Path Connectedness

Definition: A topological space \mathbb{X} is **path connected** if for any two points $x, y \in \mathbb{X}$ there exists a continuous $f : [0,1] \rightarrow \mathbb{X}$ such that $f(0) = x$ and $f(1) = y$.

Theorem: If \mathbb{X} is path connected then \mathbb{X} is connected.

Proof:

- Let \mathbb{X} be path connected. Suppose that it is not connected.
- Then there exist disjoint, non-empty, open $U, V \subseteq \mathbb{X}$ such that $\mathbb{X} = U \cup V$.
- Choose points $x \in U$ and $y \in V$. By the assumption that \mathbb{X} is path connected, there exists a continuous $f : [0,1] \rightarrow \mathbb{X}$ such that $f(0) = x$ and $f(1) = y$.
- Consider $f^{-1}(U)$ and $f^{-1}(V)$. Note the following facts about these sets.
 - They are disjoint in $[0,1]$ and their union is $[0,1]$.
 - By continuity of f, they are both open in $[0,1]$.
 - Since $0 \in f^{-1}(U)$ and $1 \in f^{-1}(V)$, they are non-empty.
- So, $f^{-1}(U)$ and $f^{-1}(V)$ partition $[0,1]$ into disjoint, non-empty, open sets. However, this contradicts the fact that $[0,1]$, as an interval of \mathbb{R}, is connected.
 Thus, \mathbb{X} must be connected.

Note: The converse is not true. \mathbb{X} may be connected but not path connected. As a famous example of this, please look up the “topologist’s sine curve”.