INTERNATIONAL
CONFERENCE
ON CONTINUQUS
OPTIMIZATION

Stochastic Subspace Descent

Stochastic gradient-free™ optimization,
with applications to PDE-constrained optimization

Stephen Becker™
O

joint work with David Kozak® Alireza Doostan@T, and Luis Tenorio

@l University of Colorado Boulder

COLORADOSCHOOLOFMINES.

. EARTH # ENERGY #¢ ENVIRONMENT

*(not derivative free)



Motivating Application: shape optimization

Forward prOblem: find vertical stress Ty conforming finite element mesh, used in FEniCS
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Motivating Application: shape optimization

Forward problem: fmd vertical stress Uy conforming finite element mesh, used in FEniCS

00 boundary traction

A

linear elasticity PDE Y
r
(boundary conditions L0 T |
depend on shape of S
o (e
the hole)

Inverse problem: what shape minimizes the vertical stress?

parameterize the shape of the hole as follows, which automatically enforces a constant area constraint
d/2—1

_|_
>
optimization variable:

r € R?

(ropr1sin((2k + 1) - 0) + xop1ocos((2k+ 1) - 0))
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Generic PDE-constrained optimization

implicitly saying that u solves the PDE

A
(min L(u) subject to ¢(u,x) =0

U,x

Examples:

U= Au, u(0) =h “2" is the initial condition

i = *Au, u(0) =h “2" is a parameter

Au =0, u(l')=h “z" is the boundary condition

L(u)is the loss which penalizes something like:

>

>

»

>

>

deviation from observations
drag

mass

cost of materials

compliance

etc.
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Generic PDE-constrained optimization

implicitly saying that u solves the PDE

A
[min L(u) subject to ¢(u,x) =0

U,x

d(u,z) =0 = u=u(x)

Rewrite: | min 1() = £ (u(x) |

.. but finding the gradient is tricky:

oL o
- Ou Ox

Vf(z)
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Why not just find gradients automatically?

J The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x)numerically, we can find the gradient
= (this applies if f:R* =R ; f:R* = R? with ¢>1 is another story)

Note: we're assuming derivative exists, just hard to actually calculate

This is not non-smooth optimization
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Why not just find gradients automatically?

/The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient
= (this applies if f: R =R ; f:R%* - R? with ¢>1 is another story)

XRequires specialized /restricted libraries/code (dolfin-adjoint/FEnicCs, autograd)

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD)



Why not just find gradients automatically?

/The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient
= (this applies if f: R =R ; f:R%* - R? with ¢>1 is another story)

Requires specialized /restricted libraries/code (do1fin-adjoint/FEniCs, autograd)
xAdjoint state method requires a method to solve adjoint PDE

= difficult to maintain in large code bases, e.g., 4D-var for weather codes
(and have to parallelize for HPC)
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Why not just find gradients automatically?

/The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient
= (this applies if f:R* =R ; f:R%* = R? with ¢>1 is another story)

Requires specialized /restricted libraries/code (do1fin-adjoint/FEniCs, autograd)
Adjoint state method requires a method to solve adjoint PDE
= difficult to maintain in large code bases, e.g., 4D-var for weather codes
xSIow if used for intermediate calculations involving some f : R — R¢

= e.g., seismic inversion with many observations
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Why not just find gradients automatically?

/The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient
= (this applies if f:R* =R ; f:R%* = R? with ¢>1 is another story)

Requires specialized /restricted libraries/code (do1fin-adjoint/FEniCs, autograd)
Adjoint state method requires a method to solve adjoint PDE
= difficult to maintain in large code bases, e.g., 4D-var for weather codes
Slow if used for intermediate calculations involving some f : R — R¢
= e.g., seismic inversion with many observations
xPossibIe memory explosion
= e.g., time-dependent problems. Check-pointing schemes somewhat helpful
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Why not just find gradients automatically?

/The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient
= (this applies if f:R* =R ; f:R%* = R? with ¢>1 is another story)

xRequires specialized /restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
XAdjoint state method requires a method to solve adjoint PDE

= difficult to maintain in large code bases, e.g., 4D-var for weather codes
XS|OW if used for intermediate calculations involving some f : RY — R?

