

Stochastic gradient-free* optimization, with applications to PDE-constrained optimization

Stephen Becker

joint work with David Kozak⁰, Alireza Doostan[®], and Luis Tenorio⁰

University of Colorado Boulder

*(not *derivative* free)

Motivating Application: shape optimization

Forward problem: find vertical stress σ_y

conforming finite element mesh, used in FEniCS

linear elasticity PDE

(boundary conditions depend on shape of the hole)

Motivating Application: shape optimization

Forward problem: find vertical stress σ_y

conforming finite element mesh, used in $\ensuremath{\mathsf{FEniCS}}$

Inverse problem: what shape minimizes the vertical stress?

parameterize the shape of the hole as follows, which automatically enforces a constant area constraint

$$r(\theta) = \frac{1}{2\pi} + \delta \sum_{k=0}^{d/2-1} \frac{1}{\sqrt{2k+1}} \left(\frac{x_{2k+1}}{\sqrt{2k+1}} \sin((2k+1) \cdot \theta) + \frac{x_{2k+2}}{\sqrt{2k+2}} \cos((2k+1) \cdot \theta) \right)$$

optimization variable:

$$x \in \mathbb{R}^d$$

linear elasticity PDE

(boundary conditions

depend on shape of

the hole)

Generic PDE-constrained optimization

, implicitly saying that u solves the PDE

 $\min_{u,x} \mathcal{L}(u) \quad \text{subject to} \quad \phi(u,x) = 0$

Examples: $\dot{u} = \Delta u, \ u(0) = h$ "x" is the initial condition $\ddot{u} = c^2 \Delta u, \ u(0) = h$ "x" is a parameter $\Delta u = 0, \ u(\Gamma) = h$ "x" is the boundary condition

 $\mathcal{L}(u)$ is the loss which penalizes something like:

- deviation from observations
- drag
- mass
- cost of materials
- compliance
- etc.

4

Generic PDE-constrained optimization

 \checkmark implicitly saying that u solves the PDE

$$\begin{array}{ccc}
\min_{u,x} \mathcal{L}(u) & \text{subject to} & \phi(u,x) = 0
\end{array}$$

$$\phi(u, x) = 0 \quad \Longrightarrow \quad u = u(x)$$

Rewrite: $\left(\min_{x} f(x) \stackrel{\text{def}}{=} \mathcal{L}(u(x)) \right)$

... but finding the gradient is tricky:

$$\nabla f(x) = \frac{\partial \mathcal{L}}{\partial u} \cdot \frac{\partial u}{\partial x}$$

The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (\sim 4x) as a function evaluation

- ... so if we can evaluate f(x) numerically, we can find the gradient
- (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Note: we're assuming derivative exists, just hard to actually calculate This is *not* non-smooth optimization

- The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (~4x) as a function evaluation
 - ... so if we can evaluate f(x) numerically, we can find the gradient
 - (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Requires specialized/restricted libraries/code (dolfin-adjoint/FEniCS, autograd)

7

- The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (~4x) as a function evaluation
 - ... so if we can evaluate f(x) numerically, we can find the gradient
 - (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Requires specialized/restricted libraries/code (dolfin-adjoint/FEniCS, autograd) Adjoint state method requires a method to solve adjoint PDE

 difficult to maintain in large code bases, e.g., 4D-var for weather codes (and have to parallelize for HPC)

- The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (~4x) as a function evaluation
 - ... so if we can evaluate f(x) numerically, we can find the gradient
 - (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Requires specialized/restricted libraries/code (dolfin-adjoint/FEniCS, autograd) Adjoint state method requires a method to solve adjoint PDE • difficult to maintain in large code bases, e.g., 4D-var for weather codes Slow if used for intermediate calculations involving some $f : \mathbb{R}^d \to \mathbb{R}^q$

e.g., seismic inversion with many observations

- The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (~4x) as a function evaluation
 - ... so if we can evaluate f(x) numerically, we can find the gradient
 - (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Requires specialized/restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
Adjoint state method requires a method to solve adjoint PDE
a difficult to maintain in large code bases, e.g., 4D-var for weather codes
Slow if used for intermediate calculations involving some f: R^d → R^q
a e.g., seismic inversion with many observations
Possible memory explosion

