Theorem: Let \mathbb{X} be a normed linear space and let \mathbb{Y} be a Banach space. Then $\mathcal{B}(\mathbb{X}, \mathbb{Y})$, the set of all bounded linear operators from \mathbb{X} into \mathbb{Y} is Banach with respect to the operator norm.

Proof:

- Let (T_n) be a Cauchy sequence in $\mathcal{B}(\mathbb{X}, \mathbb{Y})$. Then we can get $||T_n - T_m||$ as small as we want for sufficiently large m and n.

- Since $||T_nx - T_mx|| = ||(T_n - T_m)x|| \leq ||T_n - T_m|| ||x||$ and since we can get $||T_n - T_m||$ as small as we want, we have that, for each $x \in \mathbb{X}$ (T_nx) is a Cauchy sequence in \mathbb{Y}.

- \mathbb{Y} Banach $\Rightarrow \lim_{n \to \infty} T_nx$ exists in \mathbb{Y}. Let’s call the limit Tx. That is, we define
 \[Tx = \lim_{n \to \infty} T_nx. \]
 It is easy to show that T is a linear operator.

- We now show that T is bounded.
 Note that since
 \[||T_nx - T_mx|| \leq ||T_n - T_m|| ||x|| \]
 and (T_n) is Cauchy, we have that
 \[||T_nx - T_mx|| \leq ||x|| \]
 for sufficiently large m, n.
 Letting $m \to \infty$, this gives
 \[||T_nx - Tx|| \leq ||x|| \]
 for sufficiently large n.
 Thus,
 \[||Tx|| \leq ||T_nx - Tx|| + ||T_nx|| \leq ||x|| + ||T_nx|| \]
 \[\leq ||x|| + ||T_n|| ||x|| \leq (1 + ||T_n||)||x|| \]
 and so
 \[||T|| \leq 1 + ||T_n||. \]
 So, T_n bounded \Rightarrow T bounded and therefore $T \in \mathcal{B}(\mathbb{X}, \mathbb{Y})$.

- It remains to show that $T_n \to T$ in the sense that $||T_n - T|| \to 0$.
 Let $\varepsilon > 0$. (T_n) Cauchy $\Rightarrow \exists n \in \mathbb{N}$ such that $||T_n - T_m|| < \varepsilon$ for all $m, n \geq N$.
 So, we have
 \[||T_nx - T_mx|| \leq ||T_n - T_m|| ||x|| < \varepsilon ||x|| \]
 for all $m, n \geq N$ and for all $x \in \mathbb{X}$.

Letting $m \to \infty$, this becomes
\[||T_n x - T x|| < \varepsilon ||x|| \]
for all $n \geq N$ and for all $x \in X$.

Therefore
\[\sup_{||x||=1} ||T_n x - T x|| \leq \sup_{||x||=1} \varepsilon ||x|| = \varepsilon. \]

for all $n \geq N$.

The left-hand side is $||T_n - T||$, so we have
\[||T_n - T|| \leq \varepsilon \quad \forall n \geq N \]

and so we can conclude that $||T_n - T|| \to 0$, as desired.

That is, we took a Cauchy sequence in $B(X, Y)$ and showed that it converged to a point (operator) $T \in B(X, Y)$. \qed