= e.g., seismic inversion with many observations
xPossibIe memory explosion

= e.g., time-dependent problems. Check-pointing schemes somewhat helpful

xRequires access to original source code
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Why not just find gradients automatically?

/The adjoint state method and reverse-mode automatic differentiation can
automatically calculate gradients in about the same time (~4x) as a function
evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient
= (this applies if f:R* =R ; f:R%* = R? with ¢>1 is another story)

XRequires specialized /restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
XAdjoint state method requires a method to solve adjoint PDE

= difficult to maintain in large code bases, e.g., 4D-var for weather codes
XS|OW if used for intermediate calculations involving some f : R* — R¢

= e.g., seismic inversion with many observations
XPossibIe memory explosion

= e.g., time-dependent problems. Check-pointing schemes somewhat helpful
XRequires access to original source code
xAssumes a computational structure

= inapplicable for physical observations (wind farms; rollout in Al)
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Baseline Algorithms (for comparison)

f:R* R

Algorithm Gradient Descent via Finite Differences \/lgnormg finite-difference €rror, €njoys

1: for k=1,2,...do well-understood convergence
2 Estimate g ~ V f(zy) > Use finite differences Xrequires d+1 function evaluations per iter.
3: Tht1 < Tk — NIk > For appropriate step-size 7
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Baseline Algorithms (for comparison)

f:R* R

Algorithm Gradient Descent via Finite Differences Ighoring finite-difference error, €njoys

1: for k=1,2,... do well-understood convergence
2 Estimate gx =~ V f(x) > Use finite ditferences requires d+1 function evaluations per iter.
3: Thal < Tk — NIk > For appropriate step-size 1y

Algorithm Randomized Coordinate Descent (CD) Jjust 1 function evaluation per iteration

1: for k=1,2,... do

2: Choose j € {1,2,...,d} at random
3: gr = eje; V f(xy)

4: Thyl < Tk — MLk > For appropriate step-size 7 (or exact minimization... depends on structure)

xpoor convergence properties, slow rates
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Baseline Algorithms (for comparison)

f:R* R

Algorithm Gradient Descent via Finite Differences \/lgnorlng finite-difference error, €njoys

1: for k=1,2,... do well-understood convergence
2 Estimate gx =~ V f(x) > Use finite ditferences requires d+1 function evaluations per iter.
3: Thal < Tk — NIk > For appropriate step-size 1y

Algorithm Randomized Coordinate Descent (CD) \/just 1 function evaluation per iteration

1: for k=1,2,... do

2: Choose j € {1,2,...,d} at random
3 gr = eje; Vf(xy)

4: Tk+1 < Tk — Nk > For appropriate step-size 7 (or exact minimization... depends on structure)

poor convergence properties, slow rates

4 )
Why not use traditional Derivative Free Optimization (DFO) methods?

KAnswer: most classical DFO methods don't scale well with dimension
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Part I: A Simple Method
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StOCh aStIC S u bS pa ce DGSCent Assume we can compute this!

e.g.,
L . h-ag) — o
directional derivative q¢’ Vf(x1) = <lim flay +h-q) f(x’“)> q 1) forward finite diff
h=0 h 2) forward-mode AD

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD)



Stochastic Subspace Descent

directional derivative qq’ Vf(zi) = (lim f(xp +h-q)— f(a:k)) )

h—0 h
T d T
Q: [QDQQ?"WQE] NHaaI'(dXB) Q Qzlﬁxfa E (ZQQ ) :Idxd
14
J QL 0 = EQ QU =

One benefit: in the limit ¢ = d, QQT = I4xq, and so we'll recover the full gradient

(for Gaussians, this is only true in expectation)

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD)



Stochastic Subspace Descent

directional derivative qq¢’ Vf(z1) = (}lgg ey +h 'hQ) - f(xk)) q

d

Q: [Q17QQ7°"7QE] NH&&I’(dXﬁ) QTQ:IKXb E (ZQQT> :Idxd

Algorithm “Stochastic Subspace Descent” (SSD)
1: for k=1,2,... do
2:  Draw Q ~ Haar(d x £) or any generic SSD
3: Tpy1 — Tk — MEQQTV ()

