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Abstract

Technological limitations require that additional resources be spent to verify the output of a quantum device. We
consider this verification through the lens of fidelity estimation, in which measurements of the quantum state directly
inform how “close” a constructed state is to the intended target. This is in contrast to tomography schemes that
first reconstruct the complete state, as these often require a greater number of measurements to obtain a reasonably
accurate estimate. To be experimentally viable, a central goal of any approach is to accurately estimate the fidelity
from as few observations, and types of observations, as possible. We present a technique that designs an experimental
measurement protocol of a known target state, finding one that minimizes the width of a nearly optimal minimax
confidence interval around the true value of the fidelity. Importantly, the nature of the underlying fidelity estimation
scheme means that this design procedure is robust to the availability of measurements, and can be designed prior to
the collection of any observations.

I Introduction The verification and validation of existing quantum technologies is a critical component of
the current Noisy Intermediate Scale Quantum era. Even when there is advance knowledge of properties of an
experimentally acquired quantum state, there are a number of reasons that the true state might deviate from
expectation. In this work, we are interested in the case where the state is created with a pure target state in mind,
but the construction process is subject to noise and other experimentally induced errors [Cer+20]. In particular, the
methods discussed are indifferent to the origins of these errors and the type of device hardware more generally.

Our objective is to design a system for accurately measuring the fidelity between an experimentally produced
quantum state σ and the original target ρ. A common approach to this problem is full scale tomography, in which
the complete state is reconstructed through a classical post-measurement analysis of observables, such as Maximum
Likelihood Estimation (MLE) [Gro+10]. Once this state is constructed, it allows for analysis of many observables
of interest, including the fidelity. However, this comes at an often unreasonable experimental cost, requiring a large
number of measurements needed to obtain a reasonably accurate reconstruction, particularly when the fidelity is the
only value of interest [Blu10]. Instead, it is preferable to have a method of directly measuring the fidelity without
appealing to a full reconstruction. This has led to the Direct Fidelity Estimation (DFE) technique, in which many
fewer measurements of a pre-determined experimental protocol can be used to rigorously compute a confidence
interval on the true fidelity without needing to perform the full tomography [FL11]. A recent alternative to DFE is
proposed by [Ses+21b], describing a theoretical framework for fidelity estimation that is more flexible to a wider
range of experimental protocols. This technique produces both a single estimator of fidelity (itself a function of
arbitrary observation data), as well as a rigorous, near-optimal bound on the error in the worst case of σ. This
defines a near-optimal minimax confidence interval on the true fidelity, and we refer to this process for a single
experimental protocol as the optimal minimax method.

Within the framework of the optimal minimax method for fidelity estimation, our work considers the width of
this confidence interval, the risk, as a function of the experimental protocol. Our principle contribution is to design
a measurement scheme that minimizes this risk by more efficiently allocating experimental resources, measured
through the copies of the experimental state used for observation. This means we perform the minimization within
a fixed budget for the total number measurements, recognizing that acquiring copies of a state and performing
measurements is expensive. Because the optimal minimax method minimizes the error in the worst case, it constructs
the relevant statistical estimator of the fidelity prior to execution of the experimental protocol. As a result, this means
the entire optimization process does not need access to any observed data. This is very valuable from a practical
perspective, as this means that the same optimal measurement scheme can be used across multiple experimental
configurations, provided the intended target state remains the same. Ultimately, the proposed method has the potential
to greatly reduce the cost of verifying the creation of quantum states while simultaneously improving the accuracy
of estimates for the fidelity.



II Methods Consider a quantum system with a d-dimensional Hilbert space over C. We identify each state in
this system with a density matrix, a d×d positive semidefinite matrix with unit trace, and we denote the set of such
density matrices as X . Given a pure target state ρ and the experimentally constructed state σ, the fidelity between
the two is given by the function F (σ; ρ) = Tr(σρ), a linear function of σ. Because this fidelity is dependent on
the unknown state, we can only estimate it based on a set of observations from a particular measurement protocol.
Each of the L measurement settings of the protocol is described by a positive operator-valued measure (POVM)
{E(ℓ)

1 , . . . E
(ℓ)
Nℓ

}, such that the ℓth POVM can have one of Nℓ possible outcomes k ∈ {1, . . . , Nℓ}. Each measurement,
or shot, is repeated Sℓ times to produce independently and identically distributed outcomes {o(ℓ)1 , . . . , o

(ℓ)
Sℓ

}. For
a given state σ, the probabilities of each outcome are modeled by Born’s rule with p

(ℓ)
σ (k) = Tr(E(ℓ)

k σ). In the
following examples, we consider only the set of 4d − 1 Pauli measurements with Nℓ = 2d outcomes each, but the
general framework is readily applicable to other types of measurements.