e.g., time-dependent problems. Check-pointing schemes somewhat helpful

- The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (\sim 4x) as a function evaluation
 - ... so if we can evaluate f(x) numerically, we can find the gradient
 - (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Requires specialized/restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
Adjoint state method requires a method to solve adjoint PDE

difficult to maintain in large code bases, e.g., 4D-var for weather codes

Slow if used for intermediate calculations involving some f : ℝ^d → ℝ^q

e.g., seismic inversion with many observations

Possible memory explosion

e.g., time-dependent problems. Check-pointing schemes somewhat helpful

Requires access to original source code

- The adjoint state method and reverse-mode automatic differentiation can automatically calculate gradients in about the same time (~4x) as a function evaluation
 - ... so if we can evaluate f(x) numerically, we can find the gradient
 - (this applies if $f : \mathbb{R}^d \to \mathbb{R}$; $f : \mathbb{R}^d \to \mathbb{R}^q$ with $q \gg 1$ is another story)

Requires specialized/restricted libraries/code (dolfin-adjoint/FEnicS, autograd)
Adjoint state method requires a method to solve adjoint PDE

difficult to maintain in large code bases, e.g., 4D-var for weather codes

Slow if used for intermediate calculations involving some f : ℝ^d → ℝ^q

e.g., seismic inversion with many observations

Possible memory explosion

e.g., time-dependent problems. Check-pointing schemes somewhat helpful

Requires access to original source code
Assumes a computational structure

inapplicable for physical observations (wind farms; rollout in AI)

Baseline Algorithms (for comparison)

▷ Use finite differences

 $f:\mathbb{R}^d\to\mathbb{R}$

Algorithm	Gradient	Descent	via Finite	Differences
	OI GAIOIIO			

- 1: for k = 1, 2, ... do
- 2: Estimate $g_k \approx \nabla f(x_k)$
- 3: $x_{k+1} \leftarrow x_k \eta_k g_k$ \triangleright For appropriate step-size η_k
- ignoring finite-difference error, enjoys
 well-understood convergence
- requires d+1 function evaluations per iter.

Baseline Algorithms (for comparison)

 $f: \mathbb{R}^d \to \mathbb{R}$

- Algorithm Gradient Descent via Finite Differences1: for k = 1, 2, ... do2: Estimate $g_k \approx \nabla f(x_k)$ > Use finite differences3: $x_{k+1} \leftarrow x_k \eta_k g_k$ > For appropriate step-size η_k
- ignoring finite-difference error, enjoys well-understood convergence requires d+1 function evaluations per iter.

 \checkmark just 1 function evaluation per iteration

Xpoor convergence properties, slow rates

Algorithm Randomized Coordinate Descent (CD)

- 1: for k = 1, 2, ... do
- 2: Choose $j \in \{1, 2, \dots, d\}$ at random
- 3: $g_k = e_j e_j^T \nabla f(x_k)$
- 4: $x_{k+1} \leftarrow x_k \eta_k g_k$ \triangleright For appropriate step-size η_k (or exact minimization... depends on structure)

Baseline Algorithms (for comparison)

 $f: \mathbb{R}^d \to \mathbb{R}$

Algorithm	Gradient	Descent	via	Finite	Differences	
1: for $k = 1$	$1, 2, \dots dc$	C				

- 2: Estimate $g_k \approx \nabla f(x_k)$ > Use finite differences 3: $x_{k+1} \leftarrow x_k - \eta_k g_k$ > For appropriate step-size η_k
- ignoring finite-difference error, enjoys
 well-understood convergence
 requires d+1 function evaluations per iter.

Algorithm Randomized Coordinate Descent (CD)

- 1: for k = 1, 2, ... do
- 2: Choose $j \in \{1, 2, \dots, d\}$ at random
- 3: $g_k = e_j e_j^T \nabla f(x_k)$

4: $x_{k+1} \leftarrow x_k - \eta_k g_k$ \triangleright For appropriate step-size η_k (or exact minimization... depends on structure)

Why not use traditional Derivative Free Optimization (DFO) methods?

