Publications
For citation statistics, please see my Google Citations Profile.
Published
- D.E. Baldwin, Sous Vide for the Home Cook. Paradox Press LLC, 12 April 2010. ISBN: 978-0-9844936-0-9.
Errata.
Available from
Amazon.com, Amazon.co.uk,
and the SousVide Supreme site.
Published
- M.J. Ablowitz and D.E. Baldwin, Dispersive shock wave interactions and asymptotics. (APS) Physical Review E, vol. 87(2), pp. 022906 (2013).
- M.J. Ablowitz and D.E. Baldwin, Interactions and asymptotics of dispersive shock waves — Korteweg–de Vries equation. (DOI) (ArXiv) Physics Letters A, vol. 377, pp. 555–559 (2013).
- M.J. Ablowitz and D.E. Baldwin, Nonlinear shallow ocean-wave soliton interactions on flat beaches (APS) (ArXiv), Physical Review E, vol. 86(3), pp. 036305 (2012).
Synopsis on APS's Physics. Physics Today. News coverage: New Scientist, Bulletin of the American Meteorological Society (Jan. 2013, News), Our Amazing Planet, CU Press Release. Erratum: There is a typo in equation (3), change \(\frac{\partial^2 F_N}{\partial x^2}\) to \(\frac{\partial^2 \log F_N}{\partial x^2}\).
- D.E. Baldwin. Sous vide cooking: A review (DOI) (PDF), International Journal of Gastronomy and Food Science, vol. 1(1), pp. 15–30 (2012).
- D.E. Baldwin and W. Hereman,
A symbolic algorithm for computing recursion operators of nonlinear partial differential equations
(DOI)
(ArXiv),
International Journal of Computer Mathematics, vol. 87(5), pp. 1094–119 (2010).
- M.J. Ablowitz, D.E. Baldwin, and M.A. Hoefer,
Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction (APS)
(ArXiv),
Physical Review E, vol. 80(1), pp. 016603 (2009).
- D.E. Baldwin and W. Hereman,
Symbolic software for the Painlevé test
of nonlinear ordinary and partial differential equations
(DOI) (ArXiv),
Journal of Nonlinear Mathematical Physics, vol. 13(1), pp. 90–110 (2006).
- D.E. Baldwin, Ü. Göktas, W. Hereman,
Symbolic computation of hyperbolic tangent
solutions for nonlinear differential-difference equations (DOI) (ArXiv),
Computer Physics Communications, vol. 162(3), pp. 203–17 (2004).
- D.E. Baldwin, Ü. Göktas, W. Hereman, L. Hong, R.S. Martino, and J.C. Miller,
Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs (DOI) (ArXiv),
Journal of Symbolic Computation, vol. 37, pp. 669–705 (2004).
Chapters in Books
- D.E. Baldwin, Cooking Sous Vide in “Cooking Sous Vide” by Heiko Antoniewicz, Matthaes Verlag, ISBN: 978-3-87515-067-4, (July 2012).
- D.E. Baldwin, Sous-vide in “Sous-vide” (in German) by Heiko Antoniewicz, Matthaes Verlag, ISBN: 978-3875150544, (Mar 2011).
- D.E. Baldwin, Interview with Douglas Baldwin on Sous Vide in “Cooking for Geeks” by Jeff Potter, O’Reilly, ISBN: 978-0-596-80588-3, (July 2010).
In Refereed Conference Proceedings
- D.E. Baldwin, W. Hereman, and J. Sayers,
Symbolic algorithms for the Painlevé test,
special solutions, and recursion operators for nonlinear PDEs (ArXiv),
CRM Proceedings and Lecture Series, vol. 39,
Eds.: P. Winternitz and D. Gomez-Ullate,
American Mathematical Society, Providence, Rhode Island,
pp. 17-32 (2004).
Thesis
- D.E. Baldwin, Dispersive shock wave interactions and asymptotics, University of Colorado, Boulder, CO, USA. Expected to be defended in 2013.
