
Computational Methods of Optimization and Geometry

Processing for Physics Applications

by

Jacob Spainhour

B.S., Florida State University, 2020

M.S., University of Colorado Boulder, 2023

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2025

Committee Members:

Stephen Becker, Chair

Nick Bottenus

Eduardo Corona

Adrianna Gillman

Kenneth Weiss

ii

Spainhour, Jacob (Ph.D., Applied Mathematics)

Computational Methods of Optimization and Geometry Processing for Physics Applications

Thesis directed by Prof. Stephen Becker

This thesis presents novel computational methods in two distinct, yet not disjoint subfields

of applied mathematics, and is consequently divided into two parts.

In Part I, we consider methods of numerical optimization as applied to problems in scientific

experimentation, in which a limited quantity of available resources must be carefully allocated to

maximize the performance of the experiment. In the first chapter of Part I, this takes the form

of discovering optimized ultrasound transmission sequences which, when imaged in the REFoCUS

framework, produce high quality images. In the second chapter of Part I, this takes the form of

discovering optimized measurement protocols for the verification of quantum states through fidelity

estimation.

In Part II, we consider methods of computational geometry as applied to problems in mul-

tiphysics simulation, in which geometrically complex objects must be computationally handled in

a way that is reliable and robust to numerical imperfection. In the first and second chapter of

Part II, we develop methods of evaluating the generalized winding number for general curves and

surfaces, from which we derive methods of determining containment for geometric objects which

otherwise do not define an interior volume. In the third chapter of Part II, we develop a method

of 3D material interface reconstruction by means of optimally defining a collection of half-spaces

whose convex intersection has geometric moments as close as possible to provided reference data.

Dedication

To my dad, whose kindness and strength of character I hope to reflect in my own life. And

to my mom, the original Dr. Spainhour, for being an unending source of pride and inspiration.

iv

Acknowledgements

I have limitless gratitude for the many different communities that I’ve had the privilege to

be a part of, and the support networks that I’ve relied on over the course of my PhD career.

In no particular order:

I’m very grateful to my friends and colleagues in APPM, and in particular to my advisor

Stephen Becker for trusting me with the freedom to pursue my own, perhaps unconventional re-

search trajectory. I’m also grateful to my co-advisor Nick Bottenus for showing me the joys of

working with outside collaborators, a mindset that has come to define my Ph.D. career.

I’m particularly indebted to the Bottenus lab for the chance to cross paths with Nazli, whose

love and support has undoubtedly kept my last few years as a student not just bearable, but vibrant

and exciting.

I’m very grateful to my internship mentors Kenneth Weiss and Mikhail Shashkov for imbuing

in me the skills of a career mathematician. Indeed, I am uniquely grateful to Kenny for taking that

first chance on me, which has since become the most pivotal opportunity of my academic career.

And finally, I’m grateful to my friends and family back in Tallahassee, to which a part of me

will always belong. Without the support of my parents, my siblings, and the childhood friends that

I’m lucky to still have in my life, I simply wouldn’t be the person I am today.

All in all, I’m just happy to have so many people who have positively impacted my life that

my final moments of a PhD student will be spent whittling my gratitude down to a single page

of 11pt text. You all have turned this into quite the challenge, and I really appreciate it.

Contents

Chapter

Introduction 1

Part I: Numerical Optimization for Scientific Experiments 3

1 Introduction to Part I 4

2 Optimization of Array Encoding for Ultrasound Imaging 7

2.1 Abstract . 7

2.2 Introduction . 8

2.2.1 Related Work . 9

2.3 Methods . 11

2.3.1 Transmit Encoding Theory . 11

2.3.2 Beamforming and Imaging Procedure . 14

2.3.3 Implementation of the Proposed Machine Learning Model 15

2.3.4 Acquisition of Training and Testing Data . 18

2.4 Results . 20

2.4.1 Optimization of Both Time Delays and Apodization Weights 20

2.4.2 Restricted Optimization to Either Time Delays or Apodization Weights . . . 27

2.4.3 Optimization in the Presence of Noise . 29

2.4.4 Experimental Verification . 30

vi

2.5 Discussion . 34

2.5.1 Significance of the Initial Condition . 34

2.5.2 Significance of the Training Data . 36

2.5.3 Significance of the Imaging Target . 37

2.5.4 Significance of the Loss Function . 38

2.6 Conclusions . 40

3 Optimal Experiment Design for Quantum Minimax Fidelity Estimation 42

3.1 Abstract . 42

3.2 Introduction . 43

3.3 Background and Related Work . 44

3.4 Methods . 49

3.5 Results . 52

3.5.1 Comparison to Uniform and DFE-derived Allocations 52

3.5.2 Comparison Across Noisy States . 56

3.6 Discussion . 59

3.6.1 Construction of DFE-Adversarial Quantum State 59

3.6.2 Optimal Experimental Protocol as an Importance Weighting 61

3.6.3 Comparison to Maximum-Likelihood Estimation 63

3.7 Conclusion . 68

Part II: Geometry Processing for Physics Simulations 71

4 Introduction to Part II 72

5 Generalized Winding Numbers for Rational Parametric Curves 76

5.1 Abstract . 77

5.2 Introduction . 77

5.3 Background and Related Work . 80

vii

5.4 Generalized Winding Numbers . 83

5.5 Generalized Winding Numbers for Curved Geometry 89

5.6 Winding Number Algorithms . 91

5.7 Generalized Winding Numbers for Coincident Points 96

5.8 Numerical Experiments and Results . 98

5.8.1 Robustness of Containment Queries on Curved Geometry 98

5.8.2 Algorithm Performance . 102

5.9 Concluding remarks . 110

6 Generalized Winding Numbers for Trimmed NURBS Surfaces 111

6.1 Abstract . 112

6.2 Introduction . 112

6.3 Background and Related Work . 116

6.3.1 Containment Queries in 3D CAD Applications 116

6.3.2 Generalized Winding Numbers in 3D . 117

6.3.3 Evaluating the GWN for Curved 3D Geometry 119

6.4 Methods . 122

6.4.1 Reformulation with Stokes’ Theorem . 124

6.4.2 GWN for Coincident Points . 133

6.5 Analytic discontinuity fix for Near-Field GWN . 136

6.6 Numerical Experiments and Results . 139

6.6.1 Generalized Winding Numbers on Open CAD Models 139

6.6.2 Accuracy Evaluation . 144

6.6.3 Performance Evaluation . 146

6.7 Discussion . 148

6.8 Conclusions . 160

viii

7 3D Multi-plane Moment-of-Fluid Interface Reconstruction 162

7.1 Abstract . 162

7.2 Introduction . 163

7.2.1 Background and Rationale . 163

7.2.2 Motivation . 164

7.3 Moments Primer . 169

7.3.1 Translation, Scaling, and Rotation of Volume Moments 169

7.3.2 Reference Ellipsoid and Normalization . 171

7.4 MOF Algorithms Details . 173

7.4.1 Non-linear Optimization . 173

7.4.2 Enforcing the Volume Constraint . 178

7.4.3 Nonconvex Reconstruction . 180

7.5 Summary of the MOF Algorithm . 180

7.6 Results . 181

7.6.1 Single Cell Tests . 181

7.6.2 Mesh Tests . 190

7.7 Discussion . 200

7.7.1 Reconstruction of Nonconvex Material . 200

7.7.2 Geometric Artifacts . 203

7.7.3 Shapes with Identical Moments . 204

7.7.4 Sensitivity to Noise in Reference Moment Data 206

7.8 Conclusions and Future Work . 207

7.9 Acknowledgement . 209

Bibliography 211

Tables

Table

2.1 Simulated Field II Transducer Parameters. 20

2.2 Average ℓ2 loss against the ground-truth contrast across 50 pieces of out-of sample

simulated data. 24

2.3 Average gCNR across 50 pieces of out-of-sample simulated data. 25

2.4 Comparison to ML models whose trainable parameters are restricted to only a single

component of the encoding sequence. 29

3.1 Conventional vs. optimized protocols using coarse POVMs on 3-qubit GHZ and W

states. 55

3.2 Conventional vs. optimized protocols using fine POVMs on 3-qubit GHZ and W states. 57

3.3 Conventional vs. optimized protocols using fine POVMs on a 5-qubit W state. 58

3.4 Optimized protocol for a pure 3-qubit target state considered in Table 3.5. 63

3.5 Subsets of measurements which, when optimized, produce the lowest risk for the

state described in Table 3.4. 64

6.1 Comparative performance of GWN algorithm on various open CAD models. 147

7.1 Spherical coordinates (u, v) for each initial polyhedron. 177

7.2 Per-moment errors between reference data and the reconstructed interface for the

“vertex-corner” example in Figure 7.5. 184

7.3 Parameters for single-cell ellipsoid tests in Figure 7.9. 187

x

7.4 Error metrics for cube example in Figure 7.12. 193

7.5 Parameters for multi-cell ellipsoid test in Figures 7.13, 7.14, and 7.15 193

Figures

Figure

2.1 Training procedure for proposed ML model for data acquisition and imaging. 17

2.2 Types of simulated data and imaging target type on which the ML model is trained

and/or evaluated. 21

2.3 Comparison of 15-transmit encoding sequences applied to different imaging targets. . 23

2.4 Comparison of cystic contrast for different encoding sequences. 26

2.5 Comparison of spatially aggregated gCNR and cystic resolution for different encoding

sequences. 26

2.6 Comparison to application of classical apodization. 28

2.7 Effects of noise on training/evaluation of an ML model. 31

2.8 Experimental validation of simulated results. 33

2.9 Comparison between two different encoding sequences used as initial conditions. . . 35

2.10 Influence of imaging target type on encoding sequence quality. 37

2.11 Influence of imaging target on image quality. 39

2.12 Influence of loss function on image quality. 40

3.1 Simulated fidelity estimates across noise levels compared to a DFE-based protocol. . 60

3.2 Comparison of DFE-based allocation and optimized allocation for an adversarial

3-qubit state. 61

3.3 Comparison of minimax confidence interval to empirically resampled MLE interval

for a DFE-based protocol. 67

xii

3.4 Comparison of minimax confidence interval to empirically resampled MLE interval

for our optimized protocol. 67

3.5 Comparison of minimax confidence interval to ground-truth resampled MLE intervals. 69

4.1 Material Interface Reconstruction as an inverse problem for Shaping 72

5.1 Overview of 2D Generalized Winding Numbers . 76

5.2 Geometric errors can be visually imperceptible, but can still cause a shape to have

no topological interior. 78

5.3 Point containment queries via ray-casting vs. winding numbers. 81

5.4 Integer winding numbers as a sum of subtended angles. 86

5.5 The GWN field for open shapes can be computed by summing the contributions

from each curved component. 87

5.6 Instability of Gaussian quadrature applied to the 2D GWN 88

5.7 Overview of the 2D GWN algorithm. 90

5.8 Example of straight-line closures for the 2D GWN field. 91

5.9 Three iterations of the approximating polyline algorithm. 94

5.10 Illustration of the 2D GWN for coincident points. 98

5.11 Effect of ray-casting on shape with deleted curve. 99

5.12 Effect of the GWN on shape with deleted curve. 100

5.13 GWN on shape with no connected curve endpoints. 102

5.14 Effect of linearization on geometric accuracy and runtime. 104

5.15 Comparison of 2D containment methods on watertight shape. 107

5.16 Comparison of 2D containment methods on high-order rational curve. 108

5.17 Effect of numerical tolerance on cost and containment decision. 109

5.18 GWN for a shape with an incorrectly oriented edge. 110

6.1 Overview of 3D Generalized Winding Number Algorithm. 111

xiii

6.2 Examples of non-watertightness for CAD models. 114

6.3 Comparison of GWN field in 2D and 3D. 120

6.4 Example configurations for surface, query point, and line of discontinuity. 127

6.5 Far-Field Evaluation for 3D GWN. 128

6.6 Near-Field Evaluation for 3D GWN. 128

6.7 Intuition for 2D GWN algorithm. 131

6.8 Intuition for 3D GWN algorithm. 131

6.9 Edge-Case Evaluation for 3D GWN. 132

6.10 Comparison of numerical integration schemes for the 3D GWN. 141

6.11 Demonstration of 3D GWN field on open CAD shapes. 142

6.12 Implied surfaces from rounded GWN field. 143

6.13 Evaluation of GWN field on shape with complex geometry. 144

6.14 Accuracy comparison among methods of 3D containment queries. 145

6.15 Demonstration of surface subdivision on algorithm performance. 149

6.16 Comparative performance between original and subdivided surface. 149

6.17 Line-surface Intersection Tolerance vs. Accuracy and Performance 152

6.18 Line-surface Intersection Tolerance vs. Accuracy and Performance 156

6.19 Disk extraction via trimming curves in parameter space. 157

6.20 Application of Stokes’ Theorem for evaluating 2D GWN. 159

6.21 Different representations of the same trimming curves in different CAD systems . . . 161

7.1 Shape types that can be described by up to four planes 166

7.2 Example of orientation-aligned material normalization. 174

7.3 Example of initial inscribed polyhedra. 176

7.4 Example of root-finding problem for volume conservation. 179

7.5 Comparison between single- and multi-plane MOF method on a corner feature. . . . 183

7.6 Comparison between single- and multi-plane MOF method on a “tip” feature. 185

xiv

7.7 Robustness test for small material volume. 185

7.8 Comparison between single- and multi-plane MOF method on fully embedded material.186

7.9 Example reconstructions on curved shapes. 187

7.10 Example of reconstruction of non-convex material. 188

7.11 Comparison of run-time vs. accuracy among multi-plane MOF methods. 189

7.12 Comparison between single-plane and multi-plane reconstruction schemes for a cube. 191

7.13 Comparison between single-plane and several multi-plane MOF reconstruction schemes

for an ellipsoid. 192

7.14 Error comparison between methods evaluated for an ellipsoid. 195

7.15 The results of Figure 7.14 reproduced on a coarser grid. 196

7.16 Comparison between reconstruction methods on a non-convex shape over a Cartesian

mesh. 198

7.17 Error comparison across varying levels of refinement evaluated for a non-convex

material. 199

7.18 Error comparison for a single cell across varying levels of refinement. 201

7.19 Reconstruction of material that is neither convex nor has a convex complement. . . . 202

7.20 Reconstruction of a single POM that is neither convex nor has a convex complement. 203

7.21 Example of visual artifact removal. 205

7.22 Example of distinct shapes with some identical moments. 206

7.23 Example of the effect of noise in moment data on interface reconstruction. 208

Introduction

The defining feature of a career in applied mathematics is the opportunity to work on prob-

lems in an incredibly broad collection of application areas. This thesis serves as a clear demon-

stration of this idea, and represents the culmination of a number of different research projects in

a number of different problem domains. For clarity of exposition in this document, we distinguish

the projects presented (largely retroactively) according to the field of applied mathematics which

is most relevant to the presented solution.

In Part I, we consider work in which the primary contribution relates to Numerical Opti-

mization, and involves applications in ultrasound imaging systems and quantum state verification.

In Part II, we consider work in which the primary contribution relates to Computational

Geometry, and involves applications in computer graphics and computational multiphysics.

In total, the principal contributions of this thesis are as follows, in order of presentation:

(1) We create a custom machine learning architecture that generates an optimized sequence of

ultrasound transmissions that, when used with the REFoCUS imaging framework, produces

image quality superior to conventional alternatives. The relevant machine learning model

leverages a novel differentiable beamforming apparatus that makes training on a large and

entirely simulated dataset computationally feasible.

(2) We describe a strategy for optimizing the distribution of quantum measurements for the

purpose of estimating the fidelity between an experimental quantum state and its intended

target. These optimized measurement allocations are capable of generating a better worst-

2

case error estimate than conventional alternatives, while also suggesting a reasonable im-

portance weighting among measurements.

(3) We define a numerically stable algorithm to accurately evaluate the generalized wind-

ing number for unstructured collections of rational parametric curves in 2D and trimmed

NURBS surfaces in 3D. In turn, these algorithms permit evaluation of robust and consis-

tent containment classifications with respect to non-watertight and self-intersecting shapes

for which conventional methods cannot apply.

(4) We develop a 3D moment-of-fluid method for interface reconstruction that represents re-

covered geometry as the convex intersection of multiple half-spaces, optimizing their pa-

rameters to minimize the least-squares error between computed and reference geometric

moments. The stability of this non-linear optimization procedure is improved using a

novel normalization procedure, enabling reliable convergence and accurate reconstruction

of complex geometric features.

Part I: Numerical Optimization for Scientific Experiments

Chapter 1

Introduction to Part I

The fundamental mathematical framework for optimization is concerned with the discovery

of the minimum value for an objective function f given input x, subject to the constraint that

x ∈ C, or,

minimize f(x) (1.1)

subject to x ∈ C,

Despite this relatively simple framing, in truth one can encode a truly staggering number of prob-

lems through careful selection of f and C. In particular, we are concerned with problems that

apply the principles of numerical optimization to scenarios in the physical sciences where a care-

ful allocation of experimental resources is necessary, namely Array Encoding for Ultrasound

Imaging and Measurement Allocation for Quantum Fidelity Estimation.

In the first problem, we consider the transmit encoding model for ultrasound imaging, in

which sound waves are emitted into tissue according to a pre-defined transmission sequence, and

the backscattered echoes are collected and processed into an image through the REFoCUS imaging

framework. Naturally, careful selection of the transmission sequence is critical for ensuring that the

resulting image is viable for consideration by a clinician or as part of some other image process-

ing pipeline, but as our previous work has explored, there exist many competing objectives that

influence their design [20]. Furthermore, it is often necessary to altogether restrict the number of

transmissions used, as the acquisition of data is quite time-consuming relative to what is practical

5

in a clinical setting.

In an effort to find the best possible transmission sequence for a given imaging scenario, we

solve Equation 1.1 with f as an objective measure of image quality across all possible ultrasound

data for given transmission sequence x, provided that x ∈ C, the search space of sequences which

utilize as few experimental resources as feasible. To make the concept of “all possible ultrasound

data” computationally tractable, we treat this minimization problem through a machine learning

framework, which permits optimization on successive subsets of representative training data.

Even still, our choice to use a loss function which is based directly on image quality would

ordinary incur an impractical computational cost and memory footprint for even reasonably sized

batches of training data. In our work, we compensate for this through the use of a custom for-

mula for the analytic gradient of our imagine process, which when implemented directly into the

automatic differentiation capabilities of PyTorch [128], allows rapid evaluation of backpropagation

steps during training. Differentiable imaging techniques of this kind are becoming popular in the

ultrasound literature [95], notably in our own work studying calibration and motion tracking for

swept synthetic aperture imaging modalities [143].

Furthermore, our proposed machine learning model features a set of trainable parameters

which exactly correspond to physical hardware settings of the ultrasound device. This “inter-

pretable” approach to a machine learning framework offers a number of practical advantages over

conventional deep learning strategies, most notably a simple inability to produce hallucinations in

the imaging process. Specifically, we only learn the set of hardware parameters through our ma-

chine learning framework, and once this experimental setup has been computed, the actual imaging

is performed via classical techniques. In total, the contents of Chapter 2 is based on the work Op-

timization of Array Encoding for Ultrasound Imaging, published in Physics in Medicine

and Biology in June 2024 [167].

