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We present a new second-order method for unconstrained non-convex optimization, which we dub

Regularized Saddle-Free Newton (R-SFN). This work builds upon a number of recent ideas related to im-

proving the practical performance of the classic Newton’s method. In particular, we develop a nonlinear

transformation to the Hessian which ensures it is positive definite at each iteration by approximating the

matrix absolute value and regularizing with a scaled gradient norm. While our method applies to C2 objec-

tives with Lipschitz Hessian, our analysis will require the existence of a third continuous derivative. Given

this, we show that with an appropriately random initialization our method avoids saddle points almost

surely. Furthermore, the form of our nonlinear transformation facilitates an e�cient matrix-free approach

to computing the update via Krylov based quadrature, making our method scalable to high dimensional

problems.
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Chapter 1

Introduction

We consider the following unconstrained optimization problem:

min
x2Rn

f(x) (1.1)

for a twice continuously di↵erentiable function f : Rn ! R, where we make no assumptions on the convexity

of f . To solve this problem we propose the following update rule:

x(k+1) = x(k) � ↵
⇣�
r2f(x(k))

�2
+ �(k)I

⌘�1/2
rf(x(k)) (1.2)

which we dub Regularized Saddle-Free Newton (R-SFN). The step size ↵ is a constant scalar, and for now

we only require that �(k) is a scalar that could possibly depend on x(k), but we leave the form otherwise

unspecified.

Under a few further assumptions, and with a specific form of regularization, we will show that if a

sequence given by eq. (1.2) converges, then it almost surely converges to a second-order minimizer. We will

also provide details on an e�cient implementation of eq. (1.2) by computing the update via Krylov based

quadrature, and we will investigate its performance experimentally.

A key tool for our analysis, and the fundamental equation behind our e�cient implementation is given

by the following integral representation of the matrix inverse square root:

A�1/2 =
2

⇡

Z 1

0

�
t2I+A

��1
dt (1.3)

which holds for A 2 Rn⇥n with no eigenvalues on R�. This is easily derived from the integral representation

of the matrix square root [7].
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1.1 A Motivating Example

Consider the following two dimensional quadratic:

f(x) = x2
1 � x2

2

This function is unbounded below, and so has no minima, but it does have a saddle point at (0, 0). The

gradient and the Hessian are easily computed, so we can write out the form of the Newton update as follows:

x(k+1) = x(k) �

2

66664

1/2 0

0 �1/2

3

77775

2

66664

2x(k)
1

�2x(k)
2

3

77775
= x(k) � x(k) = 0

Thus we see that Newton’s method converges in a single step to the saddle point from any initialization.

This is perhaps encouraging because we see extremely fast convergence, but discouraging because this is

not a minimum. Well, there is no minimum, but we would at least like to see behaviour that reduces the

function value. If we make a minor modification and take the absolute value of the Hessian eigenvalues, we

instead get the following result:

x(k+1) = x(k) �

2

66664

1/2 0

0 1/2

3

77775

2

66664

2x(k)
1

�2x(k)
2

3

77775
=

2

66664

0

2x(k)
2

3

77775

In this case, the saddle point is avoided if the initial iterate is not chosen on the (x1, 0) plane, and we can

observe that a fast rate of “convergence” is preserved.

This example highlights the extremes of Newton’s method, and seems to suggest that a simple modi-

fication could eliminate its issues. It also makes clear the necessity of an almost sure type argument, or the

introduction of other mechanics to the iteration to avoid cases like an initialization of (x1, 0).

1.2 Related Work

Second order optimization methods have long been a focus of research due to their potential for fast

convergence. The canonical example is Newton’s method, which under mild conditions enjoys local quadratic

convergence, but for which there is no known global convergence result. A number of e↵ective Newton
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variants have been established, aimed at improving di↵erent aspects of the standard version. Trust-Region

Newton and Cubic Newton are two notable methods which both achieve fast global convergence. Recent

work by [11] and [4] showed that an appropriately regularized Newton’s method will converge linearly for a

convex objective function.