Answer: most classical DFO methods don't scale well with dimension

Part I: A Simple Method

Stochastic Subspace Descent directional derivative $qq^T \nabla f(x_k) = \left(\lim_{h \to 0} \frac{f(x_k + h \cdot q) - f(x_k)}{h}\right)^q$ Assume we can compute this! e.g., 1) forward finite diff 2) forward-mode AD

One benefit: in the limit $\ell = d$, $QQ^T = I_{d \times d}$, and so we'll recover the full gradient (for Gaussians, this is only true in expectation)

directional derivative
$$qq^T \nabla f(x_k) = \left(\lim_{h \to 0} \frac{f(x_k + h \cdot q) - f(x_k)}{h}\right) q$$

 $Q = [q_1, q_2, \dots, q_\ell] \sim \operatorname{Haar}(d \times \ell)$ $Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$

Alg	gorithm "Stochastic Subspace Descent" (SSD)
1:	for $k = 1, 2, do$
2:	Draw $Q \sim \text{Haar}(d \times \ell)$ or any generic SSD
3:	$x_{k+1} \leftarrow x_k - \eta_k \frac{d}{\ell} Q Q^T \nabla f(x_k)$

Generic SSD
$$Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$$

Both Haar and Coordinate Descent methods are valid generic SSD

directional derivative
$$qq^T \nabla f(x_k) = \left(\lim_{h \to 0} \frac{f(x_k + h \cdot q) - f(x_k)}{h}\right) q$$

 $Q = [q_1, q_2, \dots, q_\ell] \sim \operatorname{Haar}(d \times \ell)$ $Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$

Alg	gorithm "Stochastic Subspace Descent" (SSD)
1:	for $k = 1, 2,$ do
2:	Draw $Q \sim \operatorname{Haar}(d \times \ell)$
3:	$x_{k+1} \leftarrow x_k - \eta_k \frac{d}{\ell} Q Q^T \nabla f(x_k)$

We call Q a "Haar" distributed r.v. (i.e., the Haar measure over orthogonal matrices), but really care about QQ^T which is a projection matrix (onto col(Q)).

We get Q via Gram-Schmidt (or appropriately modified QR) on a Gaussian G, and note $\operatorname{col}(Q) = \operatorname{col}(G)$ w.p. 1, so our update is equivalent to $x_{k+1} \leftarrow x_k - \eta_k \frac{d}{\ell} \mathcal{P}_{\operatorname{col}(G)} (\nabla f(x_k))$

and hence the term "stochastic subspace".

Stephen Becker (University of Colorado)

directional derivative
$$qq^T \nabla f(x_k) = \left(\lim_{h \to 0} \frac{f(x_k + h \cdot q) - f(x_k)}{h}\right) q$$

 $Q = [q_1, q_2, \dots, q_\ell] \sim \operatorname{Haar}(d \times \ell)$ $Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$

Algorithm "Stochastic Subspace Descent" (SSD)1: for k = 1, 2, ... do2: Draw $Q \sim \text{Haar}(d \times \ell)$ 3: $x_{k+1} \leftarrow x_k - \eta_k \frac{d}{\ell} Q Q^T \nabla f(x_k)$

Haar is a better choice than alternatives:

- canonical basis (coordinate descent)
- Gaussian sampling
- unit sphere sampling

Variants have been investigated for a long time:

- "random gradient", "random pursuit",
 - "directional search", "random search"
- ch 6, Yu. Ermoliev and R.J.-B. Wets, Numerical techniques for stochastic optimization, Springer-Verlag, 1988.
- M. Gaviano, Some general results on convergence of random search algorithms in minimization problems, Towards Global Optimisation, 1975.
- F.J. Solis and R. J-B. Wets, *Minimization by random search techniques*, Math. of Operations Research 6 (**1981**), no. 1, 19–30. (*no rate*)

directional derivative $q^T \nabla f(x_k) = \lim_{h \to 0} \frac{f(x_k + h \cdot q) - f(x_k)}{h}$

And much recent work on variants, 2011-2020 [and more since then!]