In the second problem, we consider the verification of contemporary quantum devices. Any

implementation of such a device comes at an incredible economic cost, and the currently unavoidable

imperfections in their construction mean that extra resources must be spent just to ensure that

6

the quantum state created matches expectation. We consider the problem through the lens of

fidelity, a measure of closeness between the expected and experimental quantum states that is

largely compatible with many conventional methods of statistical analysis [86]. At the same time,

contemporary techniques for fidelity estimation often assume a particular type of measurement

system [50], and so the relevant analysis becomes entirely unfounded when applied to even common

types of quantum measurement systems.

In order to find the best allocation of a more flexible collection of available measurements, we

solve Equation 1.1 by taking f to be the worst-case error estimate for a given allocation x, where C

defines a total budget that must be distributed among measurements. Importantly, this condition

that f measures the “worst-case” error means that even evaluating f for a single experimental

protocol involves solving a separate optimization problem, whose solution method is introduced in

our prior work [152]. To solve this inner level of optimization as efficiently as possible, we reframe

the problem statement in a way that is compatible with contemporary convex optimization software,

namely CVX. By leveraging the exceptional performance of these libraries, even the outer level of

optimization can be solved at a reasonable cost.

In both subproblems presented in Part I, the shared high-level objective is the discovery of

underlying patterns in seemingly unstructured or otherwise difficult to parse data. For encoded

ultrasound imaging, it is clear from prior work that the relationship between data acquisition and

image quality was often far from straight-forward, and our machine learning approach was able

to find acquisition sequences that outperformed a wide variety of conventional alternatives despite

having no discernible structure. Similarly in the context of quantum fidelity estimation, existing

theory could only reliably predict the optimal measurement sequence in a very limited experimental

context, while our optimization approach not only finds an optimal allocation of more versatile

experimental resources, but can even order the optimal usage of these resources in a way that is

more aligned with available hardware.

Chapter 2

Optimization of Array Encoding for Ultrasound Imaging

2.1 Abstract

The transmit encoding model for synthetic aperture imaging is a robust and flexible frame-

work for understanding the effects of acoustic transmission on ultrasound image reconstruction.

Our objective is to use machine learning (ML) to construct scanning sequences, parameterized by

time delays and apodization weights, that produce high-quality B-mode images. We use a custom

ML model in PyTorch with simulated RF data from Field II to probe the space of possible encoding

sequences for those that minimize a loss function that describes image quality. This approach is

made computationally feasible by a novel formulation of the derivative for delay-and-sum beam-

forming. When trained for a specified experimental setting (imaging domain, hardware restrictions,

etc.), our ML model produces optimized encoding sequences that, when deployed in the REFoCUS

imaging framework, improve a number of standard quality metrics over conventional sequences

including resolution, field of view, and contrast. We demonstrate this experimentally on both wire

targets and a tissue-mimicking phantom. The results of this chapter demonstrate that the set of

commonly used encoding schemes represent only a narrow subset of those available. Additionally,

they demonstrate the value for ML tasks in synthetic transmit aperture imaging to consider the

beamformer within the model, instead of purely as a post-processing step.

In collaboration with Korben Smart, Stephen Becker, and Nick Bottenus

8

2.2 Introduction

In classical ultrasound imaging, transmissions from a transducer array are focused towards

specific locations in the target medium, and the backscattered echoes are collected and processed

into an image that is clear at these locations [34]. More modern systems use a synthetic transmit

aperture system that combines the echoes from multiple transmissions to recreate this focus across

multiple points in the region. In the ideal case, data acquisition is performed by firing each array

element individually in sequence and echoes are received by every element in parallel. The full

set of element-to-element signals is then combined into a B-mode image via post-processing that

achieves focus even at depth [84]. However, the large number of transmissions needed paired

with the relatively low power of each means that, when performed directly, this procedure creates

images with poor frame rate and low signal-to-noise ratio (SNR), making it impractical for clinical

application [28].

Retrospective Encoding For Conventional Ultrasound Sequences, or REFoCUS, is an alter-

native imaging framework that considers the responses from an arbitrary transmission as a linear

combination of these pairwise element responses [19, 3]. In this way, the transmission sequence de-

scribed by time delays and apodization weights parameterizes an encoding of the ground-truth basis

of element-to-element signals, the multistatic (STA) data set. By using the specific sequence used to

acquire data, the echoed response signals can be decoded to produce a robust approximation of this

basis. This approximation can then be focused throughout the imaging domain as post-processing,

making a B-mode image that achieves the desired SNR and focal depth. Conventional transmission

sequences are often selected according to geometric principles (e.g., focused, planewave, or diverg-

ing beams) or according to spatial codes (e.g., Hadamard [28] or S-sequence [67]). However, the

REFoCUS framework generalizes the encoding framweork to allow for a uniform treatment of other

categories of transmissions [20].

The quality of the resultant B-mode image—measured in terms of resolution, field of view

(FOV), and artifacts—is highly dependent on properties of the transmit sequence used for data

9

acquisition. As an example of the importance of beam geometry, focused beams provide very

high resolution, but only around a particular focal point. Another influential property is simply

the number of transmissions. While the number of transmissions ideally matches or exceeds the

number of array elements, practical frame rate considerations often restrict this. In the resulting

underdetermined case, there is active research that seeks to minimize the loss of information during

encoding and decoding. Some groups have shown success using randomly assigned delays, as

such schemes lead to a very well conditioned encoding, in the sense that the relevant encoding

matrices are full rank and therefore stably invertible [184]. Similarly, a spatial code for element

apodizations can be applied to produce a lossless encoding (or near-lossless when the matrix must

be truncated [186]), which in turn increases SNR during imaging.

However, the space of all possible encoding sequences dwarfs those with these sorts of imme-

diately clear and desirable properties [165]. In this chapter, we present a novel machine learning

(ML) model for data acquisition and imaging which we train to efficiently search the set of all

possible transmission sequences, identifying those that lead to high-quality images using the RE-

FoCUS encoding framework. Notably, our training workflow is designed to measure the quality of

a sequence after image formation, better reflecting how performance is judged in a clinical setting.

Furthermore, the only trainable parameters of this machine learning model are a physical descrip-

tion of the transmission sequence, such that a trained ML model is parameterized by an optimized

encoding sequence. This optimized encoding sequence can then be considered independently of the

ML model that generated it, allowing it to be deployed classically within the REFoCUS framework

to achieve image quality beyond what is attainable with conventional sequences.

2.2.1 Related Work

Techniques in machine learning have gained a significant amount of research attention in the

field of ultrasound imaging, particularly in the application of deep neural networks (DNNs) [100, 76].

Following the unprecedented successes of the deep convolutional neural network (CNN) AlexNet in

non-medical imaging tasks [92], similar networks are frequently trained and utilized for ultrasound-

10

adjacent tasks as an additional post-processing step to a conventional imaging pipeline by perform-

ing classification, segmentation, etc. on image data [115].

Other deep learning approaches perform image formation directly. In a prototypical setup,

a DNN is fed the received echoes of a transducer array to produce a B-mode image, aiding or even

supplanting the use of a conventional beamformer [177, 54]. Often the goal is to create a network

that can be evaluated faster than classical imaging techniques without degrading image quality [26].

Other times, the DNN is designed to directly improve image quality. For example, [75] utilize a

CNN as a beamformer that reduces speckle, citing considerable advantages over conventional delay-

and-sum techniques.

While a well-trained DNN can offer these and other benefits, their use necessarily introduces

complications. Most notably, neural networks are susceptible to hallucinations, in which it unex-

pectedly generates features that are not present in the underlying data, an issue that is uniquely

consequential in medical imaging [15]. Our approach to machine learning entirely circumvents this

and other issues by using a custom architecture whose forward operation is entirely acoustically

motivated. Specifically, the proposed ML method improves imaging quality exclusively through

an optimized parameterization of experimental hardware via the transmit sequence. After data

is acquired with an optimized sequence, the B-mode image to be evaluated is generated through

the REFoCUS imaging framework, which itself is based solely on the linear nature pulse-echo re-

sponses (We describe the decoding and imaging processes in detail in Section 2.3.1 and Section 2.3.2

respectively).

A similar strategy to our own is employed by [26], in which a machine learning model is

trained to optimize the apodization weights of planewave transmissions, although a DNN is used

to decode the received echoes. Specifically, a stacked denoising autoencoder architecture (a type

of DNN whose first trainable layer is taken to be the weights themselves) is trained to optimize

the reconstruction of the multistatic data set. In contrast, our ML model allows full control of the

encoding sequence through a continuous treatment of apodization weights and time delays, with

no other trainable parameters. At the same time, our training workflow optimizes the encoding

11

sequence according to direct measures of image quality. In doing so, we provide notable coun-

terexamples to the principle that a better reconstruction of the multistatic data set leads to higher

quality images.

By detaching our machine learning model from conventional neural network architectures,

our approach obtains theoretical and practical advantages beyond avoiding hallucinations. First,

an optimized encoding sequence generated by our ML model can be analyzed separately from the

model itself, such that its beneficial features can be identified and further studied. This is in contrast

to a trained DNN, whose per-layer weights and biases have no meaning outside the context of the

DNN. Second, the smaller parameter space of our ML model dramatically reduces the training time

needed to generate an optimized encoding sequence. This allows for greater flexibility in the overall

ML workflow, as a different configuration of the ML model can be retrained at a minimal cost when

the experimental setting changes (e.g., targeting a different viewing depth or prioritizing different

image features via an alternate loss function). Finally, optimization of data acquisition through the

transmit sequence makes our imaging process very robust to different targets. While conventional

DNNs are typically trained for very specific imaging tasks on a constrained set of training data, we

will show that the proposed approach not only generalizes well to out-of-sample training data, but

also to data with dramatically different features. This is because our ML model is fundamentally

optimized based on the underlying acoustic principles of ultrasound imaging, where the processing

of backscattered echoes is influenced primarily through manipulation of the transmission sequence.

2.3 Methods

2.3.1 Transmit Encoding Theory

We consider a linear transducer array of NE physical elements, of which NT are capable of

transmitting a diverging wave and NR can receive backscattered echoes. Moreover, it is typical

to have elements that perform both functions, such that NT = NR = NE . Taken across all pairs

of transmit and receive elements, collected RF (radio frequency) signals form a time dependent

12

NT×NR matrixU(t), within which the matrix element uTR(t) is the signal observed by transmitting

on element T and receiving on element R. In the synthetic transmit aperture model, the complete

collection of pulse-echo response signals between pairs of transmit and receive elements make up the

multistatic data set. Because these signals can be delayed and summed across the receive channel

to produce transmit focus throughout the domain, as in delay-and-sum (DAS) beamforming, these

data can be considered the mathematical basis of our imaging [84].

As previously discussed, it is inadvisable to construct U(t) directly by firing each transmit

element in sequence across a total of NT transmissions [28]. Instead, the REFoCUS technique seeks

to construct an approximation of U(t) using the responses from an arbitrary scanning sequence.

We consider a scanning sequence of NM separate transmissions, each of which is parameterized by

NT time delays tMT and apodization weights wMT . The response observed by receive element R

from transmit M can be described as a weighted sum of time delayed matrix elements from the

multistatic data set,

sMR(t) =

NT∑

T=1

wMTuTR(t− tMT) , (2.1)

which are similarly collected into a time dependent NM × NR matrix S(t) of focused responses.

Collected across each transmit, these time delays and apodization weights make up the encoding

sequence, denoted σ = (t, w)MT .

It is now convenient to work in the frequency domain, where each time delay of uTR(t)

becomes a complex phase shift of uTR(ω) [3]. For simplicity, we represent the frequency dependent

Fourier transform of U(t) and S(t) as U(ω) and S(ω) respectively. In doing so, we can express the

transmission response of receive element R to transmission M as

sMR(ω) =

NT∑

T=1

wMT exp(−jωtMT)uTR(ω) . (2.2)

This describes a linear relationship between the multistatic data set U(ω) and the transmission

responses S(ω) that is fully parameterized by σ, given by

S(ω) = H(ω)U(ω) , (2.3)

13

where H(ω) is a frequency dependent NM ×NT encoding matrix given by

H(ω) =




w1,1 exp(−jωt1,1) . . . w1,T exp(jωt1,T)

w2,1 exp(−jωt2,1) . . . w2,T exp(jωt2,T)

...
. . .

...

wM,1 exp(−jωtM,1) . . . wM,T exp(jωtM,T)




. (2.4)

In practice, we collect only discrete, equispaced samples from S(t), from which we have a total of Nω

angular frequencies ω. Because calculations involving the collection of matrices S(ω) are typically

performed in parallel across frequencies, we use calligraphic letters to denote the collection of

all frequencies. As an example, we denote Sω = S(ω), and represent the above equation more

compactly as S = HU . When we wish to emphasize the dependence of our encoding matrices H

on the sequence σ, we add σ as a subscript.

The objective of the REFoCUS framework is to create an approximation of the multistatic

data set Û from the recorded echoes in S. This is done by applying a frequency dependent decoder

H†(ω) to S(ω), resulting in

Û = H
†
S = (H†

H)U . (2.5)

This decoder is theoretically arbitrary, with options explored in the literature ranging from

a per-frequency conjugate transpose [19] to a fully trained neural network [26]. In this chapter, we

follow [3, 20] and apply a Tikhonov regularized pseudoinverse that has been shown to work well

experimentally. This choice of decoder depends only on the original encoding matrix, which is itself

dependent only on our sequence σ. The Tikhonov decoder is given explicitly by

H
† = (H∗

H+ γ2INE
)−1

H
∗ , (2.6)

where H
∗ is the conjugate transpose of H and γ is a regularization constant. This regularization

both suppresses the contribution of noise to the recovered multistatic channel data and produces

a more stable inversion of H, which together results in a more accurate and robust recovery of

14

Û . This is particularly important in the underdetermined system of interest, in which the number

of transmits NM is significantly smaller than the number of array elements NE . In all usages of

regularization herein we take a value of γ = 0.1σmax(ω), where σmax(ω) is the spectral norm of

each per-frequency encoding matrix H(ω). This particular value has been observed empirically to

avoid issues of over- or under-regularization in the presence of noise [20].

2.3.2 Beamforming and Imaging Procedure

Given a multistatic data set U , we produce the 2D B-mode image of interest with conventional

DAS beamforming. This technique maps ground-truth or approximated multistatic IQ data (in-

phase and quadrature data derived from the experimentally acquired RF data) at each frequency

to a single IQ data matrix, taking a sum of the time delayed data in Û . By manipulating these

post-acquisition time delays, an image is created that is focused at individual pixels in the imaging

domain. Mathematically, we denote this beamforming operation as B : CNM×NR×Nω → C
Nx×Nz ,

where (Nx, Nz) are the number of pixels in the lateral and axial directions of our image.

To make the resulting image suitable for interpretation by a human observer, we apply a num-

ber of non-linear post-processing steps to this re-focused IQ data. These include the computation

of the signal envelope, log-scaling the dynamic range, and clipping the image to a minimum decibel

value. In our notation, we represent these operations collectively as | · |Im : C
Nx×Nz → R

Nx×Nz .

When applied in the experimental context, the total forward operation of our ML model takes

in transmission responses collected in S and an encoding sequence σ, and produces an image

represented by the real matrix |B(H†
σ
S)|Im.

To ensure that the generated encoding sequences is useful in a clinical setting, we train our

ML model with a loss function L : R
Nx×Nz → R

+ that directly measures image quality. While

there is flexibility in the specific choice of loss function [74], achieving a lower value for the loss

should correspond to higher resolution, higher SNR, wider FOV, fewer artifacts, etc.

A clear choice is to use a loss function that quantifies these qualities directly. For example,

the generalized contrast to noise ratio (gCNR) is a measure of histogram overlap between the

15

brightness of predefined speckle and anechoic regions, such that a higher value indicates greater

contrast in the image [142]. We can in principle improve the gCNR by minimizing the loss function

LgCNR(X̂) := 1− gCNR(X̂) , (2.7)

However, complications with implementation make this loss function impractical. In particular,

the histogram operator is not differentiable and standard continuous approximations are unstable,

which makes the metric incompatible with backpropagation during training.

On the other hand, a natural and easily implementable choice is a normalized ℓ2 comparison

to a reference image that has desirable qualities. This introduces further flexibility in the choice

of imaging target, which we discuss in Section 2.3.4 and Section 2.5.3. With a given image X̂ and

reference image X, this loss is then defined by

Lℓ2(X̂;X) :=
1

NxNz

∥∥X− X̂
∥∥2
2
. (2.8)

Importantly, we will show that training the ML model to minimize Lℓ2 still makes a meaningful

improvement to the gCNR of produced images.

2.3.3 Implementation of the Proposed Machine Learning Model

We define an optimized encoding sequence σ∗ as one that, for a given loss function L, beam-

former B, and decoder H†
σ
, minimizes the non-convex optimization problem

min
σ∈Σ

E L
(
|B(H†

σ
S)|Im

)
, (2.9)

where this expectation is taken over all possible transmission responses S. As it is impossible to

evaluate this expectation directly, we instead approach the minimization problem from a machine

learning perspective, where we instead minimize over a representative sample of training data {U i}.

Each piece of ground-truth multistatic data is related to a transmission response by our encoding

matrix Hσ by Si = HσU i.

Similarly, we must restrict the space of encoding sequences to those that are practically

realizable on a physical system, which we denote as Σ. For example, we limit the total transmission

16

power by restricting the set of apodization weights {wMT } to an ℓ∞ ball, effectively clipping

each value to the range [−1, 1]. Other restrictions stem from quantization of numerical values to

match machine clock cycles. These small discretizations are much more dependent on the specific

acquisition system, but also less impactful to the optimized result.

Altogether, we are left to solve

σ
∗ = argmin

σ∈Σ

1

NU

NU∑

i=1

L
(
|B(H†

σ
HσU i)|Im

)
. (2.10)

Numerically, we implement and train the ML model that minimizes Equation 2.10 in Py-

Torch, a Python package for building deep learning and other machine learning models [128]. This

platform is flexible to our unique architecture, which lacks the abstract layers of a neural network

and instead propagates information only through acoustically motivated operations, namely the

encoding/decoding of the multistatic data and the generation of a B-mode image with DAS beam-

forming. In all other respects, we mirror the conventional ML pipeline by minimizing our loss

function over batches of training data. We perform the numerical optimization using the Adam

algorithm, an adaptive version of standard stochastic gradient descent [89], and accommodate the

constraint set Σ for physically realizable encoding sequences with a simple projection of our se-

quence during each update. The update loop of our ML model is depicted in Figure 2.1, for which

we emphasize the portion that is deployed in an experimental context.

