Homework set 10 — APPM5440

From the textbook: 4.5a, 4.6, 5.1, 5.3.

Note: Problems 3, 4, and 5 are slightly outside the “core” curriculum. Make sure you understand the previous problems before spending time on them.

Problem 1: Set $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, and let $A \in \mathcal{B}(X,Y)$. Let
\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]
denote the representation of A in the standard basis. Equip X and Y with the supremum norms. Compute $||A||$.

Problem 2: Set $X = \mathbb{R}^2$ and $Y = \mathbb{R}$, and define $f : X \rightarrow Y$ by setting $f([x_1, x_2]) = x_1$. Prove that f is continuous. Prove that f is open. Prove that f does not necessarily map close sets to close sets.

Problem 3: Prove that the co-finite topology is first countable if and only if X is countable.

Problem 4: Prove that the co-finite topology on \mathbb{R} weaker than the standard topology.

Problem 5: Consider the set $X = \mathbb{R}$. Let \mathcal{S} denote the collection of sets of the form $(-\infty, a]$ or (a, ∞) for $a \in \mathbb{R}$.

(a) Let \mathcal{B} denote the collection of sets obtained by taking finite intersections of sets in \mathcal{S}. Prove that if $G \in \mathcal{B}$, then either G is empty, or $G = (a, b]$ for some a and b such that $-\infty < a < b < \infty$.

(b) Let \mathcal{T} denote the topology generated by the base \mathcal{B}. Prove that all sets in \mathcal{B} are both open and closed in \mathcal{T}.

(c) Prove that \mathcal{T} is first countable but not second countable. Hint: For any $x \in X$, any neighborhood base at x contains at least one set whose supremum is x.

(d) Prove that \mathbb{Q} is dense in \mathcal{T}. (This proves that (X, \mathcal{T}) is separable but not second countable.)

(e) Prove that (X, \mathcal{T}) is not metrizable.