ACM 11: Homework 6

Assigned Wednesday, Nov 12 2008. Due on Wednesday, Nov 19 2008 at noon. 50 pts.

Submission instructions: follow the format of the Mathematica problem set template in the
handout section, and submit the notebook file in the format Firstname_Lastname_2.nb to
ftp.its.caltech.edu/pub/srbecker/incoming. Follow the standard instructions for resubmis-
sions.

1. Sequence and Apply (25 points) To complete the next exercise, we need to learn the Sequence
and Apply commands. The latter is pretty straightforward: Apply[f, expr] replaces the head
of the expression expr with f; £ @@ expr is the same as Apply[f,expr]. Here are examples

using Apply:
i. Apply[Cos, Sin[x]] has the value Cos [x]
ii. Applyl[List, f[x,yl] has the value {x,y}
iii. £ @@ (x+y) has the value f [x,y]

The Sequence command is a bit more esoteric, but can be quite handy. Many Mathematica
operators take a sequence of arguments, as opposed to a list of arguments: they are called with
the syntax f[x,y,...] as opposed to f[{x,y,...}]. We already know how to generate lists;
Sequence is a tool which allows us to generate sequences. The usefulness of Sequence lies in the
fact that the expressions f[x,y,z,...], f[Sequencel[x,y,z,...]1], and f[x, y, Sequencel[z,
.. .11 and others of the same ilk all have the same value. Basically Sequence splices its arguments
into the argument sequence of f.

Here’s an example application of Sequence: Plus[Sequence @@ Range[6]]. As you'll find if you
evaluate this in Mathematica , this returns 21, the sum of the numbers between 1 and 6. What
happens here is that Mathematica evaluates Range [6], which has the value {1,2,3,4,5,6}, then
the head (List) of this expression is replaced with Sequence, so the entire expression has the
value Plus[Sequence[1,2,3,5,6]] = Plus[1,2,3,4,5,6] = 1+2+3+4+5+6 = 21. Note that
you couldn’t simply say Plus [Range [6]] (what happens if you do this, and why?) and that the
above expression can also be written Plus[Range[6] /. List -> Sequence] or simply Plus
@@ Range[6].

It’s important to note that some functions have the attribute HoldA11l which means they don’t
evaluate their arguments until they are needed in the calculation. This causes an error if you
attempt to use a Sequence as an argument— since the arguments aren’t evaluated immediately,
the Sequence is not spliced into the arguments, instead the entire Sequence appears to be
one argument. To check for this attribute, use ??7f (in the same way we have checked for the
Listable attribute before), and to avoid this problem, wrap your Sequence object in Evaluate.
For more details, see the help on Evaluate and HoldAll.

As an example, note that Product has the attribute HoldA1l1, so the command

Product [Cos[(k[1] + k[2])7], Sequence @@ Table[{k[i],1,10}, {i,1,2}]1]

will not do what you think it should, but

Product[Cos[(k[1] + k[2])7], Evaluate[Sequence @@ Table[{k[i],1,10}, {i,1,2}1]1]
will. The bottom line is, if Sequence isn’t working as you think it should, try wrapping it in
Evaluate.

(a) 1. (5 points) From the above explanation of Sequence and Apply, explain in words why
the value of this expression is what it is (you may need to look in the help for D):
D[Sum[x[i]?, {i,1,5}] // Sqrt, Sequence @@ Table[x[il, {i,1,5}1]
ii. (5 points) Use NSum, Sequence to calculate

10 4 i6 1
L ETa

i1=113=1 i7=1

(b) We're going to use Apply to create a ListPlot of a perturbed Lissajoux curve f(t,e) =
(sin(5(t + €)), cos(7(t 4 €)) where € is random noise in the range [-.1,.1].

i. (5 points) (Feel free to do all the parts of this problem in one cell. Also, don’t display
these long lists.) Write £, a function of ¢ and € which returns a sample of the curve as
a list pair, {sin(5(¢t + €)), cos(7(t + €))}.