To effectively update the parameters of any ML model requires knowledge of first order

derivatives, which we obtain using the reverse-mode automatic differentiation, or backpropagation,

capabilities of PyTorch [55]. In the context of ultrasound imaging, standard techniques are often

sufficient when the loss function depends primarily on multistatic data [26] or on individual pieces

of RF data [122]. This is because platforms like PyTorch have built-in analytic derivatives for

operations that are common in deep learning applications, such as matrix multiplication and Fourier

transforms. Gradients for all other operations can be constructed at runtime at the cost of additional

computation time and memory overhead. However, this process is made difficult when an ML

17

Figure 2.1: Training procedure for proposed ML model for data acquisition and imaging. Simulated mul-
tistatic training data is encoded and decoded according to our model parameters, an encoding sequence,
and an image is formed using delay-and-sum beamforming. The resulting B-mode image is evaluated by
comparison to a target image, or with some other data obtained during the simulation, i.e., target position.

model directly incorporates beamforming, which we consider a critical component to produce high-

quality encoding sequences (See Section 2.5.4). Backpropagation through the DAS beamformer

rapidly becomes a computational bottleneck when it is implemented directly as a sum of linear

interpolations of IQ data into per-pixel focused channel data, as the number of intermediate values

that must be stored in memory grows rapidly. This is especially relevant while training the proposed

ML model, as we must simultaneously perform this expensive calculation over entire batches of

training data.

In our application, we circumvent this issue through a novel PyTorch implementation of the

derivative of the DAS beamforming operator B. Because the beamformed image I is linear as a

function of the multistatic data U [130], the analytic derivative needed for backpropagation is simply

its adjoint operator. We provide PyTorch the DAS adjoint for arbitrary data, which eliminates the

additional cost and memory overhead.

We do not directly construct and transpose the DAS beamforming matrix, as it is impracti-

cally large for reasonably sized multistatic data, even under a sparse representation [130]. Instead,

18

we apply this adjoint matrix-free, recognizing that B can be described as a sum of linear interpo-

lations, or

B(U) = Sum(Interpolate(U)) .

From this, we derive from simple analytic formulas that

B∗(I) = Interpolate∗(Sum∗(I)) .

These two component adjoints have known, albeit obscure formulas [32], and so we provide pseu-

docode for both operations for clarity. The code used to perform the optimization, along with the

RF data that support the findings of this study, are available at github.com/jcs15c/optimal_

ultrasound_encoding [168].

Algorithm 1: DAS Beamformer B
Input: U : Multistatic Data
Output: I: Beamformed Image

1 Initialize focused IQ data at each pixel to zero
2 for each transmit-receive element pair do

/* Linearly interpolate per-pixel time delays onto the channel data for

the transmit-receive element pair */

3 for each pixel in the image do

4 Identify the pair of IQ data the pixel focused time delay is between.
5 Add a linear combination of these two IQ data to the focused IQ data

2.3.4 Acquisition of Training and Testing Data

While training on true in vivo data would best reflect the experimental setting, it is under-

stood that large collections of general purpose, labeled clinical data are rare [100]. Instead, we

utilize simulated multistatic data created with Field II [83] to train and evaluate our proposed

ML model. The simulated transducer configuration is described in Table 2.1. We have found that

multistatic data depicting randomly placed anechoic lesions in an underdeveloped speckle pattern

is a particularly effective class of training data, as encoding sequences trained on it generalize well

to other classes of data (See Section 2.5.2).

ultrasound:http://github.com/jcs15c/optimal_ultrasound_encoding
github.com/jcs15c/optimal_ultrasound_encoding
ultrasound:http://github.com/jcs15c/optimal_ultrasound_encoding
github.com/jcs15c/optimal_ultrasound_encoding

19
Algorithm 2: DAS Beamformer Adjoint B∗

Input: Ĩ: Data of the same shape as I
Output: Ũ : Data of the same shape as U

1 Initialize output to zeros
2 for each transmit-receive element pair do

/* Perform adjoint-interpolation of Ĩ based on per-pixel time delays */

3 for each pixel in the image do

4 Identify pair of IQ data the pixel focused time delay is between
5 To each index of the output where the closest pair is located, add the corresponding

value of the linear combination in Algorithm 1

For training, we generate with Field II a collection of 500 instances of underdeveloped speckle

data, of which 20% form a validation set for by-hand tuning of our (reasonably few) hyperparam-

eters. Notably, the proposed model is exposed only to this type of data during training. For

thorough testing of the optimized encoding sequence, we use additional samples of underdeveloped

speckle data, as well as collections of other types of simulated data. These include conventional

imaging targets, namely isolated point scatterers and anechoic lesions in fully developed back-

ground speckle. These data are also used to evaluate the optimized encoding sequence according to

standard ultrasound imaging quality metrics, such as the cystic resolution and gCNR respectively.

To explore performance on more complex RF data, we follow a procedure similar to [75]

and generate arrangements of scatterers with amplitudes weighted according a grayscale image.

These images are derived from a set of 160 samples from the publicly available validation set of

an ImageNet competition [71], where we have extracted and smoothed the middle 256×256 pixels

from each and converted them to grayscale. The first type of image-derived data interpolates the

pixel values of each grayscale image to nearby scatterers that are distributed throughout the spatial

domain, allowing us to consider data with scatterers of arbitrary amplitude. The second type of

image-derived completely removes scatterers near pixels of sufficiently low brightness, resulting in

anechoic regions in background speckle that are more arbitrary than standard circular cysts.

We also test our optimized encoding sequences on experimental hardware with both a tissue-

mimicking phantom and a wire target, as described in Section 2.4.4.

20

We must similarly consider the imaging target used by the loss function in Equation 2.8

during the supervised learning. A natural choice is an “unencoded” image, where each simulated

ground-truth multistatic data set is directly focused with DAS beamforming, thereby removing

artifacts induced by encoding. Alternatively, one can compare to a more “idealized” target that

represents the ground-truth contrast, as this also reduces the influence of any particular speckle

pattern during training. Each image of ground-truth contrast is generated alongside the associated

simulated multistatic data, where spatial masks are used to create homogeneous anechoic and

scattering regions. An alternative approach to describing ground-truth echogenicity would be to

directly convolve a high-quality point spread function (PSF) with each scatterer [54], but we find

our approach using a spatial mask to be simpler computationally. For image-derived data, the

ground-truth contrast is simply the original grayscale image. During training, we use ground-truth

contrast targets, and discuss the consequences of this decision in Section 2.5.3.

In Figure 2.2 we show an example of each target type for each category of simulated data,

highlighting the particular configuration of data that is exclusively used during training.

2.4 Results

2.4.1 Optimization of Both Time Delays and Apodization Weights

We now demonstrate our capability to effectively train the proposed ML model, thereby pro-

ducing encoding sequences that meaningfully improve image quality. In the most general case, the

available hardware allows us to manipulate both time delays and apodization weights for each array

Parameters Simulated array

Element count 64
Element pitch 0.3 mm
Element kerf 0.01 mm
Center frequency 3 MHz
Bandwidth 70%

Table 2.1: Simulated Field II Transducer Parameters.

21

Figure 2.2: Types of simulated data and imaging target type on which the ML model is trained and/or
evaluated. (a) Conventional imaging targets generated from the uniform responses of individual scatterers
in an anechoic field. (b) Imaging targets for image-derived data, where the amplitude of each scatterer is
weighted according to a grayscale image. While all categories are used for validation of the ML model,
numerical experiments suggest that training on the class of data emphasized in red (ground-truth contrast,
underdeveloped speckle) produces the best optimized encoding sequences.

22

element. This allows the greatest freedom when designing encoding sequences, and predictably the

greatest improvement over conventional sequences. As a prototypical configuration of the training

workflow, we train the ML model using 400 simulated instances of the previously described under-

developed speckle background with anechoic lesions, processed in batches of size 8. We evaluate the

model with the ℓ2 loss function in Equation 2.8 using ground-truth contrast as the imaging target.

The training is performed using the Adam optimizer using a learning rate of 0.1 over 25 epochs.

The available Verasonics hardware is limited to a minimum duty cycle of two clock cycles, which

effectively nullifies low values for our weights. As a result, we appropriately restrict the parameter

space of encoding sequences Σ during training (See Section 2.3.3).

While this is one of many possible configurations of the proposed training workflow (e.g., the

choice loss function can vary according to the specific imaging task) we will see that the optimized

encoding sequence created in the above configuration improves image quality fairly broadly across

a number of different metrics.

We first demonstrate these improvements by evaluating the optimized encoding sequence on

several types of simulated ultrasound data in Figure 2.3, for which we uniformly observe significantly

improved contrast and reduction of scattering artifacts. For comparison, we use two conventional

planewave encodings of varying maximum angle extent, as such sequences characterize a common

tradeoff between FOV and resolution at depth [20]. For example, the first generates 15 beams with 1

degree of separation, which results in a higher resolution along a narrower FOV. This is particularly

notable when imaging point targets, where some scatterers are essentially undetectable. Steering

these 15 planewaves sufficiently far apart to cover the entire imaging domain results in shallower

contrast for anechoic regions, as there is more significant scattering throughout the domain.

By contrast, the proposed ML model has generated a sequence that recovers this wider FOV

simultaneously with improved contrast. Importantly, we observe through the improvements on the

image-derived data that the optimized encoding sequence is performant regardless of the specific

arrangement of scatterers in the field. Instead, the point spread function for each scatterer is

improved more generally and consistently throughout the FOV.

23

Figure 2.3: Comparison of 15-transmit encoding sequences applied to different imaging targets. We con-
sider imaging using planewaves with 1 degree of separation (left), planewaves with 10 degrees of separation
(middle), and our novel optimized sequence (right). In all types of simulated data, we see considerable
improvements in contrast and resolution over the conventional transmit encodings.

24

We show these improvements quantitatively in Table 2.2, where this prototypical optimized

encoding sequence leads to improved ℓ2 error against the ground-truth contrast. This is the same

metric that is minimized over the training set of anechoic lesions in underdeveloped speckle (See

Equation 2.8), and it is therefore natural that our ML model improves this metric for this type of

data. However, we see that these improvements in the ℓ2 loss are consistent across several other

types of imaging targets that are visually quite distinct.

Average ℓ2 Loss against Ground-Truth Contrast Map

1◦ Spacing Full FOV Span Truncated Optimized
Target Type Planewaves Planewaves Hadamard Encoding

Isolated
12.55 20.03 33.87 8.12

Point Targets

Anechoic Lesions in
583.9 331.6 366.3 252.9

Underdeveloped Speckle

Anechoic Lesions 530.8 250.5 257.3 205.2

Image-Derived
256.6 166.8 174.4 160.8

Contrast

Binarized Image-
369.9 258.8 274.7 230.1

Derived Contrast

Table 2.2: Average ℓ2 loss against the ground-truth contrast across 50 pieces of out-of sample simulated data.
Although the encoding sequence is trained using only the data set of anechoic lesions in underdeveloped
speckle, this metric is improved for each other type of data, emphasized in bold.

We can also demonstrate that improvements in this ℓ2 loss are strongly associated with

improvements in more conventional image quality metrics, namely the gCNR and cystic resolution,

thereby justifying the decision to select an ℓ2 loss for training of the ML model.

The cystic resolution quantifies detectability of an anechoic cyst in background speckle with

a given level of contrast [138]. We compute this metric through cystic contrast, which is the

concentration of energy within a certain distance from a point target in an anechoic field. When

cystic contrast is considered as a function of target radius, the cystic resolution is the minimum

radius that achieves a desired level of contrast. For our examples we use a contrast of -20 dB, a

common threshold for lesion detectability that represents an order of magnitude difference from

25

the surrounding speckle. By explicitly plotting the cystic contrast for each encoding sequence in

Figure 2.4(a), we can see that the optimized encoding sequence produces lesion detectability on

par with narrowly concentrated planewaves, and that this conclusion is not sensitive to the exact

choice of threshold.

In contrast to these narrow planewaves, however, our optimal encoding sequence maintains

this level of resolution throughout the imaging domain. To see this, we use Field II to simulate the

responses from single, isolated scatterers distributed throughout the viewing window, and compute

the cystic resolution for each when imaged with the optimized sequence. Shown in Figure 2.5, this

procedure generates a map of lesion detectability as a function of target position. This strongly

suggests that the benefits of our optimized encoding sequence stem from more general acoustic

principles, rather than overfitting to the training data, as the ML model is never exposed to these

isolated point targets during training.

We additionally measure contrast using the gCNR, which also varies according to the spatial

position of the lesion target. To account for this variance, we consider simulated anechoic lesion

data for which the position and radius of each lesion is random. We categorize these lesions

based on position, and tabulate the average gCNR for each category in Figure 2.5. To consider

more complicated lesion shapes, we also measure the gCNR of the binarized, image-derived data

of Figure 2.2(b), which we record in Table 2.3. Altogether, we see that our optimized encoding

sequence outperforms conventional planewave and Hadamard encodings in terms of both FOV and

contrast.

Average gCNR

1◦ Spacing Full FOV Span Truncated Optimized
Target Type Planewaves Planewaves Hadamard Encoding

Binarized Image-
0.882 0.654 0.888 0.891

Derived Contrast

Table 2.3: Average gCNR across 50 pieces of out-of-sample simulated data, for which the ground-truth
contrast is derived from a grayscale image. Observe that our optimized encoding results in the highest
gCNR, emphasized in bold.

26

Figure 2.4: Comparison of cystic contrast for different encoding sequences. (a) We plot the contrast of an
anechoic cyst as a function of cyst size, with a vertical line indicating the value of the cystic resolution.
(b) The centered point targets for which the cystic resolution is measured. From this, we can see that the
optimized encoding results in cystic resolution comparable to that of narrow span planewaves.

Figure 2.5: Comparison of spatially aggregated gCNR and cystic resolution for different encoding sequences.
(top) We plot the average gCNR for anechoic lesions in each region of the viewing range, averaged over
randomly located targets over 50 instances of simulated data. Images are displayed for one instance of
randomly located targets. (bottom) We plot the cystic resolution throughout the domain. Observe that
only our optimized encoding sequence is able to maintain the same quality measured by gCNR and cystic
resolution throughout the imaging domain.

27

We also compare our optimized sequence to standard techniques in apodization, which simi-

larly seek to improve the PSF by reducing side lobes [85]. To do this, we consider planewaves with

10◦ spacing, which offers good resolution at depth while imaging the full FOV, and apply a Tukey

window to the receive channel. As expected, this improves cyst detectability in the image consid-

erably. However, it does so at the cost of resolution, as shown in Figure 2.6. Specifically, there are

still clear artifacts around point scatterers, and the striation in the cystic resolution map for the

unapodized case is still present after apodization. These effects are not present in our optimized

encoding sequence.

2.4.2 Restricted Optimization to Either Time Delays or Apodization Weights

We can also apply the proposed ML model and training framework to more restrictive hard-

ware specifications. In doing so, we demonstrate that there is still considerable improvement

present, although such sequences do not perform as well as a fully arbitrary system, as expected.

To this end, we train two separate configurations of the ML model. In the first, the apodization

weights are fixed to some uniform value, and the time delays are the only trainable parameters

of the ML model. In the second, only the apodization weights can be changed, and each time

delay is fixed to zero in the ML model. As in Section 2.4.1, we train the model on anechoic lesions

in underdeveloped speckle and test the resulting sequence on data far outside the training set.

We compare the two resulting optimized sequences to the appropriate conventional alternative:

wide spanning planewaves for delay-only optimization, and a truncated Hadamard encoding for

weight-only optimization.

The results of this comparison are compiled in Table 2.4. We see that in each case the op-

timized sequence performs better according to the ℓ2 loss metric than its conventional alternative,

which we have now shown correlates with high quality as measured by gCNR and cystic resolu-

tion. Furthermore, we observe that while there is still considerable improvement when only delays

are optimized through the training of our ML model, the magnitude of improvements when only

optimized weights are generated is comparable to that of a fully optimized encoding sequence.

28

Figure 2.6: Comparison to application of classical apodization. We do this visually (top), through the
average gCNR across each row of lesions (middle) and through the cystic resolution (bottom). We observe
that although the Tukey window does improve the PSF, there is greater improvement from our optimized
sequence.

29

This demonstrates that in this imaging scenario, optimization of the weights has a more significant

influence on the quality of the resulting sequence than delay optimization alone.

Average ℓ2 Loss against Ground-Truth Contrast Map

Delay Optimization Weight Optimization Both

Optimized
Full FOV

Optimized
Truncated

Optimized
Target Type Planewaves Hadamard

Isolated
16.93 20.03 14.53 33.87 8.129

Point Targets

Underdeveloped
310.2 331.6 303.3 366.3 252.9

Speckle

Anechoic Lesions 231.2 250.5 217.1 257.3 205.2

Image-Derived
165.7 166.8 164.2 174.4 160.8

Contrast

Binarized Image-
243.3 258.8 241.2 274.7 230.1

Derived Contrast

Table 2.4: Comparison to ML models whose trainable parameters are restricted to only a single component
of the encoding sequence. In both cases, we see that the per-component optimized encoding sequence
outperforms the conventional alternative on each type of imaging target.

2.4.3 Optimization in the Presence of Noise

These simulated results demonstrate the theoretical utility of applying an ML optimization

strategy for data acquisition and imaging within the REFoCUS framework. However, we can also

verify that our optimized sequences produce meaningful improvements in several practical scenarios.

In the first, we consider a separate configuration of the ML model that is trained to emulate an

imaging system under the influence of electronic noise. We recreate this during training by the

addition of random noise to the encoded channel data prior to imaging. In the current example,

this additive noise is sampled from a random normal distribution, filtered to have a bandwidth

equal to that of the transducer, and then scaled to produce an average of 20 dB channel signal-to-

noise ratio. It is in this context that restricting the set of apodization weights to an ℓ∞ ball is most

critical, as otherwise all noise would be suppressed simply by arbitrarily increasing the apodization

30

weights.

By accounting for this noise during training, the ML model generates a new encoding sequence

that specifically suppresses this noise. We see this in comparison to the optimized encoding sequence

evaluated throughout Section 2.4.1. In Figure 2.7(a), we consider these two sequences, trained

with and without the presence of noise, along with a conventional planewave configuration for

comparison. We then apply each sequence to data to which noise is, or is not added. In each of the

four cases, we see considerable improvement over the conventional planewave approach. However,

we can also see that these improvements are most prominent when the ML model is trained with

the same type of noise present during evaluation, the case emphasized in Figure 2.7(a) in red. In

Figure 2.7(b), we consider a more complete evaluation of the case where noisy data is imaged using

a sequence trained with the same noise model. There is the same degree of improvement as the

noiseless case of Figure 2.3, featuring dramatic improvements in the gCNR and cystic resolution.

2.4.4 Experimental Verification

Finally, we verify these results by directly implementing the optimized encoding sequence

discussed in Section 2.4.1 in physical hardware. In the following experiments, we use the Verason-

ics Vantage 256 research scanner (Verasonics, Inc., Kirkland, WA) with the P4-2v phased array

transducer (3 MHz transmit frequency, 64 elements, 0.3 mm pitch, 10V transmit voltage). Received

channel data were stored for processing offline, where they were decoded and used to produce an

image in the same manner as in simulation. For comparison, we use sequences of 15 transmits

that generate planewaves of varying span (15, 60, and 150 degrees). To reproduce the effects of

arbitrarily scaled weights (rather than restricting to ±1 through pulse inversion) we use the Vera-

sonics apodization function to scale the duty cycle of the transmit excitation so that it matches

the output amplitude.

The first experiment utilizes an ATS 539 multi-purpose phantom (CIRS, Inc., Norfolk, VA)

to confirm the ability of optimized encoding sequences to improve imaging on tissue-like material.

