fundamental Theorem of Linear Algebra we know $\text{rank}(A^T) = \text{rank}(A)$ and $\text{rank}(A) = \text{dim}(\text{range}(A))$, and from part (a) $\text{dim}(\text{range}(A)) = 2$, so, by the Fundamental Theorem of Linear Algebra for a 4×4 matrix, we have,

$$\text{dim}(\text{range}(A^T)) = \text{dim}(\text{corange}(A^T)) = \text{rank}(A^T) = 2$$
and, $\text{dim}(\ker(A^T)) = 4 - 2 = 2$, and, $\text{dim}(\text{coker}(A^T)) = 4 - 2 = 2$.

(c) Note that $\text{coker}(A) = \{y | A^T y = 0\}$, so we need all vectors y which are orthogonal to the columns of A with respect to the dot product, and the range of A is a basis for the columns of A, so we need

$$\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \cdot y = 0 \quad \text{and} \quad \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \cdot y = 0$$

that is, we need to solve,

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 1 & 1 & -1 \end{pmatrix} y = 0 \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} y = 0 \rightarrow \begin{pmatrix} y_1 - y_3 = 0 \\ y_2 - y_4 = 0 \\ y_3 = y_3 \\ y_4 = y_4 \end{pmatrix} \rightarrow \begin{pmatrix} y_1 = y_3 \\ y_2 = y_4 \end{pmatrix}.$$

so, $y = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} y_3 + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} y_4$, and so, $\text{coker}(A) = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$. Note that this basis is already orthogonal.
(d) The system is consistent if \(b \in \text{range}(A) \), so the system is consistent if

\[
b = c_1 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}
\]

has a solution. So if \(b = (-1, 2, -1, -1)^T \) we have

\[
\begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ -1 & 1 & -1 \\ 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & -2 \\ 0 & -1 & -1 \end{pmatrix} \Rightarrow \text{system is inconsistent} \Rightarrow Ax = b \text{ does not have a solution.}
\]

If \(b = (-2, 3, 2, -3)^T \) we have

\[
\begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 3 \\ -1 & 1 & 2 \\ 0 & -1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & -1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{system is consistent} \Rightarrow Ax = b \text{ has a solution.}
\]

(2) (40 pts) Show all work and justify your answers:

(a) (10 pts) Find the Gram matrix of \(F = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \). Is it positive definite? Justify your answer.

(b) (10 pts) Is the matrix \(B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix} \) positive definite? Justify your answer.

(c) (10 pts) Let \(v_1, v_2, v_3, v_4 \) be vectors in \(\mathbb{R}^3 \), can their Gram matrix be positive definite? Why or why not?

(d) (10 pts) Is the expression \(\langle u, v \rangle = u_1v_1 + u_1v_2 + u_2v_2 \) an inner product for vectors in \(\mathbb{R}^2 \)? Why or why not?

Solution: (a) The Gram matrix of \(F \) is \(K = F^T F = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \) and \(K \) is positive definite since the columns of \(F \) are linearly independent.

(b) Note that

\[
B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}
\]

so \(M \) is symmetric and regular with positive pivots and is therefore positive definite.

(c) No, since 4 vectors in \(\mathbb{R}^3 \) are linearly dependent (by a dimension argument) and so the corresponding Gram matrix cannot be positive definite, it is only positive semidefinite.

(d) Not an inner product since symmetry fails, for example, \(\langle (1, 0)^T, (1, 1)^T \rangle = 2 \neq 1 = \langle (1, 1)^T, (1, 0)^T \rangle \). It is positive and bilinear however.

(3) (20 pts) Find the least squares solution to the linear system:

\[
\begin{pmatrix} 3 & -1 \\ 0 & 2 \\ -2 & 1 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix}
\]

Solution: Let \(K = A^T A = \begin{pmatrix} 14 & 0 \\ 0 & 31 \end{pmatrix} \) and let \(f = A^T b = \begin{pmatrix} 9 \\ 4 \end{pmatrix} \) and solving \(Kx = f \) yields the least squares solution \(x^* = \begin{pmatrix} 9/14 \\ 4/31 \end{pmatrix} \).