INSTRUCTIONS: Books, notes, and electronic devices are **not** permitted. This exam is worth 100 points. Box your final answers. Write neatly, top to bottom, left to right, one problem per page. A correct answer with incorrect or no supporting work may receive no credit. **SHOW ALL WORK**

1. (13 points; 3,3,3,4) Solve for x, simplify (Consider x as a real number and $0 \leq x \leq 2\pi$ for trig functions):

 (a) $-9^2 = \sqrt{-8} + x$
 (b) $x \cdot 8^{1/2} = \sqrt{2}$
 (c) $\left[\frac{4-3\cdot2+3+\frac{1}{2}}{(\frac{1}{2})^2} \right]^2 = x/2$
 (d) $\sin 2x = \cos x$.

Solution:

(a) $x = -81 + 2 = -79$
(b) $\frac{\sqrt{2}}{\sqrt{8}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$
(c) $x = 2 \left(\frac{16}{5} \right) = 2 \cdot 2 \cdot 16 = 2 \cdot 32 = 64$

(d)

$$\sin 2x = \cos x$$
$$2 \sin x \cos x = \cos x$$
$$\cos x(2 \sin x - 1) = 0$$
$$\cos x = 0 \quad \text{or} \quad \sin x = \frac{1}{2}$$

$$x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$$
2. (22 points; 3,3,5,4,7) Consider the following functions:

\[f(x) = \frac{|x+1|}{x} \quad \text{and} \quad g(x) = \sqrt{x^2 - 1} \quad \text{and} \quad h(x) = \begin{cases}
 x^2 & x \leq -1 \\
 -x^2 + 1 & -1 < x < 1 \\
 -1 + x^2 & x > 1
\end{cases} \]

(a) What is the domain of \(g(x) \).
(b) Is \(g(x) \) even, odd, neither, or both?
(c) What is \(h \circ g(x) \)?
(d) State the domain of \(h \circ g(x) \).
(e) Sketch \(f(x) \).

Solution:

(a) \(x^2 - 1 \geq 0 \\
\Rightarrow x^2 \geq 1 \\
\Rightarrow |x| \geq 1 \\
\Rightarrow (-\infty, -1] \cup [1, \infty) \\

(b) \(f(x) = \sqrt{x^2 - 1} \\
f(-x) = \sqrt{(-x)^2 - 1} \\
f(-x) = \sqrt{x^2 - 1} = f(x) \\
f(x) \text{ is Even} \\

(c) Since \(h \circ g(x) \) excludes values \((-1, 1)\) from its domain we have:

\[h \circ g(x) = \begin{cases}
 (\sqrt{x^2 - 1})^2 & , x \leq -1 \\
 \emptyset & , -1 < x < 1 \\
 -1 + (\sqrt{x^2 - 1})^2 & , x > 1
\end{cases} \]

\[h \circ g(x) = \begin{cases}
 x^2 - 1 & , x \leq -1 \\
 \emptyset & , -1 < x < 1 \\
 x^2 - 2 & , x > 1
\end{cases} \]

(d) The \(h(x) \) function excludes 1 from its domain. The domain of \(h \circ g(x) \) is the intersection of the domains of \(h(x) \) and \(g(x) \) or \((-\infty, -1] \cup (1, \infty)\)

(e) \(f(x) = \frac{|x+1|}{x} \) can be described piecewise:

\[f(x) = \begin{cases}
 \frac{x+1}{x} & , x \geq -1 \\
 \frac{x-1}{x} & , x < -1
\end{cases} \]

or

\[f(x) = \begin{cases}
 1 + \frac{1}{x} & , x \geq -1 \\
 -1 - \frac{1}{x} & , x < -1
\end{cases} \]

These are the graphs of \(\frac{1}{x} \) shifted and rotated.

![Graph of f(x)](image)
3. (18 points; 3,3,4,8) Consider the following graph of a functional relationship $f(x)$ with secant line PQ:

(a) What are the coordinates of point P?
(b) What are the coordinates of point Q?

(c) What is the slope of line PQ?
(d) Suppose $f(x) = \frac{1}{x}$, then find and simplify $\frac{f(a + h) - f(a)}{h}$.

