ACM 11: Homework &

Assigned Wednesday, Nov 26 2008. Due on Wednesday, Dec 3 at noon. 50 pts.

Submission instructions: follow the format of the Mathematica problem set template in the
handout section, and submit the notebook file in the format Firstname_Lastname_4.nb to
ftp.its.caltech.edu/pub/srbecker/incoming. Follow the standard instructions for resubmis-

sions.

1. Raptors, redux. Recall the raptor problem: you are at the center of a 20m equilateral triangle
with a raptor at each corner. The top raptor has a wounded leg and is limited to a top speed of
20 m/s. Write your position as h(t) and that of the raptors as r;(t) where ¢ = 1,2,3. Assume
that at each time, the raptors run directly at you with constant speed v;, then we model each
raptor’s motion with

dri _h() =)
at = TR = @l

We take v; = v2 = 25 m/s, and vz = 20 m/s is the speed of the wounded raptor.

For simplicity, we’ll assume you run in a constant direction with speed v;, = 6 m/s, so h(t) =
vptd + h(0), where d € R? is your initial direction (d is a unit vector).

(a)

Define a variable d as the unit vector pointing 30° to the horizon. Write a function hx that
takes ¢ as an argument and returns your x coordinate at time t. Write a function hy that
takes ¢ as an argument and returns your y coordinate at time ¢. Refer to d in the definition
of these functions.

The syntax of the NDSolve command, which numerically solves a system of differential
equations, is much like that of the DSolve command, except you must specify what range
of values of the independent variable to solve the system over. Specifically, the syntax is
NDSolve[equations, dependentvars, {t, start, stop}]. Here equations is a list of
the differential equations and initial conditions of the systems, dependentvars is a list of
the functions to be solved for, and {t, start, stop} specifies the range of values of the
independent variable to solve the system over. The result of the NDSolve command is a list
of substitution rules which replace the dependentvars with anonymous functions. Review
the examples in the help as necessary to familiarize yourself with this syntax. In particular,
recall our discussion in Lecture 9 of how to use the rules returned from DSolve to define
functions.

We will denote the x and y coordinates of the i-th raptor as rx1 through rx3 and ry1
through ry3 in Mathematica — these will be the dependentvars when we call NDSolve. De-
fine variables rleqnx, rleqny, r2eqnx, r2eqny, r3eqnx, r3eqny, rilxinit, rlyinit,
r2xinit, r2yinit, r3xinit, r3yinit as the equations to be satisfied by the appropriate
variables. For example, rieqnx = rix’[t] == ...; where, from the equation governing
the motion of raptor one, we know ... is an expression that depends on hx[t], hy[t],
rix[t], riy[t]. Also, as an example of an initial condition, you may take rixinit =
rix[0] == -10;.

Be careful that you define these equations appropriately. In particular, be careful in your
use of == and =. Remember the former defines an equation, while the latter makes an
assignment. Define equations as a list of the equations you just defined.

Now we have equations, dependentvars, all that is left to specify is start, stop. Un-
fortunately, we don’t know when exactly we’d like to stop— we only know that we’d like to
stop when you get eaten by a raptor.

Fortunately, we can call NDSolve in such a way that it will stop on an arbitrary event. We’ll
use a modification to the syntax: NDSolve [equations, dependentvars, {t , start, oo} ,
Method->{EventLocator, "Event"->stopfun[t]}] will evaluate the function stopfun as
the system is being solved, and when stopfun first returns True, the solver will terminate.



Of course stopfun may refer to the dependentvars in its definition. Note that we changed
stop to oo since we don’t know exactly when the solver should terminate.

Write a function stopfun which takes t as an argument, and returns True if any of the
raptors are within .001 meters of you.

Call NDSolve with equations, stopfun, dependentvars, etc. The result should be a list
of substitution rules for the dependentvars, like
{{r1x->InterpolatingFunction[{{0.,0.4471}},<>],
rly->InterpolatingFunction[{{0.,0.4471}},<>]1,... }

Look at the help for InterpolatingFunction. It is essentially an anonymous function that
Mathematica uses to represent a function that interpolates between some data points— in this
case, the data points are the samples generated by NDSolve for each of our dependentvars.
Use the rules returned by NDSolve to define functions rx1, rx2, rx3, ryl, ry2, ry3 for
the coordinates of the raptors.

Now, we also need to know the time at which you were eaten by a raptor. From the help on
InterpolatingFunction, we can deduce that this time is rx1[[1,1,2]] (e.g. in this case,
that expression would have value 0.4471). Save this time as the variable stoptime.

Use ParametricPlot to plot your location and that of the raptors from time ¢ = 0 to
stoptime. Turn off the axes and turn on a frame (Axes->False, Frame->True).

Compare the process of solving the raptor problem in Mathematica with that of solving it
in Matlab. Which do you prefer, and why?