- D. Leventhal and A.S. Lewis, *Randomized Hessian estimation and directional search*, Optimization (2011)
- S. U. Stich, C. Muller, and B. Gartner, Optimization of convex functions with random pursuit, SIAM J. Opt. (2013)
- Yu. Nesterov, Random gradient-free minimization of convex functions, '11 / Yu. Nesterov and V. Spokoiny, FoCM 2017
- P. Dvurechensky, A. Gasnikov, and A. Tiurin, *Randomized similar triangles method: A unifying framework for accelerated randomized optimization methods (coordinate descent, directional search, derivative-free method)*, arXiv:1707.08486
- P. Dvurechensky, A. Gasnikov, and E. Gorbunov, An accelerated directional derivative method for smooth stochastic convex optimization; arXiv:1804.02394
- S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic programming, SIAM J. Opt. (2013)
- R. Chen and S. Wild, Randomized derivative-free optimization of noisy convex functions, arXiv:1507.03332 (2015).
- K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, Structured evolution with compact architectures for scalable policy optimization, ICML, 2018.
- T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv:1703.03864 (2017).
- J. Duchi, M. Jordan, M. Wainwright, A. Wibisono, Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations, IEEE Trans Info Theory (2015)
- A. S. Berahas, L. Cao, K. Choromanski, K. Scheinberg, A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization, arXiv 1905.01332 (2019)
- F. Hanzely, K. Mishchenko, P. Richtarik, SEGA: Variance Reduction via Gradient Sketching, NeurIPS 2018
- cousin of "direct search" methods, cf. S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, Direct Search Based on Probabilistic Descent, SIAM J. Opt. (2015)

First theory results (for generic SSD) $\frac{a}{\ell} = 1$ is gradient descent

Theorem (Kozak, Becker, Tenorio, Doostan '20) Assume: minimizer attained, gradient Lipschitz, stepsize η_k chosen appropriately. $\eta = \frac{\ell}{d} \frac{1}{L}$ 1. If f is **convex**, $\mathbb{E}f(x_k) - f^{\star} \le 2\frac{\frac{d}{\ell}}{\frac{L}{k}}R^2 = \mathcal{O}(k^{-1})$ 2. If f is **not convex** but satisfies the **Polyak-Lojasiewicz** inequality, $\mathbb{E}f(x_k) - f^* < \rho^k(f(x_0) - f^*) = \mathcal{O}(\rho^k)$ and $f(x_k) \xrightarrow{\text{a.s.}} f^*$ 3. If f is strongly convex, statements of 2 above hold, and also $x_k \xrightarrow{\text{a.s.}} \operatorname{argmin}_x f(x)$ 4. If f is **not convex** (nor PL), d = ambient dimension Generic SSD $| Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$ $\ell = \#$ directional derivs Stephen Becker (University of Colorado) ICCOPT, Lehigh, July 27 2022 Stochastic Subspace Descent (SSD) 24

First theory results (for *generic* SSD)

Polyak-L	ojasiewicz Condition $\frac{1}{2} \ \nabla f(x) \ ^2$	$\geq \mu \left(f(x) - f^* \right), \ \forall x$
	Example: $f(x) = \frac{1}{2} Ax - b ^2$ where A isr	n't injective
Acronym	Name	Some references
PL	Polyak-Lojasiewicz	Karimi, Nutini, Schmidt '16
SC	Strong Convexity	
EB	Error Bound	Luo and Tseng '93
ESC	Essential Strong Convexity	Liu et al. '14
WSC	Weak Strong Convexity	Necoara et al. '15
RSI	Restricted Secant Inequality	Zhang and Yin '13
RSC	Restricted Strong Convexity	= RSI + Convexity
QG	Quadratic Growth	Anitescu '00
OSC	Optimal Strong Convexity	= QG + Convexity
SSC	Semi-Strong Convexity	= QG + Convexity

Theorem 2. For a function f with a Lipschitz-continuous gradient, the following implications hold:

 $(SC) \rightarrow (ESC) \rightarrow (WSC) \rightarrow (RSI) \rightarrow (EB) \equiv (PL) \rightarrow (QG).$