Given this information about the measurement protocol, as well as a confidence level of 1 − δ, the optimal
minimax estimator F̂ is constructed through the optimization techniques described in [Ses+21a]. This estimator
is an affine function of the observed outcomes from each measurement, mapping them to an estimate of the true
fidelity F . The error in this estimate is defined within the supporting statistics literature [JN09] as the risk R̂,
essentially the width of the confidence interval around the estimate that contains F with a probability of 1− δ. As
is the case for the estimator F̂ , this risk R̂ can be computed prior to taking any measurements of σ. The risk can
also be computed independently of the estimator, being the optimal value of the saddle point optimization problem

R̂ = inf
α>0

{
α ln(2/δ) + max

χ1,χ2∈X

[
1

2
⟨ρ, χ1⟩ −

1

2
⟨ρ, χ2⟩+ α ln(AffH(A(χ1), A(χ2)))

]}
, (1)

where AffH(A(χ1), A(χ2)) is the Hellinger affinity, a jointly log-concave function defined by

ln (AffH(A(χ1), A(χ2))) =

L∑
ℓ=1

Sℓ

2
ln

[
Nℓ∑
k=1

p(ℓ)χ1
(k)p(ℓ)χ2

(k)

]
. (2)

Written in this way, Equation 1 can be solved reasonably efficiently for a given experimental protocol using standard
convex optimization software such as cvxpy (See [Ses+21b], [Ses+21a] for additional details). In fact, it is this
feature of the optimal minimax method that permits optimization over the measurement protocol itself.

Our goal is to decide how to allocate a fixed budget of Stot observations, measured in shots, over a given fixed
set of L available measurement settings. The criterion we choose is the risk from Equation 1, which is a function
of the vector of shot counts S⃗ = (S1, . . . , SL)

T , which we minimize subject to the budget constraints:

minimize R̂(S⃗),

subject to
L∑

ℓ=1

Sℓ ≤ Stot.
(3)

In minimizing the risk, we first note that although the Sℓ are in principle integer-valued, with each representing
discrete measurements of the experimental state, the objective function R̂ allows for a real-valued treatment of
these arguments. This means that during minimization of the risk we can allow each Sℓ to take non-integer values,
and simply round them at the end. This does not guarantee a global minimizer, but finding a true global minimizer
is an intractable combinatorial problem. Instead, we simply search the space of possible measurements for a better
protocol than conventional alternatives. In particular, we can verify that we improve on the initial choice of S⃗.

Even without the integer constraints, the function R̂ is generally nonconvex, making the nested optimization
problem in Equation 3 difficult. We solve this outer level optimization using the scipy.optimize library,
utilizing the constrained trust-region methods within since they are appropriate for multidimensional nonconvex
problems. We further improve the performance of these methods by providing an analytic gradient of R̂, which is

∇S⃗R̂ℓ(S⃗) = α∗ ln

(
Nℓ∑
k=1

√
p
(ℓ)
χ∗
1
(k)p

(ℓ)
χ∗
2
(k)

)
,

where α∗, χ∗
1, and χ∗

2 are the optimal values of the saddle point problem in Equation 1 at the input vector S⃗.
Importantly, if the objective function has already been evaluated at this input vector, then constructing the gradient
comes at essentially no additional cost since α∗, χ∗

1, and χ∗
2 are already known. Through this optimization procedure,

we find an optimal experimental protocol for a given target state ρ.



GHZ State ρ. Stot = 320

Uniform DFE-Derived Optimized
Measurement Shots Shots Shots

XXX 11 40 53
XYY 11 40 53
YXY 11 40 53
YYX 11 40 53
ZZZ 11 160 106

Each Other 11 0 0Measurement

Risk R̂ : 0.2237 0.1191 0.1136

W State ρ. Stot = 320

Uniform DFE-Derived Optimized
Measurement Shots Shots Shots

XXX 11 0 41
XXZ 11 36 31
XZX 11 36 31
YYY 11 0 41
YYZ 11 36 31
YZY 11 36 31
ZXX 11 36 31
ZYY 11 36 31
ZZZ 11 107 53

Each Other 11 0 0Measurement

Risk R̂ : 0.2269 0.1751 0.1456

TABLE I: Our optimized measurement scheme provides a more efficient utilization of available experimental resources, providing a lower value
for the risk using the same volume of measurements.

III Results and Discussion Given a set of available measurement settings, our method for optimal ex-
periment design is capable of producing tighter confidence intervals than conventional alternatives. As a naive
approach, we uniformly distribute the budget among all available non-trivial measurements. To compare to a more
sophisticated technique, we also consider a practical variant of the well-studied DFE method presented in [FL11]
in which a subset of Pauli observables {Wi}4

d

i=1 (excluding the identity) are selected at random according to the
weighting function Pr(i) = Tr(ρWi)

2/2d. To make an appropriate comparison, we consider the common approach
of designing an experimental protocol that distributes the measurement budget among settings according to their
relative weighting in the importance sampling rule. Then, instead of computing the risk according to the theory
of DFE, we construct the optimal minimax confidence interval using this DFE-derived protocol. This provides a
uniform comparison between all three experimental protocols, establishing the same type of worst case bound for
each method. This approach is quite different from the intended usage of DFE, which is inherently probabilistic with
respect to which measurements are taken as opposed to establishing a fixed measurement protocol. See [Zha+21]
for an example of a similar usage of a fixed DFE-derived protocol used for fidelity estimation, where the importance
weighting function determines which measurements are taken.