Generic SSD[QTQ = Iyxe, K (%QQT> = Idxd]

Both Haar and Coordinate Descent methods are valid generic SSD
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Stochastic Subspace Descent

directional derivative q¢' Vf(x}) = (%H% S hq) f<xk>) q
) —>

d

Q: [Q17QQ7°"7QK] NHaar(dxg) QTQzlﬁxﬁa I <ZQQT> :]dxd

Algorithm “Stochastic Subspace Descent” (SSD)
1: for k=1,2,... do
2: Draw @) ~ Haar(d x /)
3: Tpy1 — Tk — MEQQTV ()

We call @) a "Haar" distributed r.v. (i.e., the Haar measure over orthogonal matrices),
but really care about QQ* which is a projection matrix (onto col(Q) ).

We get @) via Gram-Schmidt (or appropriately modified QR) on a Gaussian G,

and note col(Q)) = col(G) w.p. 1, so our update is equivalent to

d

Tyl < T — Ukz PCO](G) (Vf(il?k))

and hence the term “stochastic subspace’.
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Stochastic Subspace Descent

directional derivative q¢' Vf(x}) = (%m% S hq) f(m)) q
) —>

d
Q =1q91,92,--.,q]) ~ Haar(d x ¢) Q'Q =1, E (zQQT) = lixd

Algorithm “Stochastic Subspace Descent” (SSD)
1: for k=1,2,... do
2: Draw @) ~ Haar(d x /)
3: Tpy1 — Tk — MEQQTV ()

Haar is a better choice than alternatives: Variants have been investigated for a long time:

» canonical basis (coordinate descent) * “random gradient”, “random pursuit”,
* Gaussian sampling “directional search”, “random search”
> unit sphere Sampling * ch 6, Yu. Ermoliev and R.J.-B. Wets, Numerical techniques for stochastic

optimization, Springer-Verlag, 1988.

M. Gaviano, Some general results on convergence of random search
algorithms in minimization problems, Towards Global Optimisation, 1975.
F.J. Solis and R. J-B. Wets, Minimization by random search techniques,
Math. of Operations Research 6 (1981), no. 1, 19-30. (no rate)
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Stochastic Subspace Descent

: : S _ hqg) —
directional derivative ¢’ Vf(zy) = }lﬂ% fzy + hQ) f(zk)

And much recent work on variants, 2011—2020 [and more since then!]

D. Leventhal and A.S. Lewis, Randomized Hessian estimation and directional search, Optimization (2011)
S. U. Stich, C. Muller, and B. Gartner, Optimization of convex functions with random pursuit, SIAM J. Opt. (2013)
Yu. Nesterov, Random gradient-free minimization of convex functions, '11 / Yu. Nesterov and V. Spokoiny, FoCM 2017

P. Dvurechensky, A. Gasnikov, and A. Tiurin, Randomized similar triangles method: A unifying framework for accelerated

randomized optimization methods (coordinate descent, directional search, derivative-free method), arXiv:1707.08486

P. Dvurechensky, A. Gasnikov, and E. Gorbunov, An accelerated directional derivative method for smooth stochastic convex

optimization; arXiv:1804.02394

S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic programming, SIAM J. Opt. (2013)
F > R. Chen and S. Wild, Randomized derivative-free optimization of noisy convex functions, arXiv:1507.03332 (2015).

K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, Structured evolution with compact architectures for

scalable policy optimization, ICML, 2018.

T. Salimans, J. Ho, X. Chen, S. Sidor, and |. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning,

arXiv:1703.03864 (2017).

