Problem #1 (25 points): Evaluate the integral
\[I = \frac{1}{2\pi i} \oint_C f(z) \, dz, \]
where \(C \) is the unit circle centered at the origin, for the following \(f(z) \):

(a) \(f(z) = \frac{z^2 + 1}{z^2 - a^2}, \quad a^2 < 1 \)
(b) \(f(z) = z \cos \frac{1}{z + 1} \)
(c) \(f(z) = z^2 e^{-1/z} \)

Problem #2 (12 points): For complex \(a \) with \(|a| < 1\), show that
\[I(a) = \int_0^{2\pi} \frac{d\theta}{1 - 2a \cos \theta + a^2} = \frac{2\pi}{1 - a^2}. \]
Now find the result when \(|a| > 1\)?

Problem #3 (24 points): Let \(C \) be the unit circle centered at the origin. Evaluate the integral
\[I = \frac{1}{2\pi i} \oint_C f(z) \, dz, \]
for the following \(f(z) \) in two ways: (i) enclosing the singular points inside \(C \) and (ii) enclosing the singular points outside \(C \) (by including the point at infinity). Do you get the same result in both cases?

(a) \(f(z) = \frac{z^2 + 1}{z^2 - a^2}, \quad a^2 < 1 \)
(b) \(f(z) = z \cos \frac{1}{z + 1} \)
(c) \(f(z) = z^2 e^{-1/z} \)
(d) \(f(z) = \frac{z - z^{-1}}{z(2z + (2z)^{-1})} \)

Problem #4 (24 points): What type of singularity do the following functions have at \(z = \infty \)?

(a) \(z^m, \quad m \in \mathbb{N} \)
(b) \(z^{1/3} \)
(c) \((z^2 + a^2)^{1/2}, \quad a^2 > 0 \)
(d) \(\log(z^2 + a^2), \quad a^2 > 0 \)
(e) \(e^z \)
(f) \(z^2 \sin z^{-1} \)
(g) \(\sin^{-1} z \)
(h) \(\log(1 - e^{1/z}) \)

Problem #5 (15 points): Assume that \(f \) and \(g \) are analytic outside a circle \(C_R \) of radius \(R \) centered at the origin and
\[\lim_{|z| \to \infty} f(z) = C_1 \quad \text{and} \quad \lim_{|z| \to \infty} zg(z) = C_2, \]
where \(C_1 \) and \(C_2 \) are constants. Show that
\[\frac{1}{2\pi i} \oint_{C_R} g(z) e^{f(z)} \, dz = C_2 e^{C_1}. \]

Extra-Credit Problem #6 (15 points): Find
\[I(a) = -i\pi \oint_{C_a} \frac{e^z}{z(z^2 + \pi^2)} \, dz \]
for \(-\infty < a < \infty \) and where \(C_a \) is the rectangle with corners \(-1 + ia, -1 + i(a + 4), 1 + i(a + 4), \) and \(1 + ia \).