ii. (3 points) Use Range and RandomReal to generate fsamples, a list of 4000 evenly spaced
points in the range [4000~!, 27], and noise, a list of 4000 samples of random numbers
in the range [-.1,.1]. (To get the € symbol in Mathematica , type ESC-th-ESC)

ifi. (5 points) Now we’ll use Apply to sample the curve. First turn the fsamples and noise

lists into a list of (0,¢) pairs. We discussed how to do this in class using Riffle in
conjunction with Partition. You may, if you like, find an easier way to do the same
thing using Transpose. Call this list pointsamples.
As it stands, we have a list pointsamples = {{61,€1},..., {01000, €2000}}, Wwhich we’d
like to turn into samples of the curve, {f(61,€1),..., f(1000, €1000)}. To do this, use
Apply, and tell it that we only want it to operate on the elements in the first level of the
list: Apply[f, pointsamples, {1}]. For more details of what it means to use Apply
on different levels of a list, see the help.

iv. (2 points) Finally, ListPlot this list with the option Joined->True. Beautiful, isn’t it?
(If you'’re so inclined, try changing the scale of the noise; interesting things happen).

2. Multivariable integration in Mathematica (25 points) The Integrate command in Math-
ematica allows one to calculate integrals of arbitrary dimensionality, by placing multiple iterators
{x;,a;,b;} in the call. For example, the call Integrate[Boole[x? +y2 < 1],{x, —1,1}, {y, —1,1}]
computes the volume of the two-dimensional unit ball.

To compute the volume of a ball in dimension 27, we’d have to add 25 other iterators, not to
mention wait an abominable amount of time— Boole is reasonable for low dimensional integrals,
but the speed at which Mathematica computes Boole integrals decreases fast as a functions of
the dimension.

This exercise will teach you how to create functions which make it easy to investigate multi-
dimensional integrals as a function of the dimension. In particular, we’ll experimentally verify
Robbin’s integral identity:

a1—1 as—1 an,—1

:1:’1 1 :1:’1 1 ... 1’1 1

al— a2 — QAp—
/ / :L‘Q :L‘Q ... :1:’2 -
0<ai <1 SR ' .
sr<asel | \adi gt
Tno1<, <1

—1

n n n -1 n i—1
H H (a; — a;) (H ai) H H(aj + a;) ;

i=1j=i+1 i=1j=1

here we take the a; to be positive numbers. For a discussion of this identity(it is related to
the Selberg integrals that arise in random matrix theory), see http://arxiv.org/pdf/math/
9805108.

(a) (2 points) We want to choose simple coefficients a; to start with, while retaining generality
in our program, so define a function a for generating the i-th coefficient a; according to the
rule a; = 4. It’s interesting to note that with this choice the integrand is a Vandermonde
matrix.

http://arxiv.org/pdf/math/9805108
http://arxiv.org/pdf/math/9805108

(b) (5 points) Write a function rhs, on a single line, that takes n and the function a as arguments
and computes the product on the right hand side of the identity.

(¢) (5 points) Using Det, Table, and a, write a function integrand, on a single line, that
takes a and n as arguments and calculates the integrand symbolically. To represent x; in
Mathematica , use x[i] or x; (don’t mix the notations, choose one and use it consistently).
To check your expression, call integrand with n = 3 and the a you defined previously; the
result should be

715?.%2 + xlmg + x%xg — .’K%Zg - xlx?,) + l‘géﬂ%.

(d) (10 points) If I gave you a fixed value of n, you would now be able to test Robbin’s identity by
comparing Integrate[integrand[a,n], {x[1],0,1}, {x[2], x[11, 1}, ..., {x[n], x[n-1],
1}] and rhs([a,n]. The crux of this exercise is automating the creation of this Integrate
expression.
Define a function 1hs which is a function of a and n so that for any value of n, 1hs[a,n]
will return the value of the left hand side of the above identity.

Hint: Use Table, Apply, and Sequence to generate the iterators and splice them into the
argument sequence for Integrate (i.e. the construct Sequence @@ Table from problem 1).

(e) (3 points) Letting n range from 1 to 5, use Table and TableForm to display a table with the
values of the integral in the first column and those of the product in the second column. It
will help you with error checking to know that when n is 3, the value of the integral is ﬁ.
Congratulations! You’ve shown that for this specific choice of a, Robbin’s identity holds for
at least five dimensions.

(f) Bonus: (10 points) Recreate the above table with one line of code (that is, show that you
can do everything above without relying on intermediary functions)