J. Duchi, M. Jordan, M. Wainwright, A. Wibisono, Optimal Rates for Zero-Order Convex Optimization: The Power of Two

Function Evaluations, IEEE Trans Info Theory (2015)

A. S. Berahas, L. Cao, K. Choromanski, K. Scheinberg, A Theoretical and Empirical Comparison of Gradient Approximations in

Derivative-Free Optimization, arXiv 1905.01332 (2019)

F. Hanzely, K. Mishchenko, P. Richtarik, SEGA: Variance Reduction via Gradient Sketching, NeurlPS 2018

cousin of “direct search” methods, cf. S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, Direct Search Based on Probabilistic

Descent, SIAM J. Opt. (2015)

e T
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Stochastic Subspace Descent

directional derivative ¢’ Vf(zy) = lim

flxp +h-q) — flag)

h—0 h

Most work has focused on a single directional derivative, / =1

o
o
o
o

)

o

o

o
T

4000

—©—Target accuracy 1e-03
—»— Target accuracy 1e-04

Target accuracy 1e-05
—¥—Target accuracy 1e-06
—B-—Target accuracy 1e-07

\

T~ |~©—Target accuracy 1e-08

— _

3000  ———

\74

+

sweet V

# fcn evaluations to reach target accuracy

.. but the optimal choice may bel < /¢ < d

2000 | :
- — —
1000 | ——O— ——
0 20 40 60 80 100
!

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)

1

test problem, using

00 dimensional quadratic

exact linesearch, averaged

\over 200 experiments )

¢ = d is gradient descent,

/and non-stochastic

ICCOPT, Lehigh, July 27 2022
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d _ .
First theory results (for generic SSD) 7 = s gradient descent

Theorem (Kozak, Becker, Tenorio, Doostan '20) \

Assume: minimizer attained, gradient Lipschitz, stepsize Mxchosen appropriately.

==
d L
1. If fis convex,

Ef(zy) — [* < 2%}22 _ Ok

: H
2. If fis not convex but satisfies the Polyak-Lojasiewicz inequality,
Ef(z) — f* < p"(f(zo) = ) =O0(p*)  and fzg) = f*
3. If fis strongly convex, statements of 2 above hold, and also

T — argmin_ f(x)

4. If fis not convex (nor PL),

. Q2L(f(x0) = /) - N
2 — % def .
vemin (BIVA @)l < 5 —77 f** min f(x)
K gkt
=TT
T d . . d = ambient dimension
Generic SSD| @@ = loxe,  E (ZQQ ) = laxa \é — # directional deriVj
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First theory results (for generic SSD)

_—

~

ﬁe (Mlnmnle Deocline Tomavia Nacctan 90\
A Polyak-Lojasiewicz Condition —||Vf( W2 > (flx) = f*), Va \
1 Example: f(x) = %”AZE — b||* where A isn’t injective
Acronym Name Some references
PL Polyak-Lojasiewicz Karimi, Nutini, Schmidt ‘16
7 SC Strong Convexity
EB Error Bound Luo and Tseng ‘93
ESC Essential Strong Convexity Liu et al. ‘14
WSC Weak Strong Convexity Necoara et al. ‘15
3. RSI Restricted Secant Inequality Zhang and Yin ‘13
RSC Restricted Strong Convexity = RSI 4 Convexity
QG Quadratic Growth Anitescu ‘00
4 0OSC Optimal Strong Convexity = QG + Convexity
SSC Semi-Strong Convexity = QG + Convexity
Theorem 2. For a function f with a Lipschitz-continuous gradient, the following implications hold:
\ (SC) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QQ).
If we further assume that f is convex then we have S (Karimi, Nutini, Schmidt '16)
k (RSI) = (EB) = (PL) = (QG).

Stochastic Subspace Descent (SSD)

Stephen Becker (University of Colorado)

n

u& =—FqIrectional deri\ﬁ

ICCOPT, Lehigh, July 27 2022

25



Numerical Results: better than expected

0 [ ————

%83 coordinate descent
101_
101 ——— SSD - Haar, £ =10
0- ~ = SSD-CD, £=10

Objective Function
|
|—I
o
S

0 200 400

Function Evaluations

Observation: sometimes SSD (with Haar) drastically

outperforms randomized coordinate descent (CD)

Generic SSD[QTQ = Iyxo, E (%QQT> = Idxd]
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Numerical Results: better than expected