A naive application of Newton’s methd may prove to be quite ine↵ective. In particular, for non-convex

objectives, the Hessian is no longer positive definite. Thus, the Newton update is not a descent direction,

which can result in convergence to saddle points. It has been noted in the literature for a long time (see [13])

that this issue may be mitigated by taking the absolute value of the Hessian, i.e. taking the absolute value

of the Hessian eigenvalues. The work of [3] popularized this idea for deep learning, and dubbed their method

Saddle-Free Newton (SFN). While this work showed promising empirical results and gave some intuition as

to why this approach may be valid, there was still no solid theory backing it up.

Continuing to employ the absolute value of the Hessian, [16] introduced the Non-Convex Newton

method. In addition to using the matrix absolute value, su�ciently small eigenvalues are replaced with a

constant, and small amounts of noise are added in certain scenarios. This technique then allows them to

show avoidance of saddle points and global convergence. The works of [9] and [15] established almost sure

avoidance of saddle points for gradient descent using the stable manifold theorem. We will employ this

same method in our analysis. Perhaps the most similar to our work here is the unpublished report of [20].

There, the authors consider what is essentially Saddle-Free Newton with a randomized regularization term,

and attempt to show saddle avoidance using the stable manifold theorem. Our work di↵ers in a number

of ways. First, our methods are fundamentally di↵erent despite having similar inspiration, and thus they

require di↵erent analysis. Second, our analysis is both more robust and more general. Third, our method

admits an e�cient implementation, whereas theirs su↵ers from the same issues as SFN.

Another issue with Newton’s method and its variants comes in their implementation. In the standard

Newton’s method one is required to invert a potentially huge matrix, and things only get worse in the saddle-

free variant. In order to apply the absolute value, most methods decompose the matrix first and then apply

the absolute value to the eigenvalues. When it comes to high-dimensional optimization, this can completely

prevent the practical use of these methods. The Low-Rank Saddle-Free Newton method introduced in [14]
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attempts to circumvent this issue by using a low-rank approximation to the Hessian. A matrix-free technique

is given by [2], where they compute the absolute value as the square root of the squared matrix via a specific

ODE.

Broadly, one may consider an update of the following form:

x(k+1) = x(k) � ↵(k)
�
B(k)

��1rf(x(k)) (1.4)

where Bk is a matrix that depends on the point xk.

B(k) Method Details

r2f(x(k)) Newton N/A

r2f(x(k)) + �(k)I Regularized Newton [11], [4] Convex objective

��r2f(x(k))
�� Saddle-Free Newton [3] N/A

��r2f(x(k))
��
r
+ �I Low Rank Saddle-Free Newton [14] Rank-r approximation

��r2f(x(k))
��
m

Non-Convex Newton [16] Small eigenvalues replaced by m

⇣�
r2f(x(k))

�2
+ �(k)I

⌘1/2
Regularized Saddle-Free Newton (Ours) N/A

Table 1.1: Newton variants

Our method can be seen as a combination of regularized Newton and saddle-free Newton, although

from this one might expect B(k) =
⇣��r2f(x(k))

��+ �(k)I
⌘�1

. Indeed in some sense this would be ideal, but

the necessity for our approximation to this will be made apparent in chapter 3 when we discuss e�cient

computation. Among the saddle-free methods one may note that the all bound the smallest magnitude

eigenvalue in some manner, whether this is via regularization or truncation.
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Chapter 2

Analysis

In this chapter we will give a theoretical analysis of R-SFN’s saddle avoidance properties. Here,

in section 2.1, we will begin by introducing some necessary background, discuss notation, and state our

assumptions. Section 2.2 will then detail the main result of this paper: almost sure avoidance of saddle

points.

2.1 Preliminaries

Throughout, we will use lowercase bold letters to denote vectors, and uppercase bold letters to denote

matrices or matrix valued operators. A parenthetic superscript will indicate an iteration count. To make

things somewhat easier to parse we will also employ the following notation

• g = g(x) = rf(x), with g(k) = g(x(k))

• H = H(x) = r2f(x), with H(k) = H(x(k))

Our saddle avoidance analysis will require the following assumptions:

Assumption 1

The Hessian, H, is M -Lipschitz, i.e. the following holds for all x,y 2 Rn:

����H(x)�H(y)
���� M

����x� y
����

Assumption 2

The objective function f has a continuous third derivative, i.e. f 2 C3.

