
ACM 11: Bird Flocking Project

This is one possible topic for the ACM11 MATLAB project. Difficulty rating: easy-medium for
no boundary conditions, medium-hard for periodic boundary conditions. 100 points. 10/23/08.

The inspiration for this project was the October 13 ACM colloquium by Eitan Tadmor titled
“From Particle to Kinetic and Hydrodynamic Descriptions of Flocking”. The actual setup of this
project is based off the seminal flocking article Novel type of phase transition in a system of self-
driven particles by Vicsek et al., Phys. Rev. Lett. 75(6):1995. The paper is highly readable.
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At t= 1, for L = 5 and nu = 0.200
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At t= 12, for L = 5 and nu = 0.200
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At t= 23, for L = 5 and nu = 0.200
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At t= 33, for L = 5 and nu = 0.200

Figure 1: Flocking behavior at relatively high density (L = 5). The plot shows position of the
particles, with the arrows representing velocity.

Vicsek and coworkers model particles (or birds) as moving with constant speed, but with the
direction of the velocity influenced by the closest surrounding particles. Everything is in 2D. The
domain is a square box of length L per side, and periodic boundary conditions are assumed. This
means, if the box is located at [0, L] x [0, L], then if a particle ends up in position (L + .2, .5), the
simulation will reset its position back to (.2, .5) (assuming L > .5). It also means that, when looking
for the closes surrounding particles (the “nearest-neighbors”), the search must be done taking the
periodicity into account.

The formula for the update of positions is simple (in differential equation terms, this is just
“forward-Euler”):

xi(t + 1) = xi(t) + vi(t) · ∆t for i = 1, . . . , N (1)

where i represents a single particle and N is the total number of particles.
The velocity update is more interesting. We define the neighbor list, for particle i, as follows:

neighborListi = {j : |xj − xi| < r} (2)

for some radius r < L, and | · | meaning the usual Euclidean distance. This neighbor list must be
updated every time step, and it must take the periodic boundary conditions into account. Note
that i ∈ neighborListi. In actual large-scale scientific simulations of this type (called “molecular-
dynamics” simulations), there are often two neighbor lists, one with radius r and one with a larger
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radius r̂ > r. The small neighbor list is created only from searching the larger neighbor list (instead
of searching from all N particles, thus we save quite a bit of computation), and the large neighbor
list is updated periodically, but not at every time-step. It is not necessary to do this for this project.

For each velocity vj(t), we have a corresponding angle θj(t). Then define the angle θ̄i as the
average of the angles over the neighbor-list of i:

θ̄i =
1

|neighborListi|
∑

j∈neighborListi

θj(t) (3)

In this model, we weight all particles in the neighbor list equally. A more complicated model
might weight particles inversely proportional to their distance.
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At t= 1, for L = 40 and nu = 0.200
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At t= 33, for L = 40 and nu = 0.200

Figure 2: Behavior is less like “flocking” at relatively low density (L = 40) for the same amount of
randomness η.

The velocity is then updated as follows:

vi(t + 1) = ν ·
(
cos(θ̄i + ∆θ), sin(θ̄i + ∆θ)

)
for i = 1, . . . , N (4)

where ∆θ is a uniformly distributed random variable in the interval [−η/2, η/2] (with η < 2π). If η
is large, then there is more randomness, and the system has a higher “temperature.” If η is small,
then we expect to find flocking behavior.

Initialization: the positions xi(0) should be uniformly distributed in the box. The velocities
should be randomly oriented, with constant magnitude ν. Be careful to make sure the angles are
evenly distributed in [0, 2π], not just in [0, π/2].

There are two big difficulties in the simulation. The first is a choice of datastructure to hold the
positions and velocities. There are several options. One first has to decide whether to record all
past positions and velocities, or just the most recent set (for this simulation, either choice works;
for large-scale simulations, the former method is often impractical). The variables can be a series
of 2D arrays (for example, stored in cells), or a 3D array. Perhaps the most elegant method is to
store the 2D coordinates of position and velocity as single complex numbers.
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At t= 61, for L = 25 and nu = 0.100
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At t= 90, for L = 25 and nu = 0.100

Figure 3: Groups of particles form for small randomness η but low density. This simulation, for 90
time steps, took 10 seconds on a modern computer.

The second difficulty is taking the periodic boundary conditions into account. If this is caus-
ing a lot of problems, it is OK to complete the project without using periodic boundary conditions
(e.g. the particles start out in the box, but are then allowed to move anywhere in R2). However, this
will result in very different behavior. The boundary conditions need to be accounted for at two lo-
cations in the code: one, when updating the positions, and two, when finding the neighbor list. The
second case is the trickier one, and there are many ways to implement it, some of which are quick,
and some of which are quite slow. It is OK to use a slow method, but of course quick methods are
preferred. The mod command is useful. Please ask the instructor or TA if you would like help on this.

Parameters
N 300 Number of particles/birds
L vary this Length of box
ρ N/L2 Density of particles/birds
η .2 Randomness, similar to temperature; you may vary this if you like
r 1 size of nearest-neighbor circle

∆t 1 time step
ν 0.03 speed of particles/birds
T 10 to 100 total simulation time

For the project, use the parameters specified in the table, and simulate the particles. You may
adjust the total time T to an appropriate value. Create two plots, similar to Figures 1 and 2 (which
are similar to Figure 1 in the Vicsek paper), using the quiver command. One plot should show
flocking behavior, and the other plot should show random-behavior. We expect flocking behavior
when the density ρ is high (i.e. when L is small) and the randomness η is small. As a bonus, recreate
Figures 2 and 3 in the Vicsek paper.

Your project should consist of a file called main.m that produces all the figures; you may include
subfunctions in this file if you like. Put the file in a folder called Firstname Lastname proj flocking,
where you replace Firstname and Lastname with your first and last names, respectively, and upload
this via ftp.

3



Figure 4: Graphical depiction of periodic boundary conditions. Periodic boundary conditions are
useful for keeping a constant density but without introducing boundary effects. Image courtesy of
http://www.pumma.nl.
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