If we further assume that f is convex then we have

 $(RSI) \equiv (EB) \equiv (PL) \equiv (QG).$

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)

derivs

25

(Karimi, Nutini, Schmidt '16)

Numerical Results: better than expected

Observation: sometimes SSD (with Haar) drastically outperforms randomized coordinate descent (CD)

Generic SSD
$$Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$$

Stephen Becker (University of Colorado)

Numerical Results: better than expected

SSD drastically outperforms randomized coordinate descent (CD)

We can force it to happen by making a problem with low "intrinsic" dimension, e.g., Nesterov's "worst function in the world" $f_{\lambda,r}(\mathbf{x}) = \lambda((x_1^2 + \sum_{i=1}^{r-1} (x_i - x_{i+1})^2 + x_r^2)/2 - x_1)/4,$ This has intrinsic dimension of r

Numerical Results: better than expected

SSD drastically outperforms randomized coordinate descent (CD)

We can force it to happen by making a problem with low "intrinsic" dimension, e.g., Nesterov's "worst function in the world" $f_{\lambda,r}(\mathbf{x}) = \lambda((x_1^2 + \sum_{i=1}^{r-1} (x_i - x_{i+1})^2 + x_r^2)/2 - x_1)/4,$ This has intrinsic dimension of r

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)

Theory: explain better-than-expected results

Previous theorem didn't actually rely on properties of Haar distribution, just generic Q:

$$Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell} Q Q^T\right) = I_{d \times d}$$

Tighter analysis using concentration-of-measure:

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1). $\forall \epsilon \in (0,1), \text{ if } \ell \gtrsim \epsilon^{-2}, Q \sim \operatorname{Haar}(d \times \ell), \text{ then } \forall 0 \neq g \in \mathbb{R}^d,$ $1 - \epsilon \leq \frac{d}{\ell} \frac{\|Q^T g\|^2}{\|q\|^2} \leq 1 + \epsilon \quad w/ \text{ prob. } \delta \geq 0.8$

Recall...

$$d =$$
 ambient dimension

ambient dimension # directional derivs

Theory: explain better-than-expected results

Previous theorem didn't actually rely on properties of Haar distribution, just

$$Q^T Q = I_{\ell \times \ell}, \quad \mathbb{E}\left(\frac{d}{\ell}QQ^T\right) = I_{d \times d}$$

Tighter analysis using concentration-of-measure:

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1). $\forall \epsilon \in (0,1), if \ell \gtrsim \epsilon^{-2}, Q \sim \text{Haar}(d \times \ell), then \forall 0 \neq g \in \mathbb{R}^d,$ $1 - \epsilon \leq \frac{d}{\ell} \frac{\|Q^T g\|^2}{\|g\|^2} \leq 1 + \epsilon \ w/ \text{ prob. } \delta \geq 0.8$

Theorem 3 (Kozak, Becker, Tenorio '19, Thm. 1). If f is strongly convex and ∇f is Lipschitz continuous, then for an appropriate stepsize η_k , the sequence (x_k) generated by SSD (with $Q \sim$ Haar), for k > 100, satisfies

$$f(x_k) - f^* \le (1 + (1 - \epsilon)\rho)^{k/2} (f(x_0) - f^*) \quad with \ probability \ \ge 0.998,$$

where $\rho < 1$ depends on ℓ , d and the Lipschitz and strong convexity parameters.

due to possibility of failure of JL

Subspace/Haar outperforms Gaussian projection

Event means *successful* embedding (a good thing)

Tightening things up

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1). $\forall \epsilon \in (0,1), if \ell \gtrsim \epsilon^{-2}, Q \sim \text{Haar}(d \times \ell), then \forall 0 \neq g \in \mathbb{R}^d$,

$$1 - \epsilon \le \frac{d}{\ell} \frac{\|Q^T g\|^2}{\|g\|^2} \le 1 + \epsilon \ w/ \ prob. \ \delta \ge 0.8$$

... in fact, we can have tight (dimension-dependent) bounds:

