1. Verify that \(y = e^{t^2} \int_0^t e^{-s^2} \, ds + e^{t^2} \) is a solution of the differential equation \(y' - 2ty = 1 \).

Sol:

\[
y' = \frac{d}{dt} \left[e^{t^2} \int_0^t e^{-s^2} \, ds + e^{t^2} \right]
\]

\[
= e^{t^2} \frac{d}{dt} \left[\int_0^t e^{-s^2} \, ds \right] + \frac{d}{dt} \left[e^{t^2} \right] \int_0^t e^{-s^2} \, ds + \frac{d}{dt} e^{t^2}
\]

\[
= e^{t^2} \left[e^{-t^2} \right] + 2te^{t^2} \int_0^t e^{-s^2} \, ds + 2te^{t^2}
\]

\[
= 1 + 2te^{t^2} \int_0^t e^{-s^2} \, ds + 2te^{t^2}.
\]

\[
y' - 2ty = 1 + 2te^{t^2} \int_0^t e^{-s^2} \, ds + 2te^{t^2} - 2t(e^{t^2} \int_0^t e^{-s^2} \, ds + e^{t^2}) = 1.
\]

Therefore, \(y = e^{t^2} \int_0^t e^{-s^2} \, ds + e^{t^2} \) satisfies the differential equation.

2. Sketch the direction field for \(y' = y - t \). What can you say about the long term behavior of the solution?

Sol: Long term behavior depends on the initial condition. For points starting above the line \(y = t + 1 \) solutions tend towards \(+\infty \) as \(t \to \infty \). Below the line \(y = t + 1 \) solutions tend towards \(-\infty \) as \(t \to \infty \).
3. Match the differential equations with their corresponding direction fields.

(i) \(y' = t + y^2 \)
(ii) \(y' = e^{t^{1/2}} \)
(iii) \(y' = 1 - y \)

Sol: (i) \(\iff \) (c)
(ii) \(\iff \) (b), no \(y \) dependence
(iii) \(\iff \) (a), no \(t \) dependence

4. Which of the following equations are separable?

(a) \(y' = ty^2 \)
(b) \(y' = ty + t \)
(c) \(y' = -\frac{t^2}{y} \)
(d) \(y = \sin(ty) \)
(e) \(y = \log(y') \)

Sol: (a), (b), (c) and (e) are separable.