����������������������������	�������
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6
Assumption 3

The regularization has the following form:

� = 2M
����g

����+ ✏

where ✏ > 0 is arbitrary.

It should be noted that assumption 2 is not too strong of a requirement beyond assumption 1, as the

latter implies almost everywhere di↵erentiability to begin with. Assumption 3 may look a bit strange, but

we will see that the extra ✏ term is quite necessary for our analysis.

Because the Hessian is a real symmetric matrix, it is orthogonally diagonalizable, so we may write

the following decomposition:

H = V⌃VT (2.1)

where V is orthonormal, and ⌃ is a diagonal matrix consisting of the eigenvalues of H. We will denote these

eigenvalues as follows:

µ1 � µ2 � · · · � µn

Often, for an optimization problem of the form eq. (1.1), the goal is to show convergence to the following:

Definition 1: Second-Order Stationary Point

A point xc 2 Rn is a second-order stationary point if g(xc) = 0 and 0 � H(xc), i.e. xc is a critical

point where the Hessian is positive semi-definite.

Where the notation B � A, for symmetric matrices A and B, indicates A�B is positive semi-definite.

For a general saddle point, the smallest eigenvalue may be zero, in which case it is also a second-order

stationary point, so to distinguish between the two, we introduce the following:

Definition 2: Strict Saddle Point

A strict saddle point xs is a critical point, i.e. g(xs) = 0, where there is at least one direction of

negative curvature, so the smallest eigenvalue of H(xs) is strictly less than 0.

If it holds that all saddle points are strict, then convergence to a second-order stationary point is

����������������������������	�������
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convergence to a local minimum.

We will define the map associated with the R-SFN update rule (eq. (1.2)) as follows:

�(x) = x�
�
H2 + �I

��1/2
g

| {z }
F(x)

= (I� F)(x) (2.2)

where we note that the fixed points of � are exactly the critical points of f . This form of our method will

be useful for the forthcoming analysis.

2.2 Saddle Avoidance

The motivation behind using the absolute value of the Hessian is that it allows one to retain the

“appropriate” scaling of Newton’s method, while preventing the possibility for convergence to saddle points.

Our method uses an approximation to the absolute value, but in this section we will show that this saddle

avoidance behaviour indeed holds almost surely. Our analysis will follow that of [9] and [15] by employing

the following result:

Theorem 1: Stable Manifold [18, III.7]

Let xc be a fixed point for the Cr local di↵eomorphism � : U ! Rn, where r � 1 and U ⇢ Rn is a

neighborhood of xc. Let Es�Eu be the invariant splitting of Rn into the subspaces corresponding to

the eigenvalues of D�(xc) less than or equal to 1, and greater than 1 respectively. Associated with Es

is a local � invariant Cr embedded disc W (xc), and ball B around xc such that the following hold:

�(W (xc)) \B ⇢W (xc) and �k(x) 2 B 8k � 0 =) x 2W (xc)

The final result says that a if a point x converges to the critical point xc under the map �, then

that point must have originated in W (xc). This disc is referred to as the local stable center manifold of xc.

Because it is contained in the subspace associated with the eigenvalues of D�(xc) that are less than or equal

to 1, it has the same dimension as that subspace. This will be a key fact moving forward.

To apply theorem 1, and for a few other key results, it will be necessary to have an explicit form

for the derivative D�, so we will derive this before proceeding any further. We refer the reader to [10] for

����������������������������	�������
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references on matrix calculus. We begin by using eq. (1.3) to write the R-SFN map (eq. (2.2)) as follows:

�(x) = x� 2

⇡

Z 1

0

⇣
(t2 + �)I+H2

⌘�1
g dt

Now let T(x) =
�
(�+ t2)I+H2

�
and consider the following:

D� =
@�

@xT
= I� 2

⇡

Z 1

0

@

@xT

h⇣
(t2 + �)I+H2

⌘�1
g
i
dt

where we have swapped the integral and the derivative in the second term using the dominated convergence

theorem. From appendix A we have the following result:

@
⇣
(t2 + �)I+H2

⌘�1
g

@xT
=

�
gT ⌦ I

�@vec(T�1)

@xT
+
�
1⌦T�1(x)

�@vec(g)
@xT

The first term simplifies according to the result in appendix A, and it is easy to see that the second term is

given by T�1H. Combining all of this together we get the following:

D�(x) = I� 2

⇡

Z 1

0
T�1

�
I� cT�1ggT

�
H�

�
gTT�1H⌦T�1 + gTT�1 ⌦T�1H

�@vec(H)

@xT
dt (2.3)

where c = 2M
����g

�����1
.