SSD drastically outperforms " We can force it to happen by making a \
problem with low “intrinsic” dimension, e.g.,

randomized coordinate descent (CD)
Nesterov's “Worst function in the world”

2
---- Gradient Desc;ent/new method fk,r(x) 5131 + Z - ﬂ3z+1 —l— xr)/Q - 551)/47

—— SSD - Haar
—— SSD-CD r =20 K This has intrinsic dimension of r J
/=3
dimension 100 dimension 1,000 dimension 10,000
(o))
5‘) 1.00 1.0 coordinate descent 1.0 coordinate descent
o ---- @Gradient Descent 0.9
B 0.75 0.8 —— SSD - Haar '
= new method
Q
% 0.25 0.4 2 new method 0.7 ‘\\
= | “SNhnewmethod | f TSI
0.00 o2  TTTmemeeo 0.6 S
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Function Evaluations Function Evaluations Function Evaluations
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Numerical Results: better than expected

SSD drastically outperforms " We can force it to happen by making a \
problem with low “intrinsic” dimension, e.g.,

randomized coordinate descent (CD)
Nesterov's “Worst function in the world”

2
---- Gradient Descent __ v method Par(x) = M(@7 + Z —zin1)” +a7)/2 - 01) /4
—— SSD - Haar /
—— SSD-CD r =20 K This has intrinsic dimension of J
¢ =3
dimension 100 dimension 1,000 dimension 10,000

reHaterdescent

— _— 100 ——————————————————————

gradient descent

10%] pse ___j____:,g@ga_te descent 10%
1071

-~ -
- —
-

gradient descent 107!

=
O
S W, "-gradient
8 102 ------ 102 102
: 103 10-3 103
£ 10 10~ n 107
107 new method R 107 new method % 105 new method B8
no theory yet 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Function Evaluations Function Evaluations Function Evaluations
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Theory: explain better-than-expected results

Previous theorem didn’'t actually rely on properties of Haar distribution, just generic )

d
. o . [QTQ = Ixe, E (—QQT> = Idxd}
Tighter analysis using concentration-of-measure: l

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1).
Ve € (0,1), if £ > €72, Q ~ Haar(d x £), then VO # g € R,
d T 12
< 41971
£ lgl

1 — <1l4+e€ w/ prob. 6 > 0.8

4 )

d = ambient dimension

Recall...

¢ = # directional derivs

. /
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Theory: explain better-than-expected results

Previous theorem didn't actually rely on properties of Haar distribution, just

Q=T E (5QQ") =l

Tighter analysis using concentration-of-measure:

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio 19, Lemma 1).
Ve € (0,1), if £ > €2, Q ~ Haar(d x £), then VO # g € RY,
_d]Q7gl?

1l —€e<
¢ gl

<1+e€ w/ prob. 6 > 0.8

Theorem 3 (Kozak, Becker, Tenorio 19, Thm. 1). If f is strongly conver and V f is Lipschitz

continuous, then for an appropriate stepsize ny, the sequence (xy) gemerated by SSD (with Q ~
Haar), for k > 100, satisfies

Flop) — 5 < (1+ (1 —=)p)"N[f(zo) — f*)  with probability > 0.998,

where p < 1 depends on £, d and phe Lipschit2Nand strong convexity parameters.

due to possibility of failure of JL

error in JL embedding

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD) ICCOPT, Lehigh, July 27 2022 30



Subspace/Haar outperforms Gaussian projection

Probability of event
o
oo

O
\V)

Event: (1 — €)||v]|? <%HQT’UH2 < (1+¢€)|v|?