Solution:

(a) $[a, f(a)]$

(b) $[a + h, f(a + h)]$

(c) $m = \frac{f(a + h) - f(a)}{h}$

(d) $\frac{1}{a + h} - \frac{1}{a} = \frac{a - (a + h)}{ha(a + h)} = \frac{-h}{ha(a + h)} = \frac{-1}{a(a + h)}$
4. (8 points) Solve for x: \[
\frac{\sin x \cdot \sqrt{x^2 + 9} - 3 \sin x}{x^3} = 0.
\]

Solution: The only time a fraction can equal zero is when the numerator is zero and the denominator is non-zero.

\[
\sin x \cdot \sqrt{x^2 + 9} - 3 \sin x = 0
\]

\[
\sin x (\sqrt{x^2 + 9} - 3) = 0
\]

\[
\sin x = 0 \quad \text{or} \quad \sqrt{x^2 + 9} - 3 = 0
\]

\[
x = n\pi \quad \text{or} \quad \sqrt{x^2 + 9} = 3
\]

\[
x^2 + 9 = 9 \quad \implies \quad x^2 = 0 \quad \implies \quad x = 0
\]

$n\pi$ for integer n’s $\neq 0$ since x=0 is not a member of the functions domain.
5. (10 points) A truck can be rented from Basic Rental for $50 per day plus $0.20 per mile. Continental charges $20 per day plus $0.50 per mile to rent the same truck. What is the minimum number of miles that must be driven in a day to make the rental cost for Basic Rental a better deal than Continental’s?

Solution: Continental appears to have a better deal prior to the point where the deals are equivalent, which is when \(50 + 0.20x = 20 + 0.50x \). For \(x \) amount of miles after this point, Basic Rental is better.

\[
\begin{align*}
50 + 0.20x &= 20 + 0.50x \\
30 &= 0.30x \\
x &= 30/0.30 \\
x &= 100
\end{align*}
\]

Therefore, Basic Rental is better [AFTER 100 miles], or at \(x > 100 \) miles.
6. (10 points) If the following solid has a volume of 21 cubic units, solve for x. All corners are 90° angles.

Solution:

\[
V = 3x(2x - 1) + x^2(x + 1) = 21 \\
6x^2 - 3x + x^3 + x^2 = 21 \\
x^3 + 7x^2 - 3x - 21 = 0 \\
x^2(x + 7) - 3(x + 7) = 0 \\
(x + 7)(x^2 - 3) = 0 \\
x = -7, -\sqrt{3}, \sqrt{3}
\]

The only valid answer for a length is $x = \sqrt{3}$
7. (19 points; 4,4,6,5) Answer the following:
(a) Describe the shape, size, and location of the graph of \(3x^2 + 3y^2 + 6x - 12y = 0\).

(b) If a 45-45-90 triangle has a leg of length \(\sqrt{2} + \sqrt{3}\), then how long is the hypotenuse?

(c) What single trigonometry function is equivalent to \(\tan \theta \sin \theta + \cos \theta\)? Explain.

(d) Solve for \(P\) given that \(T = \frac{A - P}{Pr}\).

Solution: (a)

\[
\begin{align*}
3x^2 + 3y^2 + 6x - 12y &= 0 \\
3x^2 + 6x + 3y^2 - 12y &= 0 \\
3(x^2 + 2x) + 3(y^2 - 4y) &= 0 \\
3(x^2 + 2x + 1) + 3(y^2 - 4y + 4) &= 3 + 12 \\
3(x + 1)^2 + 3(y - 2)^2 &= 15 \\
(x + 1)^2 + (y - 2)^2 &= 5
\end{align*}
\]

This is a circle located at \((-1, 2)\) with a radius of length \(\sqrt{5}\)

(b) The hypotenuse will be \(\sqrt{2}\) times the leg, thus: \(h = \sqrt{2}(\sqrt{2} + \sqrt{3}) = 2 + \sqrt{6}\)

alternatively, \(h^2 = 2(\sqrt{2} + \sqrt{3})^2 \implies h = \sqrt{10 + 4\sqrt{6}}\)

(c)

\[
\tan \theta \sin \theta + \cos \theta = \frac{\sin \theta}{\cos \theta} \sin \theta + \cos \theta \\
= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta} \\
= \frac{1}{\cos \theta} \\
= \sec \theta
\]

(d)

\[
\begin{align*}
T &= \frac{A - P}{Pr} \\
TPr &= A - P \\
TPr + P &= A \\
P(Tr + 1) &= A \\
P &= \frac{A}{Tr + 1}
\end{align*}
\]
END of Exam