First, we will use eq. (2.3) to prove the following lemma. This will be key to using the stable manifold

theorem in a helpful way.

Lemma 1

For xs a strict saddle point, D�(xs) has at least one eigenvalue strictly larger than 1.

Proof

A saddle point is a critical point, so the gradient is zero, and thus eq. (2.3) reduces to the following:

D�(x) = I� 2

⇡

Z 1

0
T�1H dt = I�H

�
H2 + ✏I

��1/2

The three matrices involved are simultaneously diagonalizable, so we may write the following:

D�(xs) = V
⇣
I�⌃

�
⌃2 + ✏I

��1/2
⌘
VT

then the matrix above has eigenvalues of the following form for i = 1, . . . , n:

1� µip
µ2
i + ✏

����������������������������	�������
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By assumption, at least µn is negative, which implies the following:

1� µnp
µ2
n + ✏

> 1

Thus the result holds. N

Next, we will use eq. (2.3) to prove the lemma below.

Lemma 2

The nonlinear operator F, from eq. (2.2), satisfies the following for all x,y 2 Rn:

����F(x)� F(y)
���� < 2

����x� y
����

Proof

Our approach will be to show that the norm of DF, which was derived for eq. (2.3) is bounded by

2, which immediately implies the result.

����DF
����  2

⇡

Z 1

0

����T�1
�
I� cT�1ggT

�
H�

�
gTT�1H⌦T�1 + gTT�1 ⌦T�1H

�@vec(H)

@xT

���� dt

 2

⇡

Z 1

0

����T�1
�
I� cT�1ggT

�
H
����+

�����gTT�1H⌦T�1 + gTT�1 ⌦T�1H
�@vec(H)

@xT

���� dt

We can bound the second term in the integrand as follows (see appendix A):

�����gTT�1H⌦T�1 + gTT�1 ⌦T�1H
�@vec(H)

@xT

����  µ�

(µ2 + t2 + �)(µ2
min + t2 + �)

where µ is defined as follows:

µ = max
µi

µi

µ2
i + t2 + �

In other words, µ is the eigenvalue that maximizes the given fraction. Next, we consider the first

term in the integrand, which we rewrite as
����T�2

�
T� cggT

�
H
����. Then we write the following:

����T�2
�
T� cggT

�
H
����2 =

����T�2
�
T� cggT

�
H2

�
T� cggT

�
T�2

����

This quantity is bounded above by ||T�1H2T�1|| = ||T�1H||2 if the following holds:

T�2(T� cggT )H2(T� cggT ) � TH2T

����������������������������	�������
����������
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Rearranging the LHS and cancelling terms we end up with the following:

0 � ggTH2T+
�
T� cggT

�
H2ggT

which holds because
����cggT

���� = � and all the eigenvalues of T are of the form µ2
i + t2 + �. Putting

our two pieces together we have the following bound:

����DF
����  2

⇡

Z 1

0

µ

µ2 + t2 + �
+

µ�

(µ2 + t2 + �)(µ2
min + t2 + �)

dt  2

⇡

Z 1

0

2µ

µ2 + t2 + �
dt

Carrying out the integration we get our final result:

����DF
����  2µp

µ2 + �
< 2

N

This immediately implies the following two corollaries which will allow us to apply the stable manifold

theorem, and extend it to a global statement.

Corollary 1

The R-SFN map with step size 1/2 is a local di↵eomorphism.