O
»

o
~

d = 100,e = .01 —O- Subspace projection
-5~ Gaussian projection
w— |4£I | 1
20 40 60 80

Embedding dimension ¢

100

Event means successful embedding (a good thing)

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)

ICCOPT, Lehigh, July 27 2022
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Tightening things up
Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1).
Ve € (0,1), if £ 2 €72, Q ~ Haar(d x £), then V0 # g € RY,

d T 112
Ao

BEVRTE <1+¢€ w/ prob. § > 0.8
g

. in fact, we can have tight (dimension-dependent) bounds:

T 112 B
Lemma Let Q ~ Haar(d x ), then Vg € R%, % Hcﬁ nng ~ Beta (g e £>
g

The CDF of the Beta distribution can be stably computed via the regularized incomplete

Beta function

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD) ICCOPT, Lehigh, July 27 2022 32



Tightening things up

_ d, 7 s , Note: coordinate descent style projections
Define o=F (Z”Q 9|1 > (1 =)l ) do not have similar nice embedding properties

Easy to compute, e.g., MATLAB code

dist = @( ell, d ) makedist('Beta','a',ell/2, 'b',(d-ell)/2 );
epsFromDelta = @( delta, ell, d ) 1-d/ell*icdf( dist(ell,d),l-delta );
deltaFromEps

Q( eps, ell, d ) l-cdf( dist(ell,d), (l-eps)*ell/d );

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD) ICCOPT, Lehigh, July 27 2022 33



Some numbers

For an embedding of accuracy e = 0.1

Success probability 5 = 99% 5 = 99.99%
0~ 1 Dimension d 4 ¢/d 14 ¢/d

1000 520 5198% 755 T7547%
10,000 933  9.32% 2086 20.86%
100,000 1013 1.01% 2532  2.53%
1,000,000 1022  0.10% 2587  0.26%
10,000,000 1023  0.01% 2593  0.03%

4 Recall.. N

d = ambient dimension

\Z — # directional deriv&
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Johnson-Lindenstrauss results are too loose

——99%, empirical, d=100
——99%, empirical, d=500

99%, theoretical bound, d=100
99%, theoretical bound, d=500
99%, theoretical bound, d=1000
0.6 ‘\ —-—-99%, theoretical bound, d=1e+08 i
—-=-Dimensionless theoretical bound for 99%

!
!
'.
‘.| 99%, empirical, d=1000
I“
\
\

e =1— || PTol*/[lv]]

Message: usual dimensionless Johnson-Lindenstrauss style results

are far from sharp in low dimensions (in fact, so loose that they can be meaningless)

Only downside of tighter analysis is that we can’t write down a pretty formula

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)
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Part |l: Variance Reduction

Stochastic Subspace Descent (SSD)



Inspiration

Due to machine learning applications, a lot of work exploits
the Empirical Risk Minimization (ERM) structure:

f@) = 3 3 fio)

/@trol variate

Algorithm SVRGAJohnson, Zhany '13) for solving the ERM model

1: for k=172, ... do > k is the “epoch”

2 2% % iy Vi)

3: wo < Tk

4: fort=1,2,...,7T do > Typically T'= O(N)

5: Draw j ~ Uniform([1, ..., N]) stable but stale)

6: Wil < W — 1N (ij (wt) — Vf] (ZL‘k) + Z)

7: Option I 2.1 < wr > Obvious practical choice

8: Option II 251 < wy for ¢ ~ Uniform([0,...,T — 1]) > Tighter analysis
\

SGD

\ we have new estimate of this component,

so subtract off the stale version
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Inspiration

Due to machine learning applications. a lot of work exploits

the ?/ Control Variates \

Goal: estimate mean . = E[x]|of a random variable x

Suppose we have another r.v. y with E[y] = v (called the “control variate”)

Form z = x + ¢(y — v) which is an unbiased estimate of the mean: E[z| = p

In practice, must estimate

Cov(zx,y)
Var(y)

Then for a good choice of ¢, ¢= —

we've reduced the variance of our estimate:

V = (1= p*)V
ar(z) = ( p”)Var(z) (so only advantageous

if x and y are correlated)
Cov(zx,y)

K where p = Nar(@)Var(y) (Pearson correlation) J
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New variance-reduced SSD
control variate
N\

Algorithm SVRQ;S‘Ly/le Variance Reduced SSD method, “VRSSD”

1: for k‘:/lﬂ,/ .. do > k is the “epoch”

2 24 Vf(xg) > Expensive, but not done often
3: wo < Tk

4: fort=1,2,...,7T do > Typically T = O(d)
5 Draw @) ~ Haar(d x £)

6 Wya] — Wy — ( QQIV f(wy) — ay ( QQT — ) _> > o, to be estimated

regular SSD term

T x — w
k+1 T orthogonal projection

only use control variate in orthogonal subspace

(since we know gradient in main subspace)

Theorem 4 (Kozak, Becker, Tenorio, Doostan 2019; Thm. 2.7). If f is strongly convex and V f is
Lipschitz continuous, then for an appropriate stepsize ny, the sequence (xy) generated by VRSSD
converges almost surely to the (unique) minimizer of f and at a linear rate (the rate depends on ng
and oy ).