Lemma Let
$$Q \sim \text{Haar}(d \times \ell)$$
, then $\forall g \in \mathbb{R}^d$, $\frac{d}{\ell} \frac{\|Q^T g\|^2}{\|g\|^2} \sim \mathcal{B}\text{eta}\left(\frac{\ell}{2}, \frac{d-\ell}{2}\right)$

The CDF of the Beta distribution can be stably computed via the regularized incomplete Beta function

Tightening things up

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1). $\forall \epsilon \in (0,1), if \ell \gtrsim \epsilon^{-2}, Q \sim \text{Haar}(d \times \ell), then \forall 0 \neq g \in \mathbb{R}^d$,

$$1 - \epsilon \le \frac{d}{\ell} \frac{\|Q^T g\|^2}{\|g\|^2} \le 1 + \epsilon \quad w/ \text{ prob. } \delta \ge 0.8$$

... in fact, we can have tight (dimension-dependent) bounds:

Lemma Let
$$Q \sim \text{Haar}(d \times \ell)$$
, then $\forall g \in \mathbb{R}^d$, $\frac{d}{\ell} \frac{\|Q^T g\|^2}{\|g\|^2} \sim \mathcal{B}\text{eta}\left(\frac{\ell}{2}, \frac{d-\ell}{2}\right)$

The CDF of the Beta distribution can be stably computed via the regularized incomplete Beta function

Define
$$\delta = \mathbb{P}\left(\frac{d}{\ell} \|Q^T g\|^2 > (1-\epsilon) \|g\|^2\right)$$

Note: *coordinate descent* style projections do **not** have similar nice embedding properties

Easy to compute, e.g., MATLAB code

dist = @(ell, d) makedist('Beta','a',ell/2, 'b',(d-ell)/2); epsFromDelta = @(delta, ell, d) 1-d/ell*icdf(dist(ell,d),1-delta); deltaFromEps = @(eps, ell, d) 1-cdf(dist(ell,d), (1-eps)*ell/d);

Some numbers

For an embedding of accuracy $\epsilon=0.1$

Success probability		$\delta = 99\%$		$\delta = 99.99\%$	
$\delta \approx 1$	Dimension d	l	ℓ/d	l	ℓ/d
	1000	520	51.98%	755	75.47%
	$10,\!000$	933	9.32%	2086	20.86%
	$100,\!000$	1013	1.01%	2532	2.53%
	$1,\!000,\!000$	1022	0.10%	2587	0.26%
	$10,\!000,\!000$	1023	0.01%	2593	0.03%

Recall...

d = ambient dimension $\ell = \#$ directional derive

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)

ICCOPT, Lehigh, July 27 2022 34

Johnson-Lindenstrauss results are too loose

Message: usual dimensionless Johnson-Lindenstrauss style results are far from sharp in low dimensions (in fact, so loose that they can be meaningless)

Only downside of tighter analysis is that we can't write down a pretty formula

Part II: Variance Reduction

Inspiration

Due to machine learning applications, a lot of work exploits the Empirical Risk Minimization (ERM) structure:

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

Inspiration

the

Due to machine learning applications, a lot of work exploits

Control Variates

Goal: estimate mean $\mu = \mathbb{E}[x]$ of a random variable x

Suppose we have another r.v. y with $\mathbb{E}[y] = \nu$ (called the "control variate") Form $z = x + c(y - \nu)$ which is an unbiased estimate of the mean: $\mathbb{E}[z] = \mu$ in practice, must estimate Then for a good choice of c, $c = -\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(y)}$

we've reduced the variance of our estimate:

$$\operatorname{Var}(z) = (1 - \rho^2) \operatorname{Var}(x)$$

where $\rho = \frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x)\operatorname{Var}(y)}}$

(so only advantageous if x and y are correlated)

(Pearson correlation)

Stephen Becker (University of Colorado)

New variance-reduced SSD

Theorem 4 (Kozak, Becker, Tenorio, Doostan 2019; Thm. 2.7). If f is strongly convex and ∇f is Lipschitz continuous, then for an appropriate stepsize η_k , the sequence (x_k) generated by <u>VRSSD</u> converges almost surely to the (unique) minimizer of f and at a linear rate (the rate depends on η_k and α_k).