Proof

Via the Inverse Function Theorem [19] the map � is a local di↵eomorphism if the derivative at a

point x, D�(x), is a linear isomorphism. The first criterion is easily satisfied because D�(x) is a

matrix. From lemma 2 we know that the 1
2 ||DF(x)|| < 1, so we can conclude that the eigenvalues of

D� = I� 1
2F are strictly larger than 0. Thus, D� is invertible, so � is a local di↵eomorphism. N

Corollary 2

The R-SFN map with step size 1/2 is injective.

Proof

We can write the map in question as � = I� 1
2F, with F defined as in lemma 2. Then we have that

����������������������������	�������
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� is injective if the following holds [1, Proposition 2.1.a]:

0 < [�]l = inf
x 6=y

�����(x)� �(y)
����

����x� y
����

Using the inequality from lemma 2 we can write the following

[�]l = inf
x 6=y

�����(x)� �(y)
����

����x� y
���� � inf

x 6=y

���
����x� y

����� 1
2

����F(x)� F(y)
����
���

����x� y
���� > 0

Thus the result holds. N

We will also state the following theorem as it is key to our analysis, and somewhat less known.

Theorem 2: Alexandro↵ [6, 1.12.8]

If � : X ! Y is a surjective open mapping from a separable locally compact metric space to a

separable metric space such that
����1(y)

��  @0 for all y 2 Y , then dim(X) = dim(Y ).

Now we move to the the main results of this section:

Theorem 3: Saddle Avoidance

The set of points in Rn that converge to a strict saddle point of f under the R-SFN map (eq. (2.2)),

with step size 1/2, is of Lebesgue measure zero.

Proof

Let xs be a strict saddle point. Corollary 1 gives � : U ! Rn as a C1 local di↵eomorphism for U

a neighborhood of xs, so applying theorem 1 yields the C1 manifold Ws = W (xs). From lemma 1

we know that there is at least on eigenvalue of D�(xs) that is strictly larger then 1, so we conclude

that dim(Ws) < n.

For each strict saddle point xs, define Bs to be the ball given by theorem 1. Via Lindelöf’s lemma

[8], we can find a countable set of these balls such that the following holds:

1[

m=1

Bsm =
[

s

Bs

����������������������������	�������
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i.e. a countable sub-cover for the union of the balls Bs. Now suppose that the iteration eq. (1.2)

converges to a strict saddle point from the starting point x(0). This implies that there exists a K

such that x(k) = �k(x(0)) 2 Bsm for all k � K and some m 2 N. Theorem 1 further implies that

�K(x(0)) 2Ws, so it follows that x(0) 2 ��K(Ws).

Now, we claim that ��K(Ws) has measure zero. From corollary 2 we have that � is injective, and

given it is also continuous, the Invariance of Domain theorem [12] guarantees that it is an open map.

Let A = ��1(Ws) and define the map �̃ : A ! �(A) ⇢ Ws, which is surjective by construction.

Observe that A and �(A) are separable, because they are subsets of Rn, and A is locally compact

because it is the continuous pre-image of a disc. Theorem 2 implies that dim(A) = dim(�(A)) < n.

Proceeding via induction guarantees that ��K(Ws) has dimension strictly less than n, and thus it

has measure zero.

From here it holds that the following set has measure zero:

S =
1[

m=1

1[

k=0

��k(Wsm)

which holds because countable unions of sets of measure zero are measure zero. The set S is precisely

the set of points in Rn that converge to a strict saddle point of the objective function f . Thus, the

result holds. N

The proof above uses an argument similar to [15], which is itself a generalization of the argument

in [9]. It is important, however, to point out how our approach di↵ers. In particular, this comes in how

we show that the composed inverse map ��1 of the embedded disc W is measure zero. The argument

used in the aforementioned papers relies on the fact that their map is a di↵eomorphism, thus the inverse

is locally Lipschitz, and such maps are null-set preserving. In contrast, we used the fact that our map was

injective. In order to prove that this was the case in corollary 2 we used the result of lemma 2, which relied

on the existence of a third continuous derivative of f . However, in some sense our approach is more general,

because if one can show lemma 2 holds without using di↵erentiability, then we need only assume f is C3 in

����������������������������	�������
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a neighborhood around the saddle points (to satisfy theorem 1). This can actually be taken a step further

by noting the conditions for Alexandro↵’s theorem. Specifically, the map need only be open and have at

most countable fibre.