A We do not require the ERM structure!
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SAGA

from the literature:

Algorithm SAGA (Defazio, Bach, Lacoste-Julien ’14) for solving the ERM model
1 Vi=1,....N, 2 = 20 store {V f;(z(?)}Y, in table
2: for k=1,2,... do
3: Draw j ~ Uniform([l .., NJ)
4: Z =N Vii(z®) > From table
5: Tht1 < Tk — (ij(xk) — ij(a:(j)) + Z)
6 Re-define #19) + 3 and update table with V f;(z())

our variant:

Algorithm SAGA-style Variance Reduced SSD method
1: Pre-compute z < V f(xg)
2: for k=1,2,...do
3: Draw ) ~ Haar(p x r)
_ _ T dNNT> 1 >
t o wpn o — 1 ($QQTVf(wr) — $QQTE + 2)
5 Z4+ 24+ QQT(Vf(xy) —2z) > Update of Z is low-memory, unlike original SAGA

key: update control variate in the subspace
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Other types of control variates

v

algorithmic control variates (e.g., SVRG, SAGA, SARAH, etc.)

» approximate computer model of complicated phenomenon (reduced order model)
* ex. Radio Frequency power amplifiers, where expensive simulation or
laboratory measurement is true objective function, but can be approximated

by closed-form equations (control variate)

v

PDE-specific
» coarse-grid approximation of a “ground-truth” fine-grid PDE solve fo(z) =~ f(z)
> lower-order element approximation of main PDE solve

v

sketching and other dimensionality reduction methods

»artificially introduce randomness to compress dimensions

> early stopping )

> or any other low-order model
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Exploiting generic control variates

>contro variate, coarse approximation, cheap to evaluate

Algorithm Proposed coarWel variance reduced SSD/Random-Gradient

1: fork:1,2,...(1%

2: z < V() > Full coarse-grid gradient
3: Draw ) ~ Haar(d x /)

6w e - (2QQTV F(ek) + o (4QQ77 - 7))

Key idea: easy to do orthogonal projection
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Part |ll: Numerical Examples
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Shape Optimization Application

SSD outperform BFGS for low-

#" accuracy solutions

12.5 —— Gradient Descent 20.0 |

o —— BFGS 175 o ra)dlent de;gent \

¢ 10.0 _ Sits)sf[):f— 3, m =100/10 | \ / \

v ST 15.0 BFGS 7 \

2

él)—), 7> gradient descent 12.5] \

S

5.0] 55D (ur/ Hoor) 10.0] 1?00 2200 2500

| Variance reduced . | 75 | | variance recliuced |
0) 1000 2000 3000 0 1000 2000 3000

Function evaluations Function evaluations

100 dimensional 200 dimensional

Stephen Becker (University of Colorado)

Variance reduction scheme can really work well

(current theory shows that it converges but not that it should converge faster)

Note: objective is not convex, and probably no PL nor Lipschitz gradient

Stochastic Subspace Descent (SSD)
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Shape Optimization Application

100 dimensional example

| £ =1 (Gaussian smoothing) ——

107 | £ =100 (Gradient descent) ——
0 9- l =5 ——
-
S 7- "‘ (=1
g
LE \ w 6215 - -
5’ M
4 £=5

0 200 400 600 800 1000
Function Evaluations

Message: empirically, intermediate values 1 < ¢ < d work best
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Gaussian Process Application: setup

Observations:

Mpost
Yi = S0<Z’L) + €i, €5 N(O, 0'2) fOr Z1y -y Zm === Mpost £ 2[ post

. Data
p: R — R % Inducing points

For inference, assume it's a GP:
Cov(p(zi), p(25)) = K(zi, zj)

(and iid errors)

Goal: (approximate) maximum-Likelihood

estimation of parameters

but takes O(m?) time complexity!