Within the phantom we image anechoic lesions of varying position and radius in background speckle,

31

Figure 2.7: Effects of noise on training/evaluation of an ML model. (a) We compare encoding sequences
generated by different ML models trained with and without the presence of electronic noise. (b) We make
additional comparisons to the case emphasized in red in (a), comparing conventional transmit sequences on
noisy RF data with a sequence optimized in the presence of additive noise. We see a greater qualitative
suppression of noise (top), as well as improvements in gCNR (middle) and the point spread function as
measured by the cystic resolution (bottom).

32

and compute the gCNR of each with respect to surrounding background speckle. We show these

gCNR values below each lesion in Figure 2.8(a). For a fixed lateral position, we acquire data

using each encoding sequence at each of seven elevation positions of the phantom. In this way, we

image anechoic lesions in the same positions with different realizations of background speckle, and

compute the average gCNR across all realizations.

We can see that these results match closely with our numerical simulations, in that our op-

timized sequence is able to produce the depth of focus and resolution of a very narrow span of

planewaves, while still maintaining a full FOV throughout the range. Importantly, these improve-

ments persist beyond the fixed viewing window of the training data, which extends only to a depth

of 55 mm. This further emphasizes that our encoding sequence has not simply specialized to the

specific characteristics of the training data.

We can also recreate our simulated point target images, which we can in turn use to measure

the cystic resolution throughout the imaging domain (albeit on a much coarser grid). To accomplish

this, we image a custom, single target wire phantom (0.03 mm tungsten wire) in a water tank. Using

the AIMS III Hydrophone Scanning System (Onda Corporation, Sunnyvale, CA), we mechanically

translate the suspended P4-2v transducer around the fixed wire so that the target can be imaged

from a 6×5 grid of target positions (∼10 mm lateral spacing, ∼8 mm axial spacing).

Although we only ever image one point target at a time with this experimental setup, in

Figure 2.8(b), we present a montage of these images distributed appropriately in space. To ensure

a fair visual comparison of each point target, we apply a uniform level of gain to each image in the

domain. This allows us to very clearly see the effect of our optimized sequence on the FOV of the

imaging system, where points in the upper corners of the viewing window are either undetectable or

suffer from very poor resolution. In contrast, the optimized encoding sequence provides a uniform

degree of resolution at all points in the domain.

Furthermore, we can see that the off-axis scattering artifacts present are greatly reduced

when imaged with the optimized sequence. As before, we quantify this effect using the cystic

resolution, which we can compute for each point target in Figure 2.8(b). Although our ability

33

Figure 2.8: Experimental validation of simulated results. (a) We image the ATS 539 multi-purpose phantom
using different encoding sequences. Although the ML model is optimized for a symmetric FOV, the fixed
lateral position of the transducer was intentionally placed off-center to demonstrate improved FOV, while
fully capturing each target in the asymmetric phantom. The average gCNR over seven realizations of the
speckle pattern is shown beneath each anechoic lesion. (b) We create a montage of 30 individual point target
images. Each is obtained by translating the P4-2v transducer around a fixed wire target in a water tank.
To provide an appropriate comparison between different targets within the montage, each image is displayed
with the same amount of gain (top). We use these images to compute the cystic resolution throughout the
domain (bottom).

34

to perfectly capture this metric is slightly hampered by irregularities in the experimental setup,

we still observe near uniform improvement over each conventional sequence, analogous to results

observed in simulation.

2.5 Discussion

Our machine learning framework represents a novel method of generating transmit sequences

that ultimately result in higher quality images than current standards. However, as with most

machine learning applications, maximizing the efficacy of the optimized sequence requires careful

consideration of the ML model configuration. For example, one must select a number of standard

ML hyperparameters, such as descent algorithm, batch size, learning rate, etc. Furthermore, this

particular usage of ML in ultrasound imaging brings about additional, unique considerations. In

this section, we discuss our own exploration of these considerations, and make observations that

we believe will be relevant in any future ultrasound ML application that directly incorporates a

beamformer into the architecture.

2.5.1 Significance of the Initial Condition

Because the minimization problem presented in Equation 2.10 is not convex, there is no

expectation that any optimization procedure can find the global minimum, should one even ex-

ist. Instead, the particular local minimum approached by our optimization procedure is highly

dependent on the initial condition. Because locally optimal encoding sequences vary in quality,

it is important to select an initial condition that is at or near a good local minimum. The inter-

pretability of the parameters of our ML model offers a distinct advantage over conventional deep

learning applications in accomplishing this, as we can intelligently explore the effects of different

initial conditions.

For example, an instance of our ML model initialized with a planewave encoding will converge

to transmissions that are steered in the same way, albeit with less well-defined wavefronts. On the

other hand, initializing with a truncated Hadamard code causes the parameters to converge to a

35

Figure 2.9: Comparison between two different encoding sequences used as initial conditions. (a) For each,
we plot the transmit sequence before and after optimization, along with one piece of testing data for each.
In the delay plots, each transmission is represented by a single line. (b) For each initial condition, we plot
the per-epoch ℓ2 loss function averaged over the training and testing data sets.

sequence with no visible steering. We can see these qualitative behaviors in Figure 2.9(a). Despite

this, we have found experimentally that a truncated Hadamard sequence is the superior initial

condition, despite being a generally lower quality transmission sequence. This can be seen through

the ℓ2 loss plotted over the course of training epochs for each initial condition in Figure 2.9(b). This

can be explained by the conventional Hadamard sequence allowing the ML model to begin with

near-optimal FOV, as well as both positive and negative apodization weights. Except for cases in

which delays or weights must be fixed as in Section 2.4.2, each optimized encoding sequence used

in this chapter was generated by an ML model with this configuration as the initial condition.

In our exploration of this topic, we have found that recovering a known, conventional sequence

36

is exceptionally difficult except in the simplest toy problems. For example, although planewave

transmissions are generally performant, the ML model cannot identifiably recover the same geo-

metric properties that make them desirable. On the other hand, the optimal characteristics of the

resulting sequence are quite opaque: while optimized sequences appear to be a simple perturbation

of the initial condition, performing this perturbation randomly fails to achieve the same improve-

ments. This suggests that it would not be possible to discover these sequences without the use of

the proposed ML model.

2.5.2 Significance of the Training Data

In Figure 2.9(b), we also observe that for either initialization, our ML model performs nearly

identically between our training and testing data. This is a highly desired property in this context,

as ultrasound imaging can be theoretically formulated as a convolution of a spatially varying point

spread function across each scatterer in the domain, the results of which are then summed to form

an image. Therefore, an effective manner of optimizing image quality for arbitrary data would be

to optimize this PSF itself, concentrating it at zero offset [54].

Although our loss function does not reference features of the PSF directly, our choice to

use underdeveloped speckle as training data implicitly encourages the same type of improvement

at a lesser computational burden. This is in part because the scatterers within each sample are

spread out enough that their off-axis scattering artifacts do not necessarily overlap one another, as

would be the case with standard background speckle. This means the ℓ2 loss function can only be

meaningfully decreased by acoustically concentrating the energy of each scatterer inwards, thereby

improving the PSF. At the same time, scatterers across all samples in the training data are densely

distributed throughout the imaging domain. This means that learning improvements that span the

entire FOV can be obtained with relatively few samples of type of training data.

37

2.5.3 Significance of the Imaging Target

Although we exclusively use a loss function that compares produced B-mode images with

some ground-truth imaging target, there is still much flexibility within that choice. As stated

in Section 2.3.4, a natural choice for the imaging target is an image derived from ground-truth

multistatic data. While this produces target images without any encoding artifacts, we have found

that an ML model trained with these targets produces poor image quality relative to alternatives.

This is because DAS beamforming with even unencoded multistatic data results in a PSF with

undesirable features such as the visible side lobe artifacts present throughout the domain. When

the ML model is trained on such target images, the transmit sequence is implicitly encouraged to

accurately reconstruct these artifacts. Instead, we see that training against the exact ground-truth

contrast produces images with a higher quality PSF, as seen in Figure 2.10.

Figure 2.10: Influence of imaging target type on encoding sequence quality. (a) We initialize two ML models
identically. (b) When the imaging target of the ℓ2 loss is unencoded data (top), the resulting sequence has
the same artifacts present in the beamformed image. By using an idealized imaging target, i.e., one that
represents the ground-truth contrast, the resulting sequence can suppress these artifacts (bottom).

Additionally, we see the most uniform improvement in image quality when we “pad” images of

underdeveloped speckle so that the final viewing window is itself located in an anechoic field. This

38

ensures that the encoding sequence is not unnecessarily dependent on the specific domain geometry.

The consequences of this are best seen through the plots of cystic resolution in Figure 2.11, where

the first encoding sequence is trained on images whose extent is exactly that of the final viewing

window. In contrast, the second encoding sequence is trained on images located in a slightly wider

anechoic void. As we can see, adding this empty space causes the PSF to more smoothly vary

throughout the domain, and failing to do so results in additional artifacts for point targets near the

center of the region. In effect, these streaks depict positions for which scattering artifacts extend

beyond the imaging domain, and the introduced error is not captured by the loss function.

2.5.4 Significance of the Loss Function

By using our custom implementation of a differentiable beamformer, we are able to train

our ML model according to improvements in an imaging metric, which is a novel departure from

existing work that only considers the recovery of the multistatic data set. Importantly, we can

demonstrate the existence of transmit sequences that produce images with higher resolution and

contrast, even though the encoding itself produces a worse reconstruction of U from S.

This is primarily because a perfect reconstruction of U will only produce the original unen-

coded image, and this type of image lacks many desirable properties, as discussed in Section 2.5.3.

To create a concrete example of this phenomenon, we compare to an ML model within our frame-

work that is instead configured to directly optimize the recovery of the multistatic data set by

minimizing

LSTA(Û ;U) :=
1

NTNRNω

∥∥U − Û
∥∥2
2
. (2.11)

Consider Figure 2.12. We see that this new configuration successfully generates an encoding

sequence that produces a lower STA loss than the previously considered encoding sequence opti-

mized for image recovery. Yet despite this numerical improvement, there is a clear superiority in

image quality when the optimization process considers image formation, leading to improvements

39

Figure 2.11: Influence of imaging target on image quality. We carefully selected the target to ensure there
is not an unnecessary dependence on the specifics of the imaging domain. For example, by expanding the
window during training (right), we are able to deal with streaking artifacts (indicated with an arrow) that
arise from unsuppressed scattering just beyond the imaging domain.

40

both visually and in terms of the gCNR averaged over each lesion.

We take this as a counterexample to the common convention that a better conditioned en-

coding necessarily corresponds to higher quality images. To account for the effects of Tikhonov

regularization, we measure the condition number of the collection of encoding matrices H as

κ = ∥H0∥ · ∥H†
0∥, doing so because the encoding matrix for the lowest frequency H0 has the

poorest conditioning among the collection H. We see that both encoding sequences bring about

reasonably well-conditioned matrices following Tikhonov regularization, but there are still clear

qualitative differences between the two images.

Figure 2.12: Influence of loss function on image quality. We compare our optimized sequence (left) to one
that is trained to optimize reconstruction of the multistatic data set (right). In spite of a worse multistatic
reconstruction measured by the STA loss and comparable condition number κ for the encoding matrices, our
strategy for optimization produces visibly improved contrast and resolution throughout the image.

2.6 Conclusions

In summary, we have shown that the principles of machine learning can be used to gener-

ate encoding sequences that improve the quality of ultrasound imaging within the context of the

REFoCUS model. An important theoretical consequence of our ML procedure is its ability to dis-

cover currently unknown transmit sequences with desirable properties. For example, the various

ML models trained for demonstration throughout this chapter have each found transmit sequences

that are “high-quality” in a sense that is acoustically meaningful, yet is not directly encouraged by

41

the training procedure. That is to say, although the sequence is selected so that it minimizes one

particular ℓ2 imaging metric, it ultimately improves quality along a number of other metrics across

disparate classes of data. At the same time, the exact acoustic properties that these sequences

share remains obscure. This means that our ML model has stumbled upon a currently unexplored

regime of transmit sequences, and there remain unanswered questions as to the unifying features

of such sequences.

By using an ML model whose parameters are exactly those of an encoding sequence, this

approach offers a high degree of flexibility to different imaging scenarios, making it an important

foundation for future endeavors. For example, the high degree of generalizability shown in Figure 2.3

indicates that, in sharp contrast to other deep-learning image formation and analysis tasks, it

may be possible to train with a limited amount of in vivo data without a severe degradation

in image quality. The theoretical flexibility of the REFoCUS framework is a key component of

this type of investigation, as it allows for uniform treatment of highly variable kinds of transmit

sequences. Beyond the proposed framework, we wish to further explore the capabilities of machine

learning within REFoCUS, motivated by our ability to incorporate beamforming as a layer of an

ML architecture, potentially with its own set of trainable parameters. As has been the case in this

chapter, such technology will ultimately allow us to continue developing techniques that directly

improve image quality for applications of interest.

Chapter 3

Optimal Experiment Design for Quantum Minimax Fidelity Estimation

3.1 Abstract

Ensuring the proper operation of a modern quantum device requires spending additional re-

sources to verify device output. We consider in this chapter the more general problem of quantum

verification through the lens of fidelity estimation, in which measurements of the quantum state

inform how “close” a constructed state is to an intended target. This is in contrast to tomography

schemes that compute such statistics directly from a fully reconstructed state, as these often re-

quire a greater number of measurements to in order to be accurate. To be experimentally viable,

a central goal of any method of fidelity estimation is to create an accurate estimate from as few

observations, and types of observations, as possible. We present a technique that designs an exper-

imental measurement protocol of a known target state, finding one that minimizes the width of a

nearly optimal minimax confidence interval around the true value of the fidelity. Importantly, the

nature of the underlying fidelity estimation scheme means that this design procedure is robust to

the availability of measurements, and can be designed prior to the collection of any observations.

In collaboration with Akshay Seshadri and Stephen Becker

43

3.2 Introduction

The verification and validation of existing quantum technologies is a critical component of

the current Noisy Intermediate Scale Quantum era. Even when there is advance knowledge of

properties of an experimentally acquired quantum state, there are a number of reasons that the

true state might deviate from its intended target, and a number of approaches that can quantify this

deviation. In this chapter, we are interested in the case where the state is created with a pure target

state in mind, but the construction process is subject to noise and other experimentally induced

errors [25]. We consider methods which quantify the difference between these states through their

fidelity, with an emphasis on methods which are indifferent to the source of these errors, as well as

to the type of device hardware more generally.

In the tomographic approach to this problem, one uses a classical post-measurement analysis

of observables to fully reconstruct the state, such as Maximum Likelihood Estimation (MLE) [81,

49, 77, 9, 1], least-squares [62, 56], or active learning [96]. With this reconstruction of the ex-

perimental state, many observables of interest can be directly computed, including the fidelity.

However, this often comes at a prohibitively expensive experimental cost, requiring a large num-

ber of measurements needed to obtain a reasonably accurate reconstruction, particularly when the

fidelity is the only value of interest [18]. Furthermore, schemes to improve the accuracy in the

low-measurement scheme necessarily rely on some assumption of the target state, e.g., low-rank, as

in [56], or matrix product states (MPS) and other tensor structures, cf. [36, 13, 14, 97, 94, 99, 137].

However, the assumptions are unlikely to exactly hold in reality, so they introduce a bias into the

resulting estimate.

Alternatively, there exist more direct “verification” strategies which directly determine if

the experimentally acquired state is (up to some tolerance or probability) the same as the target

state, ideally using fewer measurements to do so. These methods are often tailored towards specific

categories of target states, such as stabilizer states or entangled states [126], although there exist

methods that are applicable to general quantum states [187].

44

In this chapter, however, we are interested in the more specific task of fidelity estimation, in

which one directly estimates the fidelity between the experimentally acquired state and the target

state as a measure of distance between them. We are further interested in methods which provide

some rigorous measure of confidence in the estimate. Prototypical among such methods is the

eponymous Direct Fidelity Estimation (DFE) technique [50, 37], which can be used to rigorously

compute a confidence interval on the true fidelity without needing to perform the full tomography,

and degrades slowly as one takes fewer measurements. However, the technique requires the use of a

pre-determined experimental protocol, which may be unnecessarily restrictive in practice. Indeed,

it is often preferable in an experimental context to determine such quantities of interest with an

entirely arbitrary sequence of measurements, particularly if this sequence can be determined prior

to the collection of any data. In particular, one might hope to find the most informative sequence

of measurements, which is the focus of this chapter.

3.3 Background and Related Work

For the remainder of this chapter, we consider a quantum system with a d-dimensional

Hilbert space over C. We identify each state in this system with a density matrix, a d× d positive

semidefinite matrix of unit trace, and we denote the set of such density matrices as X . When the

quantum state is pure, the associated density matrix is additionally rank one [119]. Otherwise, the

state is mixed. We consider in this chapter only scenarios in which the target state ρ is pure, as

pure states are fundamental to the theoretical framework of quantum mechanics, and in particular

quantum computing [50]. However, the unknown, experimentally constructed state σ is almost

necessarily mixed due to imperfections in the creation process.

When the target state is pure, the fidelity between the two is a linear function of σ for a fixed

ρ, defined by the inner product of the Hilbert space

F (σ; ρ) = ⟨σ, ρ⟩ = Tr(σρ). (3.1)

Because the fidelity is dependent on the unknown state, which may differ considerably from the

45

expected target, we can only estimate it experimentally based on a set of observations from a

particular measurement protocol. Each of the L measurement settings of the protocol is described

by a distinct positive operator-valued measure (POVM) {E(ℓ)
1 , . . . E

(ℓ)
Nℓ
}, a set of positive semidef-

inite operators that sum to the identity. When the experimental state σ is observed via the ℓth

measurement setting, there are Nℓ possible outcomes, mapped to by k ∈ {1, . . . , Nℓ}, with each

outcome corresponding to a single element of the POVM E
(ℓ)
k . This correspondence is described

by Born’s rule, which states that the probability of observing outcome k in the ℓth measurement

setting is given by p
(ℓ)
σ (k) = Tr(E

(ℓ)
k σ). Each measurement, or shot, is repeated Sℓ times to produce

independently and identically distributed outcomes {o(ℓ)1 , . . . , o
(ℓ)
Sℓ
}.

There is much flexibility in the choice of POVM, each corresponding to different experimental

setups. For example, a measurement settings that is particularly amenable to theoretical evaluation

is described by the POVM {ρ, I − ρ}, where ρ is itself the target state. For such a POVM, the

fidelity is naturally equal to the expected value of the outcome of the single measurement, as

p1σ(1) = Tr(ρσ) = F (σ; ρ). (3.2)

However, it is unlikely that an experimental setup would be able to perform such a measurement

directly [152].

Instead, the most common type of measurement are those related to the set of 4d − 1 Pauli

observables. For a single qubit system, the Pauli observables are described by the set of 2 × 2

matrices

σX =



0 1

1 0


 , σY =



0 −i

i 0


 , σZ =



1 0

0 −1


 , (3.3)

to which we add the 2×2 identity matrix σI to form a complete basis. To consider higher dimensional

systems, we simply take tensor products of these matrices to form a full set of 4d Pauli observables

{Wℓ}4
d

ℓ=1, often excluding the d× d identity matrix as being inherently uninformative. Each Wℓ is

positive semi-definite, traceless, and the eigenvalues lie in the set {±1}.