- D.E. Baldwin, Symbolic algorithms and software for the Painlevé test
and recursion operators for nonlinear partial differential equations (PDF),
Colorado School of Mines, Golden, Colorado, USA.
Defended on March 24, 2004.
- D.E. Baldwin. Dispersive shock waves interactions and asymptotics. At The Eighth IMACS International Conference on
Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory, University of Georgia, Athens, Georgia, USA, March 25–28, 2013.
- D.E. Baldwin. Interactions and asymptotics of dispersive shock waves. At the SIAM Conference on Nonlinear Waves and Coherent Structures, University of Washington, Seattle, Washington, USA, June 13, 2012.
- H. Antoniewicz and D.E. Baldwin. Wenn Wissenschaft kreativ macht: sous vide, flavor pairings, and cryo-methods. At Chef-Sache Alps, Zürich, Switzerland, June 10, 2012. Joint talk to about 600 chefs.
- D.E. Baldwin. Mathematica software for the Painlevé test, special solutions, and recursion operators of nonlinear PDEs. At the Workshop on Group Theory and Numerical Analysis, Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada, May 30, 2003.
I’ve been using Mathematica since February 1994 and I’m an expert at writing efficient and elegant Mathematica code.
You might find this short handout for doing applied mathematics in Mathematica helpful.
The below packages were tested up through Mathematica version 7.
They may not work correctly in version 8 or higher.
Our Painlevé test software, PainleveTest.m,
performs the standard Painlevé test on systems of nonlinear
polynomial ordinary and partial differential equations (ODEs and PDEs).
For more information, see our paper
Symbolic software for the
Painlevé test of nonlinear ordinary and partial
differential equations.
Package: PainleveTestV2.m
Notebook: PainleveTestV2.nb
Older Versions: PainleveTest.m;
PainleveTests.nb
Our software searches for solitary wave solutions expressible in hyperbolic and elliptic functions.
Partial differential equations
The software, PDESpecialSolutions.m,
allows for the computation of solutions expressible in hyperbolic tangent, hyperbolic secant, and
Jacobi ellitpic functions.
For more information, see our paper
Symbolic computation of exact solutions expressible
in hyperbolic and elliptic functions for nonlinear PDEs.
Package: PDESpecialSolutionsV3.m
Notebook:
PDESpecialSolutionsV3--Documentation--Examples-in-Paper.nb;
PDESpecialSolutionsV3--Documentation--Additional-Examples.nb;
PDESpecialSolutionsV3--Documentation--More-Examples.nb; and
PDESpecialSolutionsV3--Documentation--Extra-Examples.nb;
Older Versions (V2):
PDESpecialSolutionsV2.m and
PDESpecialSolutions--Documentation.nb
Older Versions (V1):
PDESpecialSolutions.m;
PDESpecialSolutions--Documentation.nb;
PDESpecialSolutions--Examples.nb ; and,
PDESpecialSolutions--More--Examples.nb
Differential-difference equations
The software, DDESpecialSolutions.m,
allows for the computation of solutions expressible in hyperbolic tangent functions.
For more information, see our paper
Symbolic computation of hyperbolic tangent solutions
for nonlinear differential-difference equations.
Package: DDESpecialSolutionsV3.m
Notebook:
DDESpecialSolutionsV3--Documentation.nb
Older Versions (V2):
DDESpecialSolutionsV2.m and
DDESpecialSolutions--Documentation.nb
Older Versions (V1):
DDESpecialSolutions.m;
DDESpecialSolutions--Documentation.nb; and,
DDESpecialSolutions--Examples.nb
The software, PDERecursionOperator.m,
generates a candidate recursion operator and tests it using the defining equation (Lie derivative).
For more information, see our paper
Symbolic algorithms for the Painlevé test,
special solutions, and recursion operators for nonlinear PDEs.
Package: RecursionOperator.m and
InvariantsSymmetries.m (by Ü. Göktas is required)
Notebook:
RecursionOperator--Documentation.nb