Theorem 3 implies the following corollary:

Corollary 3

Assume that the starting point x(0) is chosen according to an absolutely continuous (w.r.t the

Lebesgue measure) probability density. Then the sequence of iterates (x(k)) given by the R-SFN

iteration (eq. (1.2)), with step size 1/2, converges. Then this sequence converges to a second-order

stationary point almost surely.

Proof

Let x(1) = limk!1 x(k) and note that it must be a critical point of f . Theorem 3 gives the Lebesgue

measure of the set of points that converge to a strict saddle point as 0. Thus the probability that

x(1) is a strict saddle is 0, and if it is not a strict saddle it must be a second-order stationary point.

Thus we conclude that x(1) is a second-order stationary point with probability 1. N
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Chapter 3

E�cient Computation

A major issue with Newton type methods lies in their implementation. Take the standard Newton’s

method; to perform an update step one must compute the inverse Hessian and apply it to the gradient. This

can be quite costly, especially in high dimensions, and such issues can e↵ectively prevent the practical usage

of these methods. Some improvements can be made beyond the most naive approach by using a matrix free

linear solver, and by computing Hessian vector products using automatic di↵erentiation (AD). For a saddle

free Newton method, one in which we are using the absolute value of the Hessian (or an approximation),

the problems are only exacerbated. In addition to the steps Newton’s method requires, we must now also

perform an eigen-decomposition of the Hessian. Not only is this expensive, but it also requires forming an

explicit matrix, which can be very memory intensive. We will see that the form of R-SFN naturally admits

an e�cient implementation.

To start, we can avoid an eigen-decomposition by using the integral form for the matrix square root

(eq. (1.3)). Applying this to the update portion of R-SFN (eq. (1.2)) we get the following:

⇣�
H(k)

�2
+ �(k)I

⌘�1/2
g(k) =

2↵

⇡

Z 1

0

⇣�
t2 + �(k)

�
I+

�
H(k)

�2⌘�1
g(k) dt (3.1)

This integral can be approximated using an appropriate quadrature rule, so define the associated nodes as

ti and weights as wi, for i = 1, . . . , N . This leaves us the following:

⇣�
H(k)

�2
+ �(k)I

⌘�1/2
g(k) ⇡ 2↵

⇡

NX

i=1

wi

⇣�
t2i + �(k)

�
I+

�
H(k)

�2⌘�1
g(k) (3.2)

It is important to note two necessary conditions the selected quadrature rule must satisfy. First, the rule

should be applicable to the half-open domain [0,1), which is an obvious consideration, but important
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nonetheless. Second, the weights wi must be positive, which is a vital requirement if the theoretical results

considered in chapter 2 have any hope of applying to this approximation. The entire motivation behind

using the matrix absolute value, or the approximation in our case, is to ensure that the update in eq. (1.2) is

a descent direction. In order for this to hold we need the matrix being applied to the gradient to be positive

definite. The integrand in eq. (3.1) satisfies this, but for our finite sum approximation (eq. (3.2)) to as well,

we need positive weights.

In general the summand of eq. (3.2) can be computed e�ciently using a Krylov subspace method.

Taking inspiration from [5], we propose using the family of shifts CG-Lanczos method. Using this approach,

all N vectors can be computed together for a minimal cost beyond doing so for a single solve. Assuming

access to an e�cient operator for Hessian-vector products, this entire process can be done matrix free. Such

an operator can be produced easily via automatic di↵erentiation.

Putting this all together, we present an e�cient algorithm for computing the R-SFN update:

Algorithm 1: R-SFN Update

Data: Function f , Current iterate x, Quadrature order N , Lipschitz constant M , step size ↵
g rf(x)
H2  

�
r2f(x)

�2
// Could be a matrix-free operator

t,w Quadrature(N) // Compute quadrature nodes and weights

si  t2i + � // Compute shifts, agnostic to form of �

Y  Krylov(H2,g, s) // Compute solutions to linear systems

for i = 1 : N do
x = x� ↵wiYi

end

3.1 Numerical Experiments

Our goal in this section is to present a proof-of-concept for R-SFN as a practical saddle-free Newton

type method for optimization. To that end, we will explore its e�ciency and its convergence, although we

will only do so in a limited capacity. Certainly there is more to be investigated, and that will be discussed

as future work in chapter 4. The following experiments were conducted in the Julia programming language.
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3.1.1 E�ciency