Each Pauli observable can be used to construct different types of POVM. For example, each

46

element of the POVM associated with the observable Wi can be constructed as a projector onto

each of its two eigenspaces (for eigenvalues ±1), giving

{
E

(ℓ)
k

}Nℓ=2

k=1
=
{
1
2(I +Wℓ),

1
2(I −Wℓ)

}
=
{
E

(ℓ)
+ , E

(ℓ)
−

}
.

We refer to such POVMs as “coarse”, in the sense that they only have Nℓ = 2 outcomes for arbitrary

dimension.

POVMs of this type are particularly theoretically easy to work with. By assigning to each

outcome a value in o
(ℓ)
k ∈ {−1,+1}, the expected value of the corresponding measurement of σ is

equal to the fidelity between σ and the observable Wℓ:

E[o
(ℓ)
k] = +1 · p+σ (+1) + (−1) · p−σ (−1) (3.4)

= Tr(E
(ℓ)
+ σ)− Tr(E

(ℓ)
− σ)

= Tr
(
1
2(I +Wℓ)σ

)
− Tr

(
1
2(I −Wℓ)σ

)

= Tr(Wℓσ).

If measurements in all 4d − 1 POVMs are taken, then because the observables Wℓ form a com-

plete basis, both a full tomographic reconstruction of σ and an estimate of the fidelity can be

reconstructed from the expected values of these coarse measurements.

However, individual measurements of this kind are not as informative as certain hardware

configurations permit in practice, requiring more measurements to find accurate estimates of each

Pauli observable. This is particularly significant if fewer than all 4d − 1 POVMs are measured.

An alternative POVM that is, in some sense, more “expressive”, is one that projects onto the full

eigenspace of the observable Wk for a total of Nℓ = 2d outcomes. Elements of such a POVM are

constructed through tensor products of the projectors onto the eigenspaces of the Pauli observables

σX , σY , σZ , equivalent to the coarse POVM of a single-qubit system. We refer to measurements of

this type as “fine”. As an example, consider the observable Wk = σX ⊗ σY ⊗ σZ in a three-qubit

system. Each single qubit operator σk has two projectors E
(k)
+ and E

(k)
− , and tensor products across

47

each qubit gives a total of 23 = 8 projectors for the observable Wk:

{E(ℓ)
k }

Nℓ=8
k=1 =

{
E

(X)
+ ⊗ E(Y)

+ ⊗ E(Z)
+ , E

(X)
+ ⊗ E(Y)

+ ⊗ E(Z)
− , (3.5)

E
(X)
+ ⊗ E(Y)

− ⊗ E(Z)
+ , E

(X)
+ ⊗ E(Y)

− ⊗ E(Z)
− ,

E
(X)
− ⊗ E(Y)

+ ⊗ E(Z)
+ , E

(X)
− ⊗ E(Y)

+ ⊗ E(Z)
− ,

E
(X)
− ⊗ E(Y)

− ⊗ E(Z)
+ , E

(X)
− ⊗ E(Y)

− ⊗ E(Z)
−

}
.

For a given Pauli observable, each individual fine POVM is more informative than the coarse equiv-

alent. However, this particular construction means introduces ambiguities between the POVMs for

different Pauli observables. Because the basis operator σI is equal to the identity matrix, it can-

not provide information about the corresponding component state of the system. On the other

hand, it must be possible for the experimental system which is modeled by the POVMs to measure

something about this component. Without loss of generality, we choose to model this ambiguity

through redundancy with the σZ basis operator (since σI and σZ share the same eigenvectors),

simply setting E
(I)
+ = E

(Z)
+ and E

(I)
− = E

(Z)
− , since otherwise E

(I)
+ = I and E

(I)
− = 0. Under this

assumption, the total number of measurement settings described by fine POVMs is 3d as, for exam-

ple, the observableWk = σX⊗σY ⊗σZ is described by the same fine POVM asWk′ = σX⊗σY ⊗σI .

This is in contrast to the corresponding coarse POVMs, which are distinct by construction:

{
E

(XY Z)
k

}Nℓ=2

k=1
=
{
1
2(I + σX ⊗ σY ⊗ σZ), 12(I − σX ⊗ σY ⊗ σZ)

}
, (3.6)

{
E

(XY I)
k

}Nℓ=2

k=1
=
{
1
2(I + σX ⊗ σY ⊗ σI), 12(I − σX ⊗ σY ⊗ σI)

}
.

Although these fine measurements are fundamentally more informative, many methods of

analysis instead consider only measurements with a coarser set of 2 outcomes, which can be more

tractable for statistical analysis. This is the case for the Direct Fidelity Estimation (DFE) method,

in which Pauli measurements are selected randomly according to an “importance-weighting” rule.

Given target state ρ, the Pauli observable Wk is selected with probability

Pr(k) = Tr
(
ρWk/

√
d
)2
, (3.7)

48

and is measured according to the corresponding coarse POVM. An estimate of the fidelity is con-

structed as the weighted average of the observed outcomes, along with a confidence interval derived

from Chebyshev’s inequality [50]. An important feature of this method is that it is prescriptive, and

describes a specific measurement protocol of Pauli observables that must be considered through

the described coarse POVM.

Other methods of experiment design for quantum state verification are more agnostic to the

details of the measurement scheme. For example, the work of [98] describes a strategy for ordering

measurement settings according to measured expected values of the observables themselves, rather

than individual outcomes. This motive is consistent with recent work by [136], which suggests that

the total number of measurement settings used in a tomographic reconstruction is more important

to the quality of the numerical result than the number of observations made per setting, suggesting

that even poor estimates of each observable can be compensated for by a large number of different

settings.

In any experimental setting, each measurement of σ is performed on a different copy of the

state, destroying it in the process, and requiring the experimenter to create another duplicate state.

It is for this reason that a critical component of any fidelity estimation procedure is to perform an

accurate estimation with as few measurements as possible, as each one costs the experimenter time.

At the same time, each additional measurement setting considered incurs a greater additional cost

than repetition of a single observation due to the nature of the experiment. The work of [187]

describes a method of direct fidelity estimation from very few different measurement schemes by

means of a neural network. The input of the described network is the observed experimental

outcomes from a fine POVM, and the output is different fidelity intervals, in effect providing a lower

bound on the fidelity. While this bound is computed from very few different measurement settings,

doing so for a new target state requires fully re-training the network, limiting the applicability of

such an approach to arbitrary target states. Furthermore, the method lacks rigorous guarantees on

either the estimate or on uncertainty of the estimate.

An important feature of our proposed experimental design framework is that, in contrast

49

to these methods, it is highly flexible to the choice of measurement protocol (both in terms of

the selection of measurement settings and the number of outcomes per setting) while still taking

full advantage of more informative individual measurements. Furthermore, the method can be

performed prior to the collection of any data, as it computes a bound on the fidelity in the worst

case, which is the key feature that will allow us to compute the most informative measurements.

3.4 Methods

A theoretical framework for fidelity estimation that can be applied to an arbitrary experi-

mental protocol is introduced in [152]. This technique, which we refer to as the optimal minimax

method produces, both a single estimator F̂ of fidelity and a bound on its error R̂ in the worst case

of σ. The estimator F̂
(
{o(ℓ)i }

)
is itself defined as an affine function of the observed outcomes from

each measurement, mapping them to an estimate of the true fidelity F . Importantly, this estimator

F̂ is constructed to have a near-optimal risk R(F̂) among all possible estimators of F , where R(F̂)

is essentially the width of the smallest symmetric confidence interval around the estimate F̂ that

contains F with a probability greater than 1− δ. The value of R̂ is itself constructed as an upper

bound of its true, and unknown risk R(F̂), although the method of its construction ensures that

the difference between these two values is reasonable for confidence levels above 90%. Nevertheless,

we will in this text refer to R̂ simply as “the minimax risk” for simplicity, recognizing that it also

defines the width of a confidence interval around F̂ which contains F with probability greater than

1− δ [86, 153].

In practical implementation, the minimax risk R̂ can be computed independently of, and

indeed prior to, the estimator F̂ . Specifically, it is defined as the optimal value of the saddle point

optimization problem:

R̂ = inf
α>0

{
α ln(2/δ) + max

χ1,χ2∈X

[
1

2
⟨ρ, χ1⟩ −

1

2
⟨ρ, χ2⟩+ α ln(AffH(A(χ1), A(χ2)))

]}
, (3.8)

50

where AffH(A(χ1), A(χ2)) is the Hellinger affinity, a jointly log-concave function defined by

ln (AffH(A(χ1), A(χ2))) =

L∑

ℓ=1

Sℓ
2

ln

[
Nℓ∑

k=1

p(ℓ)χ1
(k)p(ℓ)χ2

(k)

]
. (3.9)

Furthermore, the ability of this technique to compute an error bound in the worst case means

that both it and the estimator can be computed prior to not only the estimator, but even the

collection of any data. We leverage this fact to select an experimental protocol that minimizes the

calculated risk R̂. To do so rigorously, we consider the R̂ as a function of the experimental protocol,

and design a measurement scheme that minimizes this value, subject to a budget constraint on the

total number of shots.

Our goal is to allocate a fixed budget of Stot observations, described by a vector of shot

counts S⃗ = (S1, . . . , SL)
T for each of a fixed set of L available measurement settings, in a way that

minimizes the risk in Equation (3.8):

minimize
S⃗

R̂(S⃗),

subject to
L∑

ℓ=1

Sℓ ≤ Stot.
(3.10)

Since R̂(S⃗) itself is the solution to an optimization problem—which we refer to as the “inner

problem”—this is a nested optimization problem. Unfortunately, Equation (3.10) is difficult to

solve since it is both integer-valued and non-convex.

To address the former concern, we first note that although the Sℓ are in principle integer-

valued, with each representing discrete measurements of the experimental state, the objective func-

tion R̂ allows for a real-valued treatment of these arguments. This means that during minimization

of the risk, we can allow each Sℓ to take non-integer values, and simply round them at the end,

which typically has small effect since Stot is typically on the order of 100s or 1000s, or even larger.

This relaxation does not guarantee a global minimizer, and indeed finding a true global

minimizer is an intractable combinatorial problem. However, our goal is merely to find a good

enough protocol, and in particular anything that improves upon the conventional alternative (such

as that of DFE or using uniformly distributed shot counts).

51

To solve the outer non-convex optimization problem, we employ the scipy.optimize library,

utilizing the constrained trust-region methods within. This, in turn, requires efficient evaluation of

the risk function R̂ and its gradient with respect to the vector of shot counts S⃗. By inspection, the

objective function R̂ is fully continuous and differentiable with respect to the vector S⃗ for non-zero

shot counts. Using Equation (3.8), we derive

∇S⃗R̂ℓ(S⃗) = α∗ ln

(
Nℓ∑

k=1

√
p
(ℓ)
χ∗

1

(k)p
(ℓ)
χ∗

2

(k)

)
, (3.11)

where α∗, χ∗
1, and χ

∗
2 are the optimal values of the saddle point problem in Equation (3.8) at the

input vector S⃗. Importantly, if the objective function has already been evaluated at this input

vector, then constructing the gradient comes at essentially no additional cost since α∗, χ∗
1, and χ

∗
2

are already known.

To do so, we solve this inner optimization problem for a fixed experimental protocol using

the standard convex optimization software cvxpy. This requires rewriting Equation (3.8) in the

standard form of a convex optimization problem,

minimize
χ1,χ2 ∈X

⟨ρ, χ2 − χ1⟩, (3.12)

subject to 2 ln(ϵ/2)− 2 ln(AffH(A(χ1), A(χ2))) ≤ 0.

While solving this problem results in both the risk R̂ and optimal values of χ∗
1 and χ∗

2, the

construction of both the estimator F̂ and the gradient ∇S⃗R̂ℓ(S⃗) requires the optimal value α∗ in

the original saddle-point formulation as well. To obtain this value without solving the saddle-point

problem directly, we show that this parameter α is actually the dual variable associated with the

constraint on the Hellinger affinity.

Taking p∗ as the primal optimal value of Equation (3.12), p∗ is related to the risk R̂ by

−1
2p

∗ = R̂. Introducing α̃ as a dual variable, the Lagrangian for our nonlinear programming

problem is given by

L(χ1, χ2; α̃) = ⟨ρ, χ2 − χ1⟩ (3.13)

+ α̃
(
2 ln(ϵ/2)− 2 ln(AffH(A(χ1), A(χ2)))

)
.

52

This defines a concave Lagrange dual function g : R→ R defined by

g(α̃) = min
χ1,χ2∈X

L(χ1, χ2; α̃). (3.14)

Let d∗ denote the maximum value of the function g. Because the problem in Equation (3.12) is

convex and Slater’s condition holds (as strict feasibility is achieved whenever χ1 = χ2), we have

strong duality between the two problems. This means that p∗ = d∗, and it follows that

2R̂ = −p∗ = −d∗ = −max
α̃≥0

g(α̃) (3.15)

= min
α̃≥0

max
χ1,χ2∈X

−L(χ1, χ2; α̃)

= min
α̃≥0

max
χ1,χ1∈X

{
⟨ρ, χ1 − χ2⟩

+ 2α̃

[
ln(AffH(A(χ1), A(χ2)))− ln(ϵ/2)

]}

= inf
α̃>0

{
2α̃ ln(2/ϵ) + max

χ1,χ2∈X

[
⟨ρ, χ1⟩ − ⟨ρ, χ2⟩

+ 2α̃ ln(AffH(A(χ1), A(χ2)))

]}
.

With α̃ = α, this is exactly the expression in Equation (3.8), showing equivalence of the two

values. Importantly, this means that the estimator found by solving the saddle-point problem

in Equation (3.8) can be equivalently constructed by finding both primal and dual optima of

Equation (3.12), which can be readily obtained through the solution with cvxpy.

3.5 Results

Given a set of available measurement settings, our method for optimal experiment design is

capable of producing tighter confidence intervals than conventional alternatives.

3.5.1 Comparison to Uniform and DFE-derived Allocations

As our most direct comparison, we consider alternative measurement allocations to ones gen-

erated by our optimization procedure. We take as our first point of comparison a common approach

in which the budget is uniformly distributed among all available non-trivial measurements [136, 96].

53

We also compare to a more sophisticated technique, a practical variant of the previously

described DFE technique. In the original DFE method, “coarse” measurements corresponding to

the Pauli observables are selected at random according to a prescribed importance sampling rule.

Because this strategy is necessarily probabilistic, the exact allocation of measurements cannot be

known in advance, but a benefit of this probabilistic approach is that the method comes with a

rigorous confidence interval. To facilitate comparison with our scheme, we make the following mod-

ification of DFE. We consider a “DFE-derived” protocol to be one that deterministically distributes

the measurement budget among Pauli measurements according to their relative weighting in the

relevant sampling rule, Pr(k) = [Tr(ρWk)]
2. An exception to this allocation strategy is made with

the identity Pauli operator W0, as the associated measurement can be done “by hand”, in a sense,

and should therefore not contribute to the budget.

To estimate the risk of any given protocol (found either by our method or by DFE or by

uniform measurements), we always use the minimax optimal confidence interval. Doing so provides

a uniform comparison between all three experimental protocols, establishing the same type of worst

case bound for each method. While this does result in a different analysis of the DFE method than

suggested by the original text [50], it is nevertheless a common practice in the contemporary fidelity

estimation literature, as (See [187] as a practical example).

We consider the performance of these three types of experimental protocol across a number

of comparative scenarios. In all cases, we compare the risk associated with a confidence level of

1− δ = 0.95.

As a baseline numerical experiment, we compare the performance of each method on 3-qubit

states, one with a GHZ stabilizer state, and the other a W state, each measured with a coarse

POVM over a budget of Stot = 630 measurements. Importantly, we reiterate that the optimized

experimental protocol, and all risk estimates, are computed without access to any information about

the experimental state. We compile these results in Table 3.1, and see that our scheme provides

a more efficient utilization of available experimental resources, providing clear improvement to the

risk estimate using the optimized protocol over the uniform protocol.

54

This scenario, in which each of 43 − 1 measurements have only two possible outcomes, is the

most similar to the typical application of the DFE method, and as such, we see less distinction

between the optimized protocol and the DFE-derived protocol. Indeed in both cases, we see that

the selected measurements are the same between the two methods, and only for the W state case

do we see a difference in the number of shots allocated to each measurement, leading to a slight

improvement in the risk estimate. Nevertheless, the fact that the proposed optimized is able to

accurately recreate the DFE-derived protocol is notable, as the optimization procedure itself is

initialized with the uniform protocol.

For a more complex example, we consider the same types of quantum states, but optimize

the budget of Stot shots over the set of 3
3 fine measurements, each with 23 outcomes. As described

previously, there are fewer settings for these fine measurements than in the coarse alternative, as

we model measurements with uninformative components as POVMs with components which are

redundant in the Z basis. However, even if the fine POVMs associated with, for example, Pauli

observables WIXZ and WZXZ are equivalent, the importance sampling rule which defines the DFE

protocol does distinguish them, i.e., Tr (ρWIXZ) ̸= Tr (ρWZXZ), and allocates a different number

of measurements to each. Maintaining a fair comparison between the DFE-derived experimental

protocol and the proposed scheme requires resolving this ambiguity, which we choose to do by

aggregating the shots allocated towards redundant measurements in our DFE-derived protocol.

The exception to this aggregation is the Pauli identity observable WIII, which we ignore entirely,

as such a measurement would never be carried out experimentally as already discussed.

As an aside, this is but one of many possible ways to resolve this ambiguity. For example,

one could instead average the number of shots allocated towards redundant measurements. Or, one

could consider only the non-redundant measurements which do not involve the identity operator.

In our numerical experiments, we have observed only minimal differences between these three

approaches, but it should be noted that very existence of this ambiguity demonstrates the difficulties

of cleanly reconciling a fine POVM with a DFE-derived protocol, with there are currently few clear

alternatives in the literature.

55

3-qubit GHZ State, Coarse Measurements, Stot = 630

Uniform DFE-Derived Optimized
Measurement Shots Shots Shots

IZZ 10 90 90
XXX 10 90 90
XYY 10 90 90
YXY 10 90 90
YYX 10 90 90
ZIZ 10 90 90
ZZI 10 90 90

Remaining 56
10 0 0

Measurements

Risk R̂ : 0.2723 0.0944 0.0944

3-qubit W State, Coarse Measurements, Stot = 630

Uniform DFE-Derived Optimized
Measurement Shots Shots Shots

IIZ 10 10 19
IXX 10 40 38
IYY 10 40 38
IZI 10 10 19
IZZ 10 10 19
XIX 10 40 38
XXI 10 40 38
XXZ 10 40 38
XZX 10 40 38
YIY 10 40 38
YYI 10 40 38
YYZ 10 40 38
YZY 10 40 38
ZII 10 10 19
ZIZ 10 10 19
ZXX 10 40 38
ZYY 10 40 38
ZZI 10 10 19
ZZZ 10 90 57

Remaining 44
10 0 0

Measurements

Risk R̂ : 0.2786 0.1552 0.1486

Table 3.1: Conventional vs. optimized protocols using coarse POVMs on 3-qubit GHZ and W
states. We can wee that our scheme provides a more efficient utilization of available experimental
resources, providing a lower value for the risk using the same volume of measurements. In this
example, we can see that the comparative effect increases with the complexity of the target state.