SAGA

from the literature:

Algorithm SAGA (Defazio, Bach, Lacoste-Julien '14) for solving the ERM model1: $\forall i = 1, \ldots, N, x^{(i)} \stackrel{\text{def}}{=} x_0$; store $\{\nabla f_i(x^{(i)})\}_{i=1}^N$ in table2: for $k = 1, 2, \ldots$ do3: Draw $j \sim \text{Uniform}([1, \ldots, N])$ 4: $\overline{z} \leftarrow \frac{1}{N} \sum_{i=1}^N \nabla f_i(x^{(i)})$ > From table5: $x_{k+1} \leftarrow x_k - \eta \left(\nabla f_j(x_k) - \nabla f_j(x^{(j)}) + \overline{z} \right)$ 6: Re-define $x^{(j)} \leftarrow x_k$ and update table with $\nabla f_j(x^{(j)})$

our variant:

Algorithm SAGA-style Variance Reduced SSD method1: Pre-compute $\bar{z} \leftarrow \nabla f(x_0)$ 2: for k = 1, 2, ... do3: Draw $Q \sim \text{Haar}(p \times r)$ 4: $x_{k+1} \leftarrow x_k - \eta \left(\frac{d}{\ell}QQ^T \nabla f(x_k) - \frac{d}{\ell}QQ^T \bar{z} + \bar{z}\right)$ 5: $\bar{z} \leftarrow \bar{z} + QQ^T (\nabla f(x_k) - \bar{z}) \triangleright$ Update of \bar{z} is low-memory, unlike original SAGAkey: update control variate in the subspace

Other types of control variates

- algorithmic control variates (e.g., SVRG, SAGA, SARAH, etc.)
- approximate computer model of complicated phenomenon (reduced order model)
 ex. Radio Frequency power amplifiers, where expensive simulation or laboratory measurement is true objective function, but can be approximated by closed-form equations (control variate)
- PDE-specific
 - coarse-grid approximation of a "ground-truth" fine-grid PDE solve
 - Iower-order element approximation of main PDE solve
- sketching and other dimensionality reduction methods
 - artificially introduce randomness to compress dimensions
 - early stopping
 - or any other low-order model

 $f_c(x) \approx f(x)$

Exploiting generic control variates

Key idea: easy to do orthogonal projection

Part III: Numerical Examples

Variance reduction scheme can really work well (current theory shows that *it converges* but not that it should *converge faster*)

Note: objective is not convex, and probably no PL nor Lipschitz gradient

Shape Optimization Application

100 dimensional example

Message: empirically, intermediate values $1 < \ell < d$ work best

Gaussian Process Application: setup

Observations:

 $y_i = \varphi(z_i) + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2) \text{ for } z_1, \dots, z_m$ $\varphi : \mathbb{R}^p \to \mathbb{R}$

For inference, assume it's a GP:

 $\mathbb{C}\mathrm{ov}(\varphi(z_i),\varphi(z_j)) = K(z_i,z_j)$ (and iid errors)

Goal: (approximate) maximum-Likelihood estimation of parameters but takes $\mathcal{O}(m^3)$ time complexity! μ_{post}
 Data
 Inducing points

Find a few "inducing points" (Nyström method)

 $\widetilde{z}_1, \ldots, \widetilde{z}_{\widetilde{m}} \quad \widetilde{m} \ll m$ ref.: Titsias, Variational learning of inducing variables in sparse Gaussian processes, AISTATS '09

Result: high-dimensional, non-convex optimization problem

 $x \in \mathbb{R}^d, \ d = \widetilde{m} \cdot p + 2 + 1$ for σ for kernel parameters (2 for Gaussian kernel: height and width)

Gaussian Process Application: results

Gaussian Process Application: results

Performance profile

60 dimensional; gradient descent has a line at 22,828 (not shown)

Part IV: Comparisons

Alternatives: Gaussian instead of Haar

Assume f obtains its minimum and ∇f is L-Lipschitz continuous.