Here, we consider the execution time and memory consumption for a single update step of the form

eq. (1.4). We use a synthetic binary logistic regression problem, where we vary the number of features,

and use 10 times that many observations. We compare the standard Newton’s method, saddle-free Newton

(SFN), and R-SFN. For all methods we use automatic di↵erentiation (AD), but in di↵erent ways. For R-SFN

and Newton’s method we use it to construct a matrix free operator, but for SFN we use it to construct the

full Hessian so that we can perform an eigen-decomposition. We will point out that this problem admits

an analytic form for the Hessian that we could have used for Newton’s method and SFN. Indeed, doing so

would improve the performance of those approaches, at least for smaller problems, but it is more realistic to

expect one will not have access to such an analytic form in general.

(a) Update step run time (b) Update step memory consumption

Figure 3.1: Comparison of execution time and memory consumption for Newton type methods.

The most immediate observation one may make is that the choice of M has a large impact on the

run-time performance of R-SFN. It is somewhat unclear why this is, but a possible explanation is that

regularization plays a large role in the solvability of the linear systems. In the Krylov solver we are asking

for a high degree of accuracy, so with no regularization (i.e. M = 0) it is possible this is much harder to

obtain. In the case of non-zero regularization, we see that R-SFN performs at least an order of magnitude

better than SFN in both metrics. It should also be noted that the problem dimensions we are considering

here are not necessarily that large, so stronger di↵erences may be noted in other regimes.
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3.1.2 Convergence

Here, we consider a similar experiment to that of [14]. The d-dimensional Rosenbrock function is a

non-convex function often used for benchmarking, and is given as follows:

f(x) =
d�1X

i=1

100(xi+1 � x2
i )

2 + (1� xi)
2

It has a global minimum of 0 which is achieved by the unique minimizer 1. This problem does not have

a Lipschitz Hessian, so we pick two values for M in our experiments, and we use the maximum number of

quadrature nodes (197) that can be computed under machine precision. We start at the initial point x(0) = 0

and apply R-SFN, with Newton’s method serving as a comparison.

(a) 10-dimensional (b) 100-dimensional

Figure 3.2: Minimization of Rosenbrock function.

In the 10-dimensional case we see that Newton’s method exhibits some erratic behaviour at the

beginning, but quickly converges to the minimum. Both versions of R-SFN also converge to the minimum,

but do so in much more of a steady manner. Without regularization, i.e. M = 0, we see R-SFN does briefly

increase the function, but with su�cient regularization R-SFN appears to always descend, albeit at a slower

rate. This perhaps points towards regularization also being necessary for convergence, but in a trade-o↵ with

speed. In the 100-dimensional case we can see that R-SFN actually outperforms Newton’s method. This is

likely due to the smaller step-size, without which Newton’s method does not converge. Again, we also see

that less regularization results in faster convergence.
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Chapter 4

Discussion

In this work we have presented a new second-order optimization scheme which we call regularized

saddle-free Newton (R-SFN). Under mild assumptions, we showed that this method almost surely avoids

saddle points. We also presented an e�cient implementation of the method which allows for fast matrix-free

updates. Much recent work has been carried out towards developing Newton type methods that avoid saddle

points, yield strong global convergence, or can be easily applied in practice. We view R-SFN as a strong

step towards combining all of these features. Perhaps more than anything, the work presented here points

towards many promising directions for further investigation.

The step-size of 1/2 required for the saddle avoidance results may initially appear sub-optimal, but

it is unclear if that is the case. In the standard Newton’s method, a step-size of 1 is the ideal quantity, and

smaller steps are introduced only to guarantee convergence results. However, our method isn’t derived in the

same way, so there is no reason to believe that larger steps would be better. The fact that it is a constant

is really the key feature, as no added computation is required. If the objective were convex, the steps with

step-size 1 would actually be larger than that of regularized Newton. In the end, what really matters is

the e↵ect of the step-size on convergence, and its associated rate. This leads to the two most significant

open questions: can a global guarantee of convergence to a critical point can be obtained, and can a rate of

convergence be obtained?