56

Because this is a scenario in which the traditional DFE method cannot not apply directly, we

see in Table 3.2 more pronounced improvement in the risk estimate using the optimized protocol,

particularly in the more complex W state. Furthermore, the optimized protocol reveals additional

measurements that may not be suggested by any underlying theory, as seen in the W state case.

In the final comparison, we consider a 5-qubit W state, again measured with a fine POVM.

It is in this example that we see the greatest comparative improvement among the three methods.

This is partially because as the size of the system increases, the fine POVM becomes more expres-

sive relative to the coarser alternative. In contrast to previous examples with the W state, there is

a greater degree of non-uniformity of the optimized protocol, as many measurements are only allo-

cated a single shot. This, along with the observation that the uniform allocation outperforms the

typically more sophisticated DFE-derived protocol, is consistent with current literature that states

that protocols with additional measurement settings often outperform more accurate estimates of

individual observables [136]. At the same time, there is still a clear advantage towards allocating the

majority of measurements towards a handful of particularly informative settings, even if these set-

tings are not considered “important” by the weighting function of the DFE method. Furthermore,

this is also a scenario for which the proposed optimization framework is particularly well-suited, as

the size of the optimization problem is considerably smaller in the case of a fine POVMs, as there

are altogether fewer kinds of measurements.

3.5.2 Comparison Across Noisy States

The above numerical experiment shows improvement in terms of the calculated minimax risk,

which is a bound on the estimation error when applied to measured outcomes, and as a result

does not consider the experimental state σ. However, we can verify these bounds empirically by

performing repeated numerical simulations of observed measurements and using each to evaluate

an estimate of the fidelity. In doing so, we demonstrate that not only does the optimization

procedure improve the risk produced by the minimax procedure, but consequently improves the

actual estimates of fidelity.

57

3-qubit GHZ State, Fine Measurements, Stot = 630

Uniform DFE-Derived Optimized
Measurement Shots Shots Shots

XXX 23 90 105
XYY 23 90 105
YXY 23 90 105
YYX 23 90 105
ZZZ 23 270 210

Remaining 22
23 0 0

Measurements

Risk R̂ : 0.2615 0.0823 0.0809

3-qubit W State, Fine Measurements, Stot = 630

Uniform DFE-Derived Optimized
Measurement Shots Shots Shots

XXX 23 0 81
XXZ 23 70 61
XZX 23 70 61
YYY 23 0 81
YYZ 23 70 61
YZY 23 70 61
ZXX 23 70 61
ZYY 23 70 61
ZZZ 23 210 104

Remaining 18
23 0 0

Measurements

Risk R̂ : 0.1582 0.1279 0.1041

Table 3.2: Conventional vs. optimized protocols using fine POVMs on 3-qubit GHZ and W states.
We repeat the same example with a more expressive set of measurements, and see that our optimized
protocol becomes more advantageous as the complexity of the problem increases.

58

5-qubit W State, Fine Measurements, Stot = 2430

Uniform DFE-Derived Optimized Uniform DFE-Derived Optimized
Measurement Shots Shots Shots Measurement Shots Shots Shots

XXXXZ 10 0 20 YYYZZ 10 0 82
XXXYY 10 0 1 YYZYY 10 0 20
XXXZX 10 0 20 YYZYZ 10 0 82
XXZZZ 10 100 22 YZZYZ 10 100 22
XXXZZ 10 0 82 YYZZY 10 0 82
XXYXY 10 0 1 YYZZZ 10 97 22
XXYYX 10 0 1 YZYYY 10 0 20
XXYYY 10 0 1 YZYYZ 10 0 82
XXZXX 10 0 20 YZYZY 10 0 82
XXZXZ 10 0 82 YZYZZ 10 97 22
XXZZX 10 0 82 YZZYY 10 0 82
XYXXY 10 0 1 YZZZY 10 100 22
XYXYX 10 0 1 ZXXXX 10 0 20
XYXYY 10 0 1 ZXXXZ 10 0 82
XYYXX 10 0 1 ZXXZX 10 0 82
XYYXY 10 0 1 ZXXZZ 10 100 22
XYYYX 10 0 1 ZXZXX 10 0 82
XZXXX 10 0 20 ZXZXZ 10 100 22
XZXXZ 10 0 82 ZXZZX 10 100 22
XZXZX 10 0 82 ZYYYY 10 0 20
XZXZZ 10 100 22 ZYYYZ 10 0 82
XZZXX 10 0 82 ZYYZY 10 0 82
XZZXZ 10 100 22 ZYYZZ 10 100 22
XZZZX 10 100 22 ZYZYY 10 0 82
YXXXY 10 0 1 ZYZYZ 10 100 22
YXXYX 10 0 1 ZYZZY 10 100 22
YXXYY 10 0 1 ZZXXX 10 0 82
YXYXX 10 0 1 ZZXXZ 10 100 22
YXYXY 10 0 1 ZZXZX 10 100 22
YXYYX 10 0 1 ZZYYY 10 0 82
YYXXX 10 0 1 ZZYYZ 10 100 22
YYXXY 10 0 1 ZZYZY 10 100 22
YYXYX 10 0 1 ZZZXX 10 100 22
YYYXX 10 0 1 ZZZYY 10 100 22
YYYYZ 10 0 20 ZZZZZ 10 423 110
YYYZY 10 0 20 172 Other

10 0 0
Measurements

Uniform DFE-Derived Optimized

Risk R̂ : 0.0986 0.1128 0.0711

Table 3.3: Conventional vs. optimized protocols using fine POVMs on a 5-qubit W state. We see
that our optimized protocol becomes more advantageous as the complexity of the measurement
scheme increases, and that even the uniform allocation outperforms the DFE-based protocol. We
also observe that the optimized protocol is less intuitive when fine measurements are used in the
larger problem.

59

These simulations are performed on a pure and totally random 3-qubit state to which varying

levels of depolarizing noise are added. As before, we consider the risk associated with a confidence

level of 0.95. For each level of depolarizing noise, we simulate 5000 sets of measured data, using a

budget of Stot = 1250 shots for each instance. This budget was selected to ensure that the risk is

less than 0.10 in the optimized case.

For each level of depolarizing noise in Figure 3.1, we plot a distribution of measured values for

the fidelity along with the true fidelity with the target state. For each experimental protocol (DFE-

derived in blue and optimized in orange) we plot a minimax confidence interval around the true

fidelity, as well as an empirically constructed confidence interval that is selected to have minimum

width while capturing 95% of the estimates. As expected, the optimized protocol both shortens

the length of the minimax confidence interval and improves the estimates of the fidelity. We make

particular note of the fact that because the calculated minimax risk is minimized for a given target

state with no reference to observation data, the width of the minimax confidence interval is equal

across the noise levels.

3.6 Discussion

3.6.1 Construction of DFE-Adversarial Quantum State

The experimental protocol suggested by the DFE method is commonly used, but as we have

seen in our numerical results, can underperform when used alongside other methods of statistical

analysis. However, it is also useful to consider a target state which in some sense has worst-case

performance when measured with the DFE analysis, but becomes typical under our optimized

protocol.

To construct this adversarial state, we first consider a 3-qubit pure state ρ1 which is strongly

aligned in the Z basis, in the sense that the DFE importance weighting distribution Tr
(
ρWk/

√
d
)2

is nonzero only for the Pauli observables IIZ, IZI, IZZ, ZII, ZIZ, ZZI, and ZZZ. While

these 8 Pauli observables generate distinct coarse POVMs, the corresponding fine POVMs are

60

Figure 3.1: Simulated fidelity estimates across noise levels compared to a DFE-based protocol
(orange). Across all noise levels, we see that the optimized experimental protocol (blue) shows
clear improvements in both the width of the interval and the fidelity estimates themselves.

not distinguishable (assuming the experimental system is similarly aligned in the Z basis). In

effect, a state with this structure would correspond to a DFE protocol which (correctly) allocates

measurements towards the single POVM for Pauli observable ZZZ.

We then consider a second 3-qubit pure state ρ2 whose DFE importance weighting is more

evenly distributed across all 64 Pauli observables, which we construct as an entirely pure random

state. We then combine these two states to form ρ3, which will continue to haveWZZZ as the “most

important” observable, but has a nonzero weighting for the remaining observables as well.

To construct the adversarial state ρ3, it is important that we not simply define ρ3 as a convex

combination of ρ1 and ρ2, as this would result in a “mixed” state which is not pure. Instead, we

first define ρ1 = |ψ1⟩⟨ψ1| and ρ2 = |ψ2⟩⟨ψ2|, where |ψ1⟩ and |ψ2⟩ are state vectors in the Hilbert

61

space of the 3-qubit system. With this, we can construct |ψ3⟩ = √p|ψ1⟩ +
√
1− p|ψ2⟩ for some

p ∈ [0, 1] (we take p = 0.75 in this example) followed by ρ3 = |ψ3⟩⟨ψ3|. This ensures that the

“combined” (but not mixed) state ρ3 is pure and has the desired properties.

We can now compare the risk produced by the minimax method on ρ3 with the DFE protocol

and our optimized protocol, demonstrating the poor performance of the minimax method when the

majority of shots are allocated towards WZZZ as suggested by DFE. As seen in Figure 3.2, the pro-

tocol suggested by DFE proposes using over 4× as many measurements for the WZZZ POVM than

the optimized protocol, which instead distributes shots much more evenly between measurements.

Interestingly, the DFE protocol in this case performs even more poorly than a uniform protocol,

which is not the case for a typical random 3-qubit state (see Table 3.2).

Figure 3.2: Comparison of DFE-based allocation and optimized allocation for an adversarial 3-
qubit state. Although the DFE importance sampling would suggest that the Pauli observable
WZZZ should be allocated the greatest number of measurements, the more performant optimized
experimental protocol instead distributes shots much more evenly between measurements.

3.6.2 Optimal Experimental Protocol as an Importance Weighting

One of the key features of the DFE method is that the relative probability an individual Pauli

observable being measured has utility beyond the fidelity estimate itself. In particular, the relevant

62

importance sampling rule is often used in other problem contexts [187], and being able to derive a

“measurement order” for a given set of Pauli observables is useful more generally [98]. However,

its use as an importance sampling rule is restricted to cases where the relevant Pauli observable is

measured through a coarse POVM.

In contrast, we suggest (although do not prove rigorously) that the relative allocation of shots

in an optimized experimental protocol, when generated over the full set of fine POVMs, can be

used as a more sophisticated importance weighting in the context of the minimax fidelity estimation

procedure. For the resulting allocation to truly define the most informative measurements for the

fidelity of a fixed state ρ, one would have to show that taking the N measurements with the

highest shot counts provides the lowest risk estimate of the fidelity among all other subsets of N

measurements. Naturally, this is combinatorially infeasible for all values of N , and so we show this

property empirically for N = 3, 4, 5 for a random 3-qubit target state ρ, for which there are a total

of 33 possible fine POVM measurements.

Taking the adversarial state, we generate an optimal experimental protocol for the full set

of measurement settings with a budget of Stot = 1000 shots, and sort them in Table 3.4 according

to the number of measurements allocated towards each. In Table 3.5, we consider all subsets of

3, 4, and 5 measurement settings, and present the five subsets of each cardinality which, when

optimized with their own budget of 1000 shots, produces the lowest risk when evaluated by the

minimax method. For each size of subset, we see that the subsets of measurements with the lowest

risk estimates are indeed those which are allocated the most shots in the full experimental protocol.

Interestingly, we observe that the individual measurements within these subsets are not necessarily

allocated in the same way as in the original optimized protocol. In either case, however, this suggests

that the settings which are allocated by the optimized experimental protocol are indeed the most

informative for the fidelity estimate, and that for these small subsets of the original measurement

settings, that our original allocation could indeed be considered as an importance weighting for the

minimax method.

63
3-qubit Random State, Fine Measurements, Stot = 1000

Optimized Optimized
Measurement Shots Measurement Shots

ZYX 115 XZZ 28
YYY 97 ZZY 24
ZXZ 78 XZY 23
XXX 75 XYY 22
ZZX 69 XZX 21
YYX 65 YXZ 18
XYZ 54 YZX 18
YZY 45 YXY 16
YXX 43 XXY 10
ZYY 39 ZXX 5
XXZ 34 XYX 4
ZXY 33 ZYZ 4
ZZZ 30 YYZ 0
YZZ 30

Risk R̂ : 0.1114

Table 3.4: Optimized protocol for a pure 3-qubit target state considered in Table 3.5. Individual
measurements are sorted by the number of shots allocated towards each.

3.6.3 Comparison to Maximum-Likelihood Estimation

The Maximum-Likelihood Estimation (MLE) method remains a common approach to fi-

delity estimation, despite the limitations of a more expensive reconstruction process and the lack

of a rigorous error bound. The objective of the MLE method is reconstruction of an approximated

experimental state σ̂ which is most likely to have generated the set of observations {o(ℓ)k }. To sim-

plify computation, we consider the collection of observations from the Lth measurement as a vector

of frequencies f
(ℓ)
k for each of Nℓ outcomes. In cases where f

(ℓ)
k = 0, we apply a hedging procedure

to improve the quality of the result [17]. Similarly, we consider the allocation of shots between

measurement settings as a weighting wℓ which instead determines the probability of performing a

measurement ℓ. With this framework, the log-likelihood function is given as

log l(σ|f) = −
L∑

ℓ=1

Nℓ∑

j=1

wℓf
(ℓ)
k log

(
wℓ p

(ℓ)
σ (k)

)
, (3.16)

64

3 Measurement Subsets with Lowest Risk

Measurement Set Shot Allocation Risk R̂

YYY; ZXZ; ZYX 407; 276; 316 0.3743
XXX; YYY; ZYX 261; 414; 325 0.3856
YZY; ZXZ; ZYX 325; 249; 424 0.3882
YYX; YZY; ZXZ 335; 299; 364 0.4007
YYY; ZYX; ZZY 313; 435; 250 0.4017

4 Measurement Subsets with Lowest Risk

Measurement Set Shot Allocation Risk R̂

XXX; YYY; ZXZ; ZYX 183; 334; 178; 303 0.3290
YYY; ZXZ; ZYX; ZZY 325; 201; 317; 155 0.3326
YYY; ZXZ; ZYX; ZZX 354; 229; 227; 188 0.3353
XXY; YYY; ZXZ; ZYX 154; 307; 204; 333 0.3398
YYY; YZY; ZXZ; ZYX 202; 242; 261; 293 0.3408

5 Measurement Subsets with Lowest Risk

Measurement Set Shot Allocation Risk R̂

XXX; YYY; ZXZ; ZYX; ZZX 172; 277; 152; 254; 143 0.2934
XXX; YYY; ZXZ; ZYX; ZZY 185; 272; 117; 274; 150 0.2972
YYY; YZX; ZXZ; ZYX; ZZX 284; 161; 187; 227; 138 0.2997
XXX; YYY; YZX; ZXZ; ZYX 121; 273; 141; 218; 244 0.3003
XXX; YYY; YZY; ZXZ; ZYX 152; 267; 132; 187; 260 0.3013

Table 3.5: Subsets of measurements which, when optimized, produce the lowest risk for the state
described in Table 3.4. Optimized expeerimental protocols for each subset are generated with a
budget of Stot = 1000 measurements. Note that in all three presented cases, the measurement
subset with the lowest risk uses the same settings as those with the greatest allocation in the fully
optimized experimental protocol, although we note that in general, the allocation within the subset
does not match the allocation in the full protocol.

65

and we take σ̂ = argminσ log l(σ|f). Of note is that this procedure is performed without reference

to the target state ρ. This estimate can be used immediately to define a measure of the fidelity

between the target state ρ and the approximated experimental state σ̂, given by F̂ = Tr(σ̂ρ). To

calculate the fidelity estimate with MLE for a given experimental protocol then, we first simulate

a set of outcomes for the measurement scheme, reconstruct a tomographic approximation of the

target state according to the above minimization problem, and then compute the fidelity between

the target state and the reconstructed state. The optimization procedure which generates this

approximation is implemented in cvxpy.

In principle, the MLE-based fidelity estimation procedure can be applied to any measurement

protocol, even if they are most commonly applied to those with a uniform allocation of measure-

ments. A natural question, then, is how an optimized experimental protocol performs compared

to conventional alternatives when estimates are created with this MLE-based analysis, rather than

the minimax analysis for which it was optimized.

In the following numerical example, we measure our adversarial state defined in Section 3.6.1

by Stot = 1250 observations via fine POVMs, for which the experimental state σ is generated by

adding 10% depolatizing noise to ρ. By considering this adversarial state, we effectively maximize

the performance difference between our optimized protocol and conventional alternatives, which

in principle should highlight the effect of our optimization procedure on the MLE performance as

well.

We reiterate that this MLE procedure does not inherently provide an error bound on the

fidelity estimate. To provide a reasonable comparison to the minimax method, we use the common

approach of Monte-Carlo resampling to compute some measure of uncertainty in the MLE fidelity

estimate. This involves taking the original set of outcomes which were used to reconstruct the

state, and using the relative frequency of each to resample a new set of “synthetic” outcomes.

These synthetic outcomes are then used in a new MLE reconstruction, and therefore a new fidelity

estimate. Naturally, this relative frequency may diverge considerably from the ground-truth distri-

bution, which may introduce considerable bias in ensuing estimates. Nevertheless, we repeat this

66

resampling process N = 5000 times, from which we can generate empirical confidence intervals of

the original fidelity estimate.

We first consider a DFE-based protocol, and compare in Figure 3.3 the difference between the

respective error estimates and confidence intervals between the MLE approach and the worst-case

minimax method. As expected from the results of [153], the optimal minimax method provides a

more conservative bound on the error estimate. Furthermore, the resampling procedure is clearly

highly sensitive to the initial set of outcomes, making it difficult to provide a reliable error bound

via the MLE method. For this particular set of outcomes, the empirical confidence interval does

not even contain the true fidelity.

We then generate an optimized experimental protocol, initialized with the above DFE-based

protocol, and compare the results in Figure 3.4. In this example, we can see that the width of the

minimax confidence interval has decreased, as expected. We also observe that the empirical MLE

confidence interval is roughly the same length, but now overlaps the true fidelity.

However, the comparison between Figures 3.3 and 3.4 is questionable at best, as clearly the

quality of the resampled data is far more important to the MLE fidelity estimation analysis than

the allocation of the original measurements. This is a known shortcoming of the Monte Carlo

approach, and in turn a limitation of the MLE method, as there is no associated rigorous risk

estimate. For the purposes of demonstration, however, we know exactly the state σ from which we

generate our initial set of outcomes. This means that we can generate additional sets of outcomes

directly from the ground truth, and consider the MLE fidelity estimation procedure paired with a

ground-truth empirical confidence interval.