Theorem 1 (Kozak, Becker, Tenorio, Doostan '19, Thm. 2.4). The SSD algorithm with stepsize $\eta = \frac{1}{L} \frac{\ell}{d}$ gives

where

$$R = \sup_{\substack{x \mid f(x) \le f(x_0)}} \inf_{x^* \in \operatorname{argmin} f} \|x - x^*\|$$

(e.g., f is coercive $\implies R < \infty$).

Theorem 2 (Nesterov, Spokoiny '17, Thm. 8). Take stepsize $\eta = \frac{1}{4(d+4)L}$, then the random gradient method with a Gaussian direction converges as

$$\frac{1}{k} \sum_{i=0}^{k-1} \mathbb{E} f(x_i) - f^* \le \boxed{\frac{4(d+4)L}{k} \|x_0 - x^*\|^2} \qquad \qquad \textbf{Gaussian} \\ \ell = 1$$

where x^* is any optimal solution.

(convex, not necessarily strongly convex)

Alternatives: Gaussian instead of Haar

Assume f obtains its minimum, ∇f is *L*-Lipschitz continuous, and f is μ PL or strongly convex. **Theorem 3** (Kozak, Becker, Tenorio, Doostan '19, Cor. 2.3). The SSD algorithm with stepsize $\eta = \frac{1}{L} \frac{\ell}{d}$ gives

$$\mathbb{E} f(x_k) - f^* \le \rho^k \left(f(x_0) - f^* \right) \quad with \quad \rho = \boxed{1 - \frac{\mu}{L} \frac{\ell}{d}}. \qquad \qquad \mathbf{Haar} \\ 1 \le \ell \le d$$

Theorem 4 (Nesterov, Spokoiny '17, Thm. 8). Take stepsize $\eta = \frac{1}{4(d+4)L}$, then the random gradient method with a Gaussian direction converges as

$$\mathbb{E} f(x_k) - f^* \le \frac{L}{2} \rho^k ||x_0 - x^*||^2 \quad with \quad \rho = \left| 1 - \frac{\mu}{L} \frac{1}{8(d+4)} \right|$$

where x^* is any optimal solution.

Gaussian $\ell = 1$

(strongly convex or PL)

Summary:

- Presented some of the only analysis of SSD (i.e., $Q \sim \text{Haar}$)
- Haar sampling is better than...
 - …coordinate-wise sampling
 - ...Gaussian sampling (for Haar, $\ell = d$ turns into deterministic gradient descent)
- Exploit concentration-of-measure to get sharpened theorem
- First variance-reduced version of SSD
- Empirical evidence that SSD works fine on non-convex objectives
- High-dimensional "gradient-free" optimization has many applications

Going forward

- Seems to work well on low-effective dimension functions $f(x) = g(Ax), \quad A \in \mathbb{R}^{m \times n}$ $m \ll n$
- Co-author D. Kozak has results on finite difference error
 - arXiv:2107.03941 • very benign due to our randomized setting Zeroth order optimization with orthogonal random directions

David Kozak^{*} Cesare Molinari[†] Lorenzo Rosasco[‡] Luis Tenorio [§] Silvia Villa [¶]

Nonlinear Optimization	Rauch 201
Session Title : Methods for Meta-Parameter Estimation in Complex Nonlinear Models	
Organizer(s): Aleksandr Aravkin	
Chair(s) : Kevin Doherty	
Speaker #1 : Kevin Doherty, Derivative Free Optimization with Interpolation and Trust Regi	ons: Efficient
Use of Zeroth Order Information	
Speaker $#2$: Aleksei Sholokhov, A Relaxation Approach to Feature Selection for Linear Mixed	Effects Mod-
els	
Speaker #3 : Kelsey Maass, A Hyperparameter-Tuning Approach to Automated Radiotherapy	Inverse Plan-
ning	

Thanks!

Reference:

Stochastic Subspace Descent, David Kozak, Stephen Becker, Alireza Doostan, Luis Tenorio <u>https://arxiv.org/abs/1904.01145</u> (version 1), <u>https://arxiv.org/abs/2003.02684</u> (version 2, published in *Computational Optimization and Applications*, 2020)

Stephen Becker (University of Colorado)

Stochastic Subspace Descent (SSD)