Many questions are raised on the implementation side of things. In particular, how the approximations

due to the quadrature and Krylov solutions impact the theory? What is even the best quadrature rule to

use? Often in practice, especially in machine learning regimes, we use mini-batches of data. This results
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in sub-sampled derivative information, which introduces yet another source of randomness that must be

integrated into the analysis. It is also unlikely that one would have access to the Hessian Lipschitz constant.

Thus, an appropriate line search procedure would be needed for a general algorithm. Even with all of this

in hand, to really understand R-SFN, many more numerical experiments are needed.
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Appendix A

Matrix Derivative Results

We will show the following result [10, exercise 9.14.6] holds for A(x) 2 Rm⇥p, B(x) 2 Rp⇥r, and

x 2 Rn:

@

@xT

⇥
A(x)B(x)

⇤
=

�
B(x)T ⌦ Im

�@vec
�
A(x)

�

@xT
+
�
Ir ⌦A(x)

�@vec
�
B(x)

�

@xT

where the subscript on the identity indicates its size.

Proof

We begin by computing the di↵erential of A(x)B(x):

@
�
A(x)B(x)

�
= @

�
A(x)

�
B(x) +A(x)@

�
B(x)

�

Then apply the vec operator to get the following result:

vec
�
A(x)B(x)

�
=

�
B(x)T ⌦ Im

�
@vec

�
A(x)

�
+
�
Ir ⌦A(x)

�
@vec

�
B(x)

�

From here we simply read of the result. N

With T = (t2 + �)I +H2 and � as in assumption 3 we will show the following:

�
gT ⌦ I

�@vec(T�1)

@xT
= �cT�2ggTH�

�
gTT�1H⌦T�1 + gTT�1 ⌦T�1H

�@vec(H)

@xT

where c = 2M
����g

�����1
:
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Proof

We start with the following di↵erentials:

@vec(T�1) = �
�
T�1 ⌦T�1

�
@vec(T)

@vec(T) = @vec(�I) + @vec
�
H2

�
= @vec(�I) +

�
H⌦ I+ I⌦H

�
@vec(H)

Putting these together then implies the result below:

@vec(T�1)

@xT
= �

�
T�1 ⌦T�1

� @�I
@xT

+
�
T�1H⌦T�1 +T�1 ⌦T�1H

�@vec(H)

@xT

Multiplying through by
�
gT ⌦ I

�
gives the last term of the result in question. Next, we note the

following:

�
gT ⌦ I

��
T�1 ⌦T�1

�
=

"
�
gTT�1

1 T�1
�

· · ·
�
gTT�1

n T�1
�
#

@vec(�I)

@xT
=

"

cgTH 0 · · · 0 cgTH 0 · · · 0 cgTH

#T

where the subscript on T indicates the column. The i, j element of their product is given by the

following expression:

c
nX

k=1

�
gTT�1

�
k
T�1

ik

�
gTH

�
j
= c

�
T�1T�1ggTH

�
ij

Thus we see that the result holds. N

We will show the following:

�����gTT�1H⌦T�1 + gTT�1 ⌦T�1H
�@vec(H)

@xT

����  µ�

(µ2 + t2 + �)(µmin + t2 + �)

where µ is defined as follows:

µ = max
µi

µi

µ2
i + t2 + �

Proof

We first note that T�1 ⌦T�1H and T�1H⌦T�1 have eigenvalues of the following form:

µi

(µ2
i + t2 + �)(µ2

j + t2 + �)
 µ

(µ2 + t2 + �)(µ2
min + t2 + �)

which is a well known property of Kronecker products [10]). Note that the eigenvalue µ is defined as
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above. We can then write the following:

�����gTT�1H⌦T�1 + gTT�1 ⌦T�1H
�@vec(H)

@xT

����  µ2M ||g||
(µ2 + t2 + �)(µmin + t2 + �)

which follows because the norm of @vec(H)
@xT is bounded above by M due to assumption 1. Recognizing

� in the numerator gives the final result. N
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