We use the same 3-qubit adversarial state from Section 3.6.1, and generate N = 5000 sets of

outcomes across various noise levels. We then generate fidelity estimates with both the MLE and

minimax procedures, and present the distribution of each set of estimates in Figure 3.5, along with

the minimax confidence interval, an empirical confidence interval of the minimax fidelity estimates,

and an empirical confidence interval of the MLE fidelity estimates.

As seen previously in Figure 3.1, the minimax confidence interval is exactly the same across

67

Figure 3.3: Comparison of minimax confidence interval to empirically resampled MLE interval for
a DFE-based protocol. As expected, we see that the minimax method provides a more conservative
bound on the error in the fidelity estimate, but the MLE confidence interval does not contain the
true fidelity at all.

Figure 3.4: Comparison of minimax confidence interval to empirically resampled MLE interval
for our optimized protocol. Compared to the conventional DFE-based protocol, the optimized
protocol analyzed with MLE results in a marginally improved risk estimate. Note, however, that
this demonstration is performed on only a single set of observables, and does not represent a
necessary consequence of optimizing the experimental protocol.

noise levels, and consequently the distribution of fidelity estimates is similar across noise levels

(aside from the 1% noise level case, in which the upper limit of F̂ = 1.0 is achieved). In contrast,

68

the variance of the MLE fidelity estimate distribution decreases as the noise level does, as shown

by the associated confidence interval. At the same time, the distribution of MLE fidelity estimates

is consistently less accurate than the minimax alternative.

We also observe in this example that at each noise level, the width of the MLE confidence

interval decreases as a result of the optimization procedure. Although Figure 3.5 demonstrates this

for only a single set of ρ and σ, we note that these results persist across other randomly constructed

target states and noise models for σ as well. This is a somewhat unexpected result, as the criterion

with which our optimized experimental protocol is generated is entirely unrelated to the width of

the MLE confidence interval, which itself is constructed without reference to the true target state.

It further suggests that the measurement allocation discovered by our optimization procedure is

based on some fundamental, yet obscure property of the underlying state.

3.7 Conclusion

The optimal minimax method is able to provide rigorous error bounds on the estimate of

fidelity for a given measurement protocol. Because this method computes these error bounds in

the absence of any experimental data, it permits numerical optimization over the different available

measurement settings in such a way that experimental resources can be allocated more intelligently

than by conventional techniques. We see that this approach not only reduces the calculated minimax

risk in quantum fidelity estimation, but also leads directly to improvements in the fidelity estimates

themselves.

There are many augmentations to the optimization framework which could be made so that

the resulting experimental protocols have further utility in practical implementation. As one ex-

ample, measurement sparsity is hugely important in an experimental context, and should often

be prioritized even beyond the inherent sparsity obtained from using fine POVM measurement

settings. This is simply because switching measurements is a particularly expensive and time con-

suming part of the verification process. With the understanding that even small changes in the

measurement protocol can severely improve the resulting fidelity estimator, modifications to the

69

Figure 3.5: We compare distributions of fidelity estimates generated by the minimax procedure
and an MLE procedure. We also plot the confidence interval provided by the minimax method
around the average minimax fidelity estimate, and an optimal empirical confidence interval for
each distribution .

minimization problem in Equation (3.10) to directly encourage sparsity in the vector of shot counts

have the potential to greatly improve efficiency in verifying modern quantum devices.

Finally, the results of this chapter demonstrate the potential of methods which improve the

results of other methods of statistical analysis, most notably MLE. In context of Equation (3.16),

this is equivalent to selecting an optimal weighting of measurements wi which most improves per-

formance along some performance metric. This alternate problem context poses a number of

70

challenges. In contrast to the proposed work, in which the relevant method of analysis provides

a straightforward criterion in the risk R̂, there is no directly equivalent metric for MLE, although

metrics which measure uncertainty in the reconstruction [116] or the proximity between the target

and experimental states [136] should suffice. Furthermore, such a method would require some mea-

sure of this criterion prior to the collection of experimental data. As is the case for the minimax

method, this could be addressed through some form of worst-case error analysis, or perhaps consider

Equation (3.16) which fundamentally includes uncertainty in the frequencies fk for each POVM. In

either case, MLE is an already common methodology for quantum state tomography, and so any

technique that describes an associated experimental protocol could see similar widespread use.

Part II: Geometry Processing for Physics Simulations

Chapter 4

Introduction to Part II

Our primary motivation to pursue problems in computational geometry is multiphysics sim-

ulation, in which the interactions between geometrically complicated shapes are modeled on a

computational domain through the interaction of governing PDEs. A practical challenge for such

problems is their initialization, as the geometric shapes of interest are rarely defined in a way that

is immediately compatible with the physics solver used. For example, in frameworks like the multi-

material Arbitrary Lagrangian-Eulerian method, it is not the shapes themselves which are subject

to the governing equations, but rather some kind of derived data [11, 121]. Most commonly, this

data is taken to be the volume of the overlap between the shape and each computational cell in the

simulation, but other type of geometric data can be useful as well, such as more general geometric

moments [40].

We address this challenge through the two specific subproblems depicted in Figure 4.1: Shap-

ing, and Interface Reconstruction.

Figure 4.1: Material Interface Reconstruction as an inverse problem for Shaping

73

We refer to the process of collecting volume fraction data from arbitrary geometric input as

shaping [180]. As a motivating example in 2D, we consider a material covering a domain D ⊂ R
2,

and a computational cell covering a domain C ⊂ R
2. Naturally, the volume fraction V for material

D within C is described by the integral

V =
1

|C|

∫

D∩C
dx. (4.1)

While this can be solved directly for simple kinds of shapes, direct evaluation over intersecting

regions is difficult even for complex numerical integration schemes [58]. A less accurate, but con-

siderably more flexible approach is to instead sample the computational cell C with quadrature

nodes, and evaluate

V =
1

|C|

∫

C
ID(x) dx, (4.2)

where the indicator function ID(x) is typically easier to construct and evaluate for a general shape

D.

However, the reliance on an indicator function makes these methods susceptible to a very

common category of geometric errors. In cases where the underlying model is not watertight, in the

sense that the numerical specification of the shape contains gaps and/or overlap between adjacent

components, the precise definition of an indicator function is mathematically dubious at best, and

computationally disastrous at worst.

It is in this context that we introduce the primary mathematical instrument of the first and

second chapters of Part II, a Generalized Winding Number which is capable of providing a rigorous

definition of “containment” for objects which otherwise have no volumetric interior. In practice,

we simply substitute

V =
1

|C|

∫

C
ID(x) dx =

1

|C|

∫

C
round (wD(x)) dx, (4.3)

and our shaping algorithm becomes robust to categories of input geometry which would otherwise

be completely inapplicable. The principle contribution of these first two chapters in Part II is

the definition of algorithms for the efficient and accurate calculation of the generalized iwnding

74

number for common types of explicitly defined geometric objects, respectively parameteric curves

in 2D and trimmed NURBS surfaces in 3D. The content of Chapter 5 is largely based on the

work Robust Containment Queries over Collections of Rational Parametric Curves via

Generalized Winding Numbers, published in ACM Transactions on Graphics in July 2024 [163].

The content of Chapter 6 is based on the forthcoming manuscript Robust Containment Queries

over Collections of Trimmed NURBS Surfaces via Generalized Winding Numbers,

which can currently be found on arXiv [169].

We now turn our attention to the second half of Figure 4.1, the problem of material interface

reconstruction. While many methods of multiphysics simulation can proceed entirely from specified

moment data, there are many contexts in which it is necessary to explicitly reconstruct the geometric

object whose data matches that provided by the simulation. Principal among these is visualization,

which is essential for a thorough analysis of the results of such a simulation. Other times, the

reconstruction method is essential for accurate simulation of the physics. For example, the forward

motion of material can be calculated through the backward motion of each computational cell,

computing geometric data for the overlap of the current reconstruction (potential via shaping) and

the backtraced cell.

In many ways, the reconstruction problem is fundamentally underdetermined, as there are

many distinct shapes which are defined by the same geometric data. As a result, nearly all re-

construction methods require restricting the space of representable objects to make the necessary

optimization problem tractable, most commonly by requiring that the reconstructed interface have

some particular form. For example, the cartoon in Figure 4.1 performs its reconstruction using

linear elements. In any case, the reconstructed interface is nearly always an approximation of the

ground-truth geometry.

Nevertheless, recent advances in the interface reconstruction problem are very concerned with

increasing the accuracy of the reconstruction through an optimization strategy which can consider

more complex interfaces as candidate reconstructions. However, methods in the literature which

do so in 3D are, at the time of writing, predominantly limited by the requirement of considering

75

multiple computational cells simultaneously. This is the motivation for the third chapter in Part

II, where we devise a strategy for the 3D reconstruction problem that is capable of generating more

complex intersections through the consideration of multiple linear elements simultaneously. In con-

trast to contemporary approaches, our method is capable of creating these complex reconstructions

using only the moment data from a single computational cell. In total, the content of Chapter 7 is

based on the forthcoming work Multi-Plane Moment-of-Fluid Interface Reconstruction in

3D which can currently be found on ResearchGate [166].

As suggested by Figure 4.1, one can consider interface reconstruction to an inverse problem

for shaping: one is concerned with generating aggregated data from the geometric objects occupying

a computational cell, and the other requires generating some approximation of the geometric object

from the collection of data. However, the dominant theme in our approach to each problem is that

our methods are both robust and reliable, in the sense that they can operate on a wide variety of

imperfect problem scenarios and fail gracefully and predictably in cases where an exact solution

cannot be found.

Chapter 5

Generalized Winding Numbers for Rational Parametric Curves

Figure 5.1: Evaluation of 2D point containment queries is often hindered by undesirable, but often unavoid-
able features of the bounding geometry such as non-manifold or non-watertight edges (left). This causes
catastrophic errors for traditional approaches to deciding containment, in particular those that use ray cast-
ing (middle left). Because the field of generalized winding numbers degrades smoothly around geometric
errors, they are well-suited for use in robust containment queries (middle right). In this chapter, we present
a framework for evaluating exact generalized winding numbers for arbitrary collections of curved objects, as
well as a novel point-in-curved-polygon algorithm that facilitates their efficient calculation (right).

In collaboration with David Gunderman and Kenneth Weiss

77

5.1 Abstract

Point containment queries for 2D regions bound by watertight geometric curves, i.e., closed

and without self-intersections, can be evaluated straightforwardly with a number of well-studied al-

gorithms. When this assumption on domain geometry is not met, such methods are either unusable,

or prone to misclassifications that can lead to cascading errors in downstream applications. More

robust point classification schemes based on generalized winding numbers have been proposed, as

they are indifferent to these imperfections. However, existing algorithms are limited to point clouds

and collections of linear elements. We extend this methodology to encompass more general curved

shapes with an algorithm that evaluates the winding number scalar field over unstructured collec-

tions of rational parametric curves. In particular, we evaluate the winding number for each curve

independently, making the derived containment query robust to how the curves are arranged. We

ensure geometric fidelity in our queries by treating each curve as equivalent to an adaptively con-

structed polyline that provably has the same generalized winding number at the point of interest.

Our algorithm is numerically stable for points that are arbitrarily close to the model, and explicitly

treats points that are coincident with curves. We demonstrate the improvements in computational

performance granted by this method over conventional techniques as well as the robustness induced

by its application.

5.2 Introduction

In the fields of computer graphics, Computer Aided Geometric Design (CAGD) and Computer

Aided Engineering (CAE), it is common for geometric objects to be expressed using a boundary

representation (B-Rep). We consider these B-Reps to be defined via non-uniform rational B-spline

(NURBS) curves in 2D. Such objects are invaluable in the design of CAD models, as they allow

for precise geometric control of the object’s boundary [132]. However, it can still be desirable in

many contexts, such as in animation or simulation, to treat the interior volume of these objects

explicitly [112].

78

Figure 5.2: Geometric errors can be visually imperceptible, but can still cause a shape to have no
topological interior.

Such a task motivates development of the containment query, a geometric predicate that

returns whether an arbitrary spatial location is contained within an arbitrary shape. The rapid

evaluation of containment queries is quite well understood for many classes of shapes, such as

polygons and regions bounded by Bézier curves [120, 24, 129]. However, such methods assume

the boundary is watertight, having no gaps between connected components. In reality, the vast

majority of B-Reps are created by hand within some form of CAD software, leading to so-called

“messy” CAD geometry.

A straightforward source of these problems is human error during design or construction, but

more subtle issues can be introduced through varying tolerances within and between different soft-

ware tools. This results in boundary models with human-imperceptible, but numerically significant

gaps and overlaps between individual components of the boundary [111] (see Figure 5.2). Even

in situations prioritizing visibility over strict geometric fidelity, such as in computer graphics and

animation, care must be taken to ensure that these errors are properly accounted for. For example,

the dynamic planar map heuristic used by Adobe Illustrator’s Live Paint Bucket tool allows users

to set fills for closed regions bounded by intersecting collections of Bézier curves and exposes a

global threshold parameter to connect gaps between curves in the collection [5].

As an additional class of motivating examples, we consider applications in multiphysics sim-

ulation, for which containment classification errors can lead to cascading problems and incorrect

79

results. The mathematical underpinnings of containment within non-watertight shapes is dubious,

which leads to a tenuous theoretical foundation for established methods that assume geometric

continuity. This is problematic, as errors are frequently inconsistent within local regions, with even

arbitrarily close points receiving different classifications. More practically, these errors can result in

unexpected and fatal errors in simulation software, wasting computational resources and developer

time [148].

At the same time, physical applications often prevent approximating curved geometry with

piecewise linear segments. Although this would allow for treatment of the messy—but now linear—

geometry with established methods, such an approximation can produce sizable errors in the rele-

vant numerical method [154]. As a concrete example, multimaterial Arbitrary Lagrangian-Eulerian

(ALE) methods require additional preprocessing to initialize the volume fraction of each material

in a computational cell [69, 11]. This, in turn, necessitates classifying each point in a quadra-

ture rule along the background grid as inside or outside the volume bounded by the corresponding

shape [180]. It is critical that this identification takes into account the full curvature of the bounding

geometry, as piecewise linear approximations can cause quadrature points near material boundaries

to be misclassified, unpredictably compounding the error in the calculation.

Such geometric errors can be resolved with techniques in surface repair [113, 127, 16], which

alter the B-Rep itself to an approximated surface that lacks these imperfections. However, doing so

by hand can be impractical for the typical number of imperfections in such a model, and automated

procedures during geometry pre-processing can inadvertently remove important model features.

Instead, we require a containment query that is robust to such artifacts, in the sense that an

appropriate inside/outside classification is always returned, independent of size and frequency of

these boundary errors.

To address these concerns, we present in this chapter three principal contributions:

• We extend the theoretical framework of generalized winding numbers [79] to the context of

an unstructured collection of 2D rational parametric curves, from which one can derive a

80

robust containment query that indicates whether an arbitrary point should be considered

interior to non-watertight geometry.

• We address the issue of defining and evaluating generalized winding numbers for points

that are coincident with the boundary. This discussion lies outside the scope of much of

the existing literature, as such points require unique consideration in the context of curved

geometry.

• We provide a novel algorithm for evaluating integer winding numbers with respect to curved

geometry, which is the principal component of our technique for evaluating generalized

winding numbers on such shapes. We demonstrate that this calculation is robust to non-

watertight geometry and considerably more performant than state-of-the-art techniques.

Altogether, these contributions allow for robust containment queries of objects implied by messy 2D

CAD geometry, composed of collections of parametric curves (see Figure 5.1). Our algorithm has

been implemented in Axom, a BSD-licensed open-source library of Computer Science infrastructure

for HPC applications [23].

5.3 Background and Related Work

Even in the ideal and watertight setting, methods of evaluating containment vary wildly

depending on the numerical representation of the bounding geometry. As simple examples, the

operation can be performed trivially for axis-aligned quadrilaterals through the evaluation of in-

equalities, for spheres by computing a distance to the center, and for triangles using Barycentric

coordinates. More complicated procedures are necessary for point containment in arbitrary poly-

gons [64]. These algorithms can generally be broken down into two categories (see Figure 5.3).

Ray Casting algorithms determine containment by extending a ray from the specified query

point out to infinity, and counting the number of times the ray intersects the domain boundary to

produce a crossing number [160]. As a point moves along this ray, it will alternate between interior

and exterior, and therefore an odd (even) crossing number indicates the point is interior (exterior).

81

+1

-1

+1

+10

0

Figure 5.3: Given an arbitrary query point, containment can be determined with a ray casting
algorithm that counts (signed) intersections between the polygon and a ray extending from the
query (left), or a winding number algorithm that counts revolutions of the curve around the query
(right).

Computing intersections between the given ray and the linear edges of a polygon can be done very

efficiently, with many graphics processing units (GPUs) having dedicated ray-tracing cores that

can perform the operation massively in parallel [185]. However, these methods are sensitive to

the specific ray that is extended, needing to account for special cases when the ray intersects a

polygon vertex or entire edge, which can be unnecessarily more costly [41, 162]. Winding number

algorithms are a class of algorithms that are more indifferent to these issues, and, as such, are

the type from which we derive our proposed method. In a winding number algorithm, we instead

count the number of revolutions around the query point made by a particle traveling on the domain

boundary [70]. This value can be considered a generalization of the crossing number, and can be

used to determine containment with the same even-odd rule. By virtue of not being dependent on

any particular extended ray, these algorithms implicitly handle edge-cases that are problematic for

ray casting. This means even in the context of simple, watertight geometry, such algorithms can

be considered a more robust approach to containment queries.

Containment of arbitrary points in more general curved shapes is a much more difficult prob-

lem, and has been studied extensively in the context of 2D vector graphics. As an example, we refer

82

to the process of linearization, in which a curve is approximated by connected linear segments, an

approach that is fairly common in both modern graphics engines and physics codes. In the former,

information about the targeted display can be leveraged to ensure that the approximating polyline

is constructed with sufficiently high resolution such that it is indistinguishable to a viewer [88].

Combined with the fact that the polyline must be rendered with some predetermined thickness, it

is therefore theoretically possible (although rarely enforced) for containment queries on linearized

watertight geometries on a rendered display to have no observable misclassifications.

On the other hand, this type of polyline approximation of curved geometry is known to cause

severe and often unexpected errors in the modeling of physical systems through PDEs and finite

element analysis [154]. This is a particular problem in the case where points of interest are allowed

to be placed arbitrarily close to the curve, as then no guarantee can be made as to how many

refinements in the approximation are necessary to achieve perfect geometric fidelity. In place of

such a linearization, the use of NURBS to represent boundaries in a finite element analysis has

been quite successful in reducing or even eliminating geometric error [154, 155]. As a result of this,

we consider operating directly on curves without any approximation to be a necessary component

of our proposed algorithm so as to preserve the accuracy of an underlying numerical method.

We similarly desire an algorithm that can reach this level of geometric fidelity for a very

general class of curves. For example, cubic Bézier curves are the highest order required by postscript

and SVG formats, as the level of detail they afford is typically sufficient for design applications.

However, applications in computational multiphysics can necessitate an algorithm that works for

rational Bézier curves of arbitrary order. This is because the NURBS shapes that are used by more

sophisticated modeling software can always be decomposed into a collection of (in principle arbitrary

order) rational Bézier primitives through the process of Bézier extraction [132, 173]. However as

we will see, the proposed algorithm is ultimately indifferent to the order and/or rationality of the

curve in question.