This comparison to DFE illustrates another advantage of the optimal minimax method for fidelity estimation. The
theory for DFE associates each Pauli operator with a “coarse,” 2-outcome POVM for each measurement setting,
projecting the state onto the subspace of each operator associated with the eigenvalues ±1. In contrast, by using
the optimal minimax method to construct our estimator, we are able to fully utilize a set of “fine” POVMs for
each measurement setting, which produce 2d outcomes each. This is information which is commonly available
experimentally, but often discarded due to a lack of appropriate theory. From these observations, that we also note
that using an optimized scheme of this kind becomes more advantageous over the DFE-derived protocol as the
problem scale increases. This is because as the size of the system increases, the fine POVM becomes more expressive
relative to the coarser alternative. Furthermore, the use of a fine POVM for each measurement naturally induces
sparsity in the number of different of measurements compared to the classical DFE technique. For example, utilizing
this full collection of outcomes in the calculation of the risk allows us to completely eliminate redundancies between
corresponding I and Z components of the Pauli operator. This is in stark contrast to the standard implementation
of the DFE method, which uses coarser POVMs that are not invariant to this exchange.

To demonstrate our experiment design approach fully, we consider an optimized protocol on two 3-qubit examples,
one with a GHZ stabilizer state and the other a W state. In both cases we consider the risk associated with a
confidence level of 0.95 and use a budget of Stot = 320 shots. We compile these results in Table I, showing the
improvement to our risk estimate using the optimized protocol over the DFE-derived protocol. Note that although the
inherent simplicity of the GHZ leads to an only slightly improved risk, our use of the set of fine POVMs nonetheless
causes both techniques to use dramatically fewer types of measurements than would otherwise be assumed by the
coarse POVM DFE method. The complex nature of the W state more clearly demonstrates the advantages of the
proposed method, achieving a narrower confidence interval with the same number of shots, while simultaneously
revealing additional measurements to take that may not be suggested by any underlying theory.

The above numerical experiment shows improvement in terms of the minimax risk, which is a bound on the
estimation error when applied to measured outcomes. In line with this, we can perform numerical simulations of



observed measurements and use them to evaluate the true, asymmetric confidence interval, thereby verifying that
the estimator produced by the optimized minimax procedure improves along with the risk. These simulations are
performed on a pure and totally random 3-qubit state to which varying levels of depolarizing noise are added. As
before, we consider the risk associated with a confidence level of 0.95. For each level of depolarizing noise, we
simulate 5000 sets of measured data, using a budget of Stot = 1250 shots for each instance. This budget was selected
to ensure that the risk is less than 0.10 in the optimized case. Being able to work with arbitrary pure quantum
states is a unique advantage of the optimal minimax method, as many other techniques that involve quantum state
verification or machine learning require a specific structure for the target state.

For each level of depolarizing noise in Figure 1, we plot a distribution of measured fidelities along with the
true fidelity with the target state. For each experimental protocol (DFE-derived and optimized) we plot the optimal
minimax confidence interval, as well as an empirically constructed confidence interval that is selected to have
minimum width while capturing 95% of the estimates. We make particular note of the fact that because the optimal
minimax risk is minimized for a given target state with no reference to observation data, the width of the minimax
confidence interval is equal across the noise levels. Nevertheless, we observe in these histograms that the optimized
experimental protocol produces not just improvements over the alternative in terms of risk, but also in the estimate
of the fidelity upon being evaluated with observation data, with estimates more concentrated around the true value.

Fig. 1: For varying levels of depolarizing noise, over two types of experimental protocols (our new proposal in orange), we observe the relationship
between the risk defined by the optimal minimax method and the empirically derived confidence interval derived simulated observations applied
to each estimator. We see that in both cases, the optimized experimental protocol (orange) shows clear improvements across all noise levels.

IV Conclusions The optimal minimax method is able to provide rigorous error bounds on the estimate of
fidelity for a given measurement protocol. Overall, we have demonstrated that numerical optimization over the
different available measurement protocols is an effective method of intelligently allocating experimental resources.
We see that this approach not only reduces the minimax risk in quantum fidelity estimation, but also leads directly to
improvements in the fidelity estimates themselves. The results of this work indicate that future advancements in the
optimization of minimax bounds have the potential to greatly impact the field. As one example, measurement sparsity
is hugely important in an experimental context, and should be prioritized even beyond the inherent sparsity obtained



from using fine POVM measurement settings. This is simply because switching measurements is a particularly
expensive and time consuming part of the verification process. With the understanding that even small changes in
the measurement protocol can severely improve the resulting fidelity estimator, modifications to the minimization
problem in Equation 3 to directly encourage sparsity in the vector of shot counts have the potential to greatly
improve efficiency in verifying modern quantum devices.
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