Find a few “inducing points” (Nystrom method)

21y 2 MM ref.: Titsias, Variational learning of inducing variables in sparse Gaussian processes, AISTATS ‘09

Result: high-dimensional, non-convex optimization problem

reRY d=m-p+2+1

\\ for o

for kernel parameters (2 for Gaussian kernel: height and width)
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Gaussian Process Application: results

—8— Gradient Descent
—&— BFGS
200 —il— SSD /=3
—A— VRSSD /=3,m=100/10
100 |

300

Obijective value

gradient descent

—100;

variance reduced

0 500 1000 1500 2000 2500

Function evaluations
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Gaussian Process Application: results

Performance profile

1\100 good |

(=1 BFGS
VI
ors F-
- —e— 55D /=1
£0.50 -
= —6— SSD /=3
2 P —m— SSD /=9
=0.25 —A— SSD =18
E/ | bad * BFGS
= 0.00

0 250 500 750 1000 1250 1500
7 (relative number of function evaluations)

60 dimensional; gradient descent has a line at 22,828 (not shown)
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Part IV: Comparisons
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Alternatives: Gaussian instead of Haar

Assume f obtains its minimum and V f is L-Lipschitz continuous.

Theorem 1 (Kozak, Becker, Tenorio, Doostan ’19, Thm. 2.4). The SSD algorithm with stepsize

N = %g grves

dL Haar

E f(zr) — 7 < QZERQ 1<0<d

where

R=  sup inf ||z — 7|
x| f(x)<f(xo) x*€argmin f

(e.g., f is coercive — R < o0).

Theorem 2 (Nesterov, Spokoiny 17, Thm. 8). Take stepsize n = m, then the random gradient
method with a Gaussian direction converges as

=
EZEJC(%) — fr <
i=0

where x* is any optimal solution.

A(d+4)L g — 2*|2 Gaussian
i (=1

(convex, not necessarily strongly convex)
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Alternatives: Gaussian instead of Haar

Assume f obtains its minimum, V f is L-Lipschitz continuous, and f is x4 PL or strongly convex.

Theorem 3 (Kozak, Becker, Tenorio, Doostan '19, Cor. 2.3). The SSD algorithm with stepsize

N = %g grves

0wl Haar

E f(zx) — f* < p"(f(w0) = %) with p=l1-77 1<¢<d

Theorem 4 (Nesterov, Spokoiny '17, Thm. 8). Take stepsize n = m, then the random gradient
method with a Gaussian direction converges as

L L 1
E — < g — 2|2 with p=]1-E—
flxg) — fF < 2,0 |z — 2™[|*  wi 0 L3(d+ 4

where ™ is any optimal solution.

Gaussian
/=1

(strongly convex or PL)
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Summary:
* Presented some of the only analysis of SSD (i.e., () ~ Haar)
* Haar sampling is better than..
> ..coordinate-wise sampling
» ..Gaussian sampling (for Haar, / = d turns into deterministic gradient descent)
* Exploit concentration-of-measure to get sharpened theorem
* First variance-reduced version of SSD
* Empirical evidence that SSD works fine on non-convex objectives
> High-dimensional “gradient-free” optimization has many applications
Going forward
» Seems to work well on low-effective dimension functions  f(z) = g(Ax), A€ R™*"

m<<n
* Co-author D. Kozak has results on finite difference error

: . : arXiv:2107.03941
> very benign due to our randomized setting Zeroth order optimization with orthogonal random directions

David Kozak*  Cesare Molinari"  Lorenzo Rosasco®*  Luis Tenorio ¥ Silvia Villa 1
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published in Computational Optimization and Applications, 2020)

Stephen Becker (University of Colorado) Stochastic Subspace Descent (SSD) ICCOPT, Lehigh, July 27 2022 53


https://arxiv.org/abs/1904.01145
https://arxiv.org/abs/2003.02684

