
ACM 11: Homework 2

Assigned Wednesday, Oct 8 2008. Due by Wednesday noon, October 15. 50 points.
Create a script file entitled Firstname Lastname 2.m, where you replace Firstname and Lastname

with your first and last names, respectively. Save your solution to this problem set in this single
file; when finished, follow the directions on the course site to submit the file by FTP. If you need
to submit revisions of your solution, follow the instructions provided on the course site.

Begin the script file with a title comment containing your name and email address. This infor-
mation should also be displayed in the command window when your script runs. Output the answers
to all questions to the command window, properly labeled, including the problem number; if you
output a number, indicate what has been measured, and if you provide an explanation, indicate
what phenomenon you are explaining. All values in the command windows should be the result of
deliberate display statements (e.g. disp or fprintf) and not MATLAB default evaluations! This
documentation is required! Put simply, your output should be easy to read and understandable
without reference to your code. Your grade will be almost entirely determined by the script’s
output, not the code itself.

Each graph that is requested, or which you found useful while solving a problem (e.g. one which
supports an explanation), should be created in a new figure (using the figure command), properly
labeled, and referred to in your output by figure number. Be sure to put clear, clc, and close
all as the first executable instructions in main.m.

1. Run the following commands. The sum of the variable v1 is the 100-th order Taylor ap-
proximation of e−10 using double precision arithmetic, while the sum of v2 and v3 are the
approximations using single precision arithmetic. Report the absolute errors for each approx-
imation (using exp to find the true answer) and explain the results. 5 points.

x = 0:100;

(a) v1=(-10).^x./factorial(x); sum(v1)

(b) v2=single( (-10).^x./factorial(x) ); sum(v2)

(c) v3=single( (-10).^x )./factorial(x); sum(v3)

2. Fair dice. Download the file diceData.mat from the course website and load it into MAT-
LAB using the load command. There are two vectors, die1 and die2, which are the results
of 5000 rolls of two dice. One die is a fair die, meaning that the integers 1, 2, . . . , 6 all have
equal probability. The other die is not a fair die.

Which die is fair, die1 or die2? Explain what lead you to your conclusion, and what MAT-
LAB commands you used. Hint: you might find the functions listed in help datafun useful.
5 points.

3. Pseudo-random number generators. Designing a good pseudo-random number generator is
not easy, and MATLAB’s default generators are some of the best. Go to the course website
and download the file randomNumbers.mat and load it into MATLAB . The two variables,
rand1 and rand2, are both pseudo-random number sequences (meant to be like uniform
random numbers in the range [0, 1]), but from different algorithms. One algorithm is the
poorly designed RANDU algorithm, and the other is MATLAB’s default. Which is which,
and why? Hint: you may use the internet on this problem to research the weaknesses of
RANDU. In MATLAB , you might find the command plot3 useful. If, for example, you make
a plot that is evidence for your conclusion, then include this plot with your homework. 5
points.

4. Vectorization and anonymous functions. Consider the function

f(x) =


sin(2x) if 0 < x < 1
exp(−x2) if 1 ≤ x ≤ 2
0 if x ≤ 0 or x > 2

1



Implement f in MATLAB using an anonymous function, and without using any if statements.
Display your code for f (using disp(f)), as well as the output of f given the following input
vector: x = [-.3, .3, 1.5, 2, 200]. Your code should be able to handle vector inputs,
i.e. no need for for loops. 5 points.

5. Interpolation.

(a) Trigonometric Polynomials. Consider the function f(x) = sin(4πx) · sin(πx) on the
domain x ∈ [a, b], and suppose we are interested in approximating f on a uniformly
spaced grid with 512 points. To make this grid, use a command like dX = (b-a)/512;
grid = a:dX:b-dX (we do NOT want to include the endpoint). Using a = 0 and b = 2,
evaluate f on this grid using an anonymous function, and use this result as the true
answer. For a brief introduction to interpolation, see Moler’s online textbook.

i. Now, subsample f on the smaller grid defined by dX = (b-a)/N; a:dX:b-dX (for
a = 0 and b = 2 again), for some N smaller than 512. Using interpolating Fourier
polynomials, interpolate (using the data from the small grid) onto the 512-point
grid. In MATLAB , this can be done with the interpft command. Compute (and
record) the error using the l∞ norm on the large 512-point grid. How many points
N are necessary to acheive nearly perfect reconstruction (i.e. the norm of the error
is less than 10−14)? Is this surprising? 5 points.

ii. Change the domain so that b = 2.2. Do the results from the previous question still
hold? For N = 50, make a plot of the error on the 512-point grid, and give the plot
an informative title. 5 points.

iii. Now, interpolate using polynomials (instead of trigonometric polynomials), using
both pchip and spline. These can also be called using interp1. Be careful: the
syntax is different than for interpft. With b = 2 again, and N = 20, interpolate
the same function. Record the l∞ errors. Also, make a plot showing the true answer,
the result given by pchip, and the result given by spline; this should all be in the
same figure, and each line should have a different color. Use the command legend
to label the different results. Are the results better or worse than with interpft?
10 points.

iv. BONUS: can you increase the accuracy of the pchip and spline methods by padding
the input with zero?

(b) Polynomials.

i. Consider a polynomial p(x) with roots {.4, .7}, and consider the domain x ∈ [0, 1];
this polynomial is unique up to a multiplicative constant. Use MATLAB’s poly
function to create this polynomial (using MATLAB’s default scaling constant). Eval-
uate p on a 512-point grid (created similarly via the method shown in the previous
problem). To do this, type help polyfun to see the available MATLAB functions.
Interpolate back to 512 points using pchip and spline for N = 4 and report the
l∞ errors. Is this surprising? 5 points.

ii. Repeat the previous question, but for a polynomial p(x) with roots {.2, .3, .8, .88}
(again, use MATLAB’s default scaling), and use N = 10. Report the l∞ errors. 5
points.
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