Containment within regions defined by Bézier curves has also been studied in the context

of 2D parametric trimming curves for 3D NURBS surface patches. In this sub-problem, it must

83

be determined if a point in the 2D parameter space of the 3D surface is contained within the

(often, but not necessarily watertight) trimming curves. Because this and other contemporary 2D

containment problems are frequently solved with ray casting algorithms [111], we note that they can

largely be divided into two categories. In the algebraic approach, intersections between rays and

arbitrary curves can be computed using typical root-finding techniques in parameter space [129],

although standard bisection and gradient descent methods can only identify at most a single point of

intersection. In contrast, geometric approaches take place in physical space, decomposing the curve

into subcurves until intersections with the ray can be identified [46]. The current state-of-the art

method, Bézier clipping [150, 120], lies at the intersection of these two approaches, where recursive

algebraic subdivision is accelerated using the convex hull property of a Bézier curve. However,

such methods are known to possibly report incorrect intersections and suffer from inefficiency in

the presence of multiple spatially equivalent intersection points [42].

These issues are worsened by geometric errors present in the shape. As an example, if the

arbitrary ray is by chance extended through a very small gap in the model, then the point must

be classified as “exterior” despite this being unintuitive and contrary to the intentions of the mesh

designer. Non-manifold edges in a shape are similarly problematic for ray casting methods. These

issues can be somewhat mitigated by extending several rays and taking a consensus, but such ap-

proaches impose an additional computational burden while still producing noisy and potentially

inconsistent classifications for nearby points [123]. We now show that, in addition to being indiffer-

ent to the specific edge cases introduced by ray casting, winding number algorithms can be extended

such that they are also robust to more general issues introduced by non-watertight, non-manifold,

curved geometry.

5.4 Generalized Winding Numbers

The generalized winding number is an extension of the standard integer-valued winding num-

ber to (potentially) non-watertight regions. While integer winding numbers partition the enclosed

regions of a domain, the generalized winding number generates a harmonic scalar field that smoothly

84

degrades in the presence of discontinuities and self-intersections. This allows for the calculation of

robust containment queries in the presence of messy geometry. As an example, a simple rule for

handling the fractional values that result from imperfections in the bounding geometry is to round

them to their nearest integer.

Such generalizations of winding numbers have recently shown great utility in geometry pro-

cessing applications. In the context of both (linear) triangle meshes [79] and point clouds [10],

the resulting inside/outside classification can be used to generate volumetric triangle/tetrahedral

meshes out of completely unstructured geometric data. Additionally, the smooth degradation of

the winding number field naturally introduces desirable locality properties, which in turn lead to

more robust and performant algorithms in, for example, exact mesh booleans [175]. More recently,

these particular winding number algorithms have been used in the context of immersogeometric

analysis to simulate fluid flow around geometric objects defined by unstructured point clouds [8]. It

is speculated in [58] that one could extend the calculation of generalized winding numbers by utiliz-

ing their own novel quadrature schemes for such objects [59], but preliminary tests of this approach

are limited by the accuracy of numerical integration. Despite this recent surge in use, methods that

compute exact generalized winding numbers for more general curved geometric objects are, to our

knowledge, currently absent from the literature.

Nevertheless, the problem of computing generalized winding numbers for curved shapes has

close analogues in the fields of both computer graphics and boundary integral equations. In the

former, a connection can be drawn to diffusion curves, a primitive in vector graphics that also pro-

duces a scalar field defined by the solution of a differential equation with respect to boundary curves

(albeit with different data prescribed on the curve) [79]. These applications have the advantage of

being solved on a grid generated by a rasterized domain, meaning that a global solution can be

obtained efficiently using a geometric multi-grid method [125]. [144] recently introduced a grid-free

approach in which random walks and projections onto curved geometry are used to solve certain

classes of PDEs, including that which implicitly defines the generalized winding number, focusing

on improving speed and locality at the cost of some degree of accuracy and consistency. Within the

85

context of boundary integral equations, calculating winding numbers is a special case of the more

general problem of integrating double layer potentials with a constant density function. However,

such algorithms are typically applied to closed domains with simpler (although still curved) types

of geometry, precluding general use on arbitrary, messy CAD models [90]. Furthermore, our pro-

posed algorithm relies exclusively on geometric principles, eliminating the need to use costly and

potentially inaccurate quadrature schemes.

We begin by reviewing the formal description of a generalized winding number in R
2. Given an

oriented curve Γ ⊂ R
2 and query point q ∈ R

2 \Γ, the winding number w describes the (potentially

incomplete) number of times the curve travels counterclockwise around the point. In the case

where Γ is a closed curve, the scalar field wΓ(q) is integer-valued, and induces a partition of R2 that

can be interpreted as containment in the region bounded by Γ. In the following discussion, it is

notationally convenient to assume that the query point is located at the origin, and that the curve

Γ has been appropriately translated by q. The scalar field is invariant to such global translations,

and so the winding number of Γ at q, wΓ(q), is identical to the winding number at the origin after

translating the curve, wΓ−q(0).

When the curve is piecewise linear with Γ = ∪iLi, the winding number at q can be computed

as the sum of signed angles θi subtended by each linear component Li, given by

wΓ−q(0) :=
1

2π

∑

i

θi. (5.1)

Furthermore, the winding number of each individual component of the piecewise linear shape

(and of straight lines in general) is given by

wLi−q(0) =
1

2π
θi, (5.2)

again where θi is the angle subtended by Li at q (see Figure 5.4).

We can consider the case for a more general collection of arbitrary curves analogously. Let Γ =

∪iΓi be a collection of rational Bézier curves that constitute the (likely not watertight) boundary

of a 2D CAD model. In this case, the winding number of a point q with respect to a single curve Γi

86

Figure 5.4: (left) The winding number for a piecewise linear shape can be computed by summing
angles subtended by each segment. (right) Winding numbers for linear segments can be computed
at arbitrary points independently of the remaining shape.

is given by

wΓ−q(0) :=
1

2π

∫

Γ−q
dθ =

1

2π

∑

i

∫

Γi−q
dθ (5.3)

by the properties of the integration. This is notable, as it describes how the winding number for

each individual component Γi can be computed completely independently of every other curve,

with

wΓi−q(0) :=
1

2π

∫

Γi−q
dθ. (5.4)

It is from this property of the generalized winding number that we derive both the robustness of

our winding number calculation, and the robustness of the derived containment query. While the

collection of Bézier curves may be messy in the sense that pairs of endpoints may not perfectly

align, generalized winding numbers on each individual curve are well-defined and can be computed

stably. At the same time, the sum of these values at a given point is exactly the generalized winding

number of the entire shape, which can be used to produce intuitive and robust containment queries

for non-watertight shapes (see Figure 5.5). Most commonly, this is done by rounding this value

87

to the nearest integer, and applying to it a conventional even-odd or non-zero rule to make the

classification. Importantly, each of these conventions treat points with a zero winding number as

exterior.

Figure 5.5: The GWN with respect to closed shapes (left) is always an integer. However, by
independently summing contributions from each curved component (center), the GWN can also be
computed over collections of curves containing gaps and overlaps (right).

Framed in this way, the remaining task is to evaluate generalized winding numbers for a single,

arbitrary rational Bézier curve. As an initial approach, one could consider direct evaluation of the

integral through numerical quadrature. When the curve is given parametrically as (x(t), y(t)) ∈ R
2,

t ∈ [0, 1], as is the case for (rational) Bézier curves, we can evaluate this formula more practically

in terms of Cartesian coordinates, as

wΓ(q) :=
1

2π

∫ 1

0

x(t)y′(t)− x′(t)y(t)
x2(t) + y2(t)

dt. (5.5)

Direct evaluation of this integral through standard techniques is notoriously difficult. In

particular, when Γ is close to the query point (or rather the origin under this translated notation)

then the near-singular behavior of the integrand causes Gaussian quadrature to become unstable,

as seen in Figure 5.6. Although some error is to be expected for this type of numerical integration,

this error rapidly becomes unacceptable as the query point approaches the curve. Perhaps more

concerningly, there is no immediate way to verify that the value returned by the method is accurate.

88

We can see how this would affect a containment query on a closed shape in Figure 5.6. In this

example, the only correct values for the rounded winding number are 0, 1, and 2. However, even

the most accurate quadrature scheme shown produces values in the vicinity of the quadrature nodes

that are completely meaningless.

Figure 5.6: (top) The absolute error (log scale) in Gaussian quadrature used to compute the
generalized winding number on a cubic Bézier curve with Equation 5.5, evaluated with 15-, 30-
and 50-nodes. (middle) Using Guassian quadrature to compute generalized winding numbers over
a shape leads to unacceptable errors. (bottom) Close-up of highlighted region.

89

5.5 Generalized Winding Numbers for Curved Geometry

While these integration formulae are useful from a theoretical perspective, their inherent

instability necessitates an approach that avoids evaluating them directly. In their place, we develop

a framework that computes winding numbers based only on geometric properties of the curve.

To this end, we make heavy use of a particular kind of closing curve for each shape. Given

an (in principle arbitrary) parametric curve Γ, we define the linear segment C : [0, 1] → R
2 by

C(t) = Γ(1)(1− t) + Γ(0)t as the linear closure of our curve.

As the name suggests, the union of this closure C and Γ will always be a properly oriented,

closed curve, and thus partitions R
2 into discrete enclosing regions. Thus, winding numbers with

respect to the total curve Γ ∪ C are integers, such that

wΓ(a) + wC(a) = wΓ∪C(a) ∈ Z. (5.6)

Most importantly, the winding number of such a closure can always be computed exactly

without the need to appeal to quadrature by Equation 5.4, as the angle subtended by the introduced

linear segment can be evaluated through a (relatively) inexpensive arccosine. In this way, we can

always solve the problem of the generalized winding number using a solution to the integer winding

number problem on the closed curve, as subtracting away the contribution of this linear closure

can be done independently of the original curve geometry. While we present our own algorithm to

compute this integer winding number in Section 5.6 that outperforms known alternatives, we note

that this strategy is fully compatible with more conventional techniques for computing containment

queries in closed regions bounded by curves, e.g., Bézier clipping [120].

This principle is particularly useful in the case when wΓ∪C(q) = 0, i.e., the query point

is located outside the closed shape Γ ∪ C, or outside the convex hull of Γ itself, where we have

wΓ(q) = −wC(q). This usage is introduced in [79], where it is used in a hierarchical evaluation of

the winding number for collections of linear triangular facets. An important consequence of this for

curved geometry is that for query points that are far enough away, we can reverse the orientation

of C and treat the shape as equivalent to its straight line closure, and compute the winding number

90

Figure 5.7: Overview of 2D GWN algorithm. The unknown winding number with respect to a
curved shape (left) can be computed by finding the integer winding number of the closed figure
(center) and subtracting away the contribution of its closure (right).

of the entire curved segment immediately and exactly.

We further extend this principle to evaluate generalized winding numbers for points that are

arbitrarily close to the curve with the same assurances of exact accuracy. In such cases, Γ can

be replaced with a piecewise linear approximation Γ̃ so long as the integer winding number at q

remains unchanged between Γ ∪ C and Γ̃ ∪ C (see Figure 5.8). Doing so necessarily leaves the

generalized winding number at q unchanged as well, as we have

wΓ(q) = wΓ∪C(q)− wC(q) = w
Γ̃∪C

(q)− wC(q) = w
Γ̃
(q).

It is from these observations that we derive an algorithm for computing exact generalized

winding numbers over a collection of curves. For both far and near query points, we construct

appropriate linearizations of our curves that are guaranteed to have the same generalized winding

number at the point of interest as their curved counterparts. For a given point, the vast majority of

curves in the model will be considered far, and their contribution to the generalized winding number

can be computed with a single arccosine evaluation. For the few curves that are close enough

such that the linear closure itself is an insufficient approximation, we construct an approximating

polyline that provably generates the same winding number. In such cases, we evaluate the integer

winding number for the closed polygon, which can be done without reference to any trigonometric

91

Figure 5.8: (left) All three curves are closed by the same dashed line, and the shaded region is
exterior to all three closed shapes. (right) This means that the winding number field generated by
each curve (and the closure, up to orientation) is identical in the shaded region.

functions using the point-in-polygon algorithm in [70] and subtract away the contribution of the

linear closure.

In either case, we are able to compute the exact generalized winding number for an arbitrary

point using only a single evaluation of arccosine for each curve in the shape. All that remains is to

ensure that this polyline is adaptively constructed such that evaluating the integer winding number

of the polyline is efficient.

5.6 Winding Number Algorithms

We now describe our complete algorithm for solving the generalized winding number problem

for a rational Bézier curve at a given query point (Algorithm 3). The core of this algorithm is

described in Algorithm 4, which computes the integer winding number for a closed rational Bézier

curve without reference to ray casting.

In brief, given such a curve Γ, we adaptively construct a polyline approximate Γ̃ which has

the same winding number at the point of interest. We then apply a standard point-in-polygon

92

algorithm to this closed polyline to compute their shared integer winding number and subtract the

contribution of their shared closure.

For this procedure to work, we require that our polyline Γ̃ satisfies wΓ∪C(q) = w
Γ̃∪C

(q). The

simplest way to ensure this is for q to be located outside both closed shapes Γ ∪ C and Γ̃ ∪ C,

as then this shared integer winding number is equal to 0. Because this cannot be guaranteed in

general, we recursively bisect the curve into components {Γi}i until q is located outside the closed

shape for each.

There are a number of ways to ensure that for each component, wΓi∪Ci
(q) = 0. For example

the convex hull property of a Bézier curve states that the curve Γi is completely contained within

the convex hull of its control nodes. Given a description of this convex hull, classic point-in-polygon

algorithms such as [70] can be applied to test for containment. This leads to the following outline

for our algorithm:

• If the query point is located outside this convex hull, then it is guaranteed to be outside

the closed shape Γi ∪ Ci and we replace the component Γi with the reversal of its linear

closure Ci, as they now provably have the same generalized winding number.

• Otherwise, we bisect the Bézier curve and repeat the algorithm on each half. As a base

case, we check whether the curve is approximately linear (Algorithm 5) as such segments

can be added directly to the polyline.

Once this approximating polyline is fully constructed, we close it and use the same point-in-polygon

algorithm, PolygonWindingNumber, to compute the integer winding number for the closed polygon.

The contribution of this closure is then subtracted, and we are left with the exact generalized

winding number for the curve. Figure 5.9 illustrates this algorithm for three successively closer

query points to a Bézier curve.

To improve computational efficiency in the case where subdivision is expensive and exact

geometric accuracy is not needed, we optionally provide in Algorithm 5 an early stopping criterion.

We choose this particular heuristic because it is easier to evaluate than the distance between the

93

query point and the curve, and has a more intuitive spatial interpretation than a simple bound

on the maximum number of curve subdivisions. In practice, Bézier curves are smooth nearly

everywhere on their interior, and so the recursive bisection step needs to be done relatively few

times before the query point is found to be outside the convex hulls of each component, even for

points very close to the curve. Importantly, this causes the accuracy of Algorithm 3 and runtime

of the procedure to both be reasonably insensitive to this numerical tolerance, as the algorithm

is likely to terminate for these smooth curves well before there has been sufficient refinement for

subdivisions to be considered linear. Indeed, in the numerical examples we provide, we set this

value to machine epsilon and find no significant loss in performance (See Section 5.8.2).

We note that it can be problematic if the query point is located directly on the curve, as

in such cases the winding number is not formally defined. Since we need our algorithm to be

compatible to such input points, we discuss this case extensively in Section 5.7.

Despite the simplicity of the above procedure, directly computing containment within a

Bézier curve’s convex hull can be prohibitively expensive. Instead, we first determine if the query

is contained in an axis-aligned bounding box that encompasses the convex hull. Although this can

have a much larger area, the bounding box containment query is inexpensive and most points will

be exterior to it. If it is not, we use a test from [103] to check if the control polygon (defined by a

Bézier curve’s control nodes) is already simple and convex (see Algorithm 6). If so, we perform the

point-in-polygon test to determine if the query lies outside the convex hull of the control polygon.

For efficiency, our implementation notes that when a curve is simple and convex, its subcomponent

curves will be as well.

Altogether, the proposed algorithm is given by Algorithm 3. We note that this procedure

is not meaningfully restricted to rational Bézier curves. Their focus throughout this work reflects

their simplicity during calculation through manipulation of their control nodes, which itself justifies

their ubiquity in application. More generally, the algorithm is applicable to any curve for which it

is possible to construct a bounding box and a linear closure. In particular, extension to collections

of NURBS curves is straightforward.

94

Figure 5.9: Three iterations of the approximating polyline algorithm. In (a), one point is outside
the bounding box, and its winding number can be computed from the dashed closure. In (b), after
a bisection we can compute the winding number for an additional point. We repeat the process in
(c) to compute the winding number for the remaining point.

Algorithm 3: WindingNumberCurve: Evaluate the generalized winding number for an
arbitrary rational parametric Bézier curve

Input: Γ: Rational parametric Bézier curve Γ
q: Query point

Output: wΓ: The winding number evaluated at q

/* Store the linear closure of Γ */

1 C(t)← (1− t)Γ(1) + tΓ(0)

2 wC ← (1/2π)×
(
Signed angle subtended by

−−−→
qC(0) and

−−−→
qC(1)

)

3 if q /∈ BoundingBox(Γ) then
4 return −wC

5 else

6 return IntegerWindingNumberCurve(Γ ∪ C, q)− wC(q)

95
Algorithm 4: IntegerWindingNumberCurve Evaluate the integer winding number for a
rational parametric Bézier curve closed by a linear segment. We use an algorithm from [70]
for PolygonWindingNumber.

Input: Γ ∪ C: Closed rational parametric Bézier curve
q: Query point

Output: wΓ∪CThe integer winding number evaluated at q

1 Γ̃← {} // Initialize the polyline approximation

2 wΓ∪C = 0 // Initialize the winding number

3 Push Γ onto an empty stack.
4 while the stack is not empty do

5 Γ0 ← StackPop

6 C0(t)← (1− t)Γ0(0) + tΓ0(1)

/* Check for coincidence at the endpoints */

7 if isSimpleConvex(Γ0) and (q = Γ0(0) or q = Γ0(1)) then
/* Track the contribution of coincident points */

8 wΓ∪C += ConvexEndpointWindingNumber(Γ0, q)

9 Γ̃← Γ̃ ∪ {C0} // Add to the polyline

10 else

11 if {isSimpleConvex(Γ0) and q /∈ ControlPolygon(Γ0)}
12 or isApproximatelyLinear(C0)
13 then

14 Γ̃← Γ̃ ∪ {C0} // Add to the polyline

15 else

16 Γ1,Γ2 ← Bisection(Γ0)
17 StackPush(Γ1,Γ2)

18 P ← Γ̃ ∪ {C} // Close the polyline, forming a polygon

19 return PolygonWindingNumber(P, q) + wΓ∪C

Algorithm 5: isApproximatelyLinear: Return true if each control point of a rational
parametric Bézier curve is within a given tolerance of the closure.

Input: Γ: Rational parametric Bézier curve
ϵ: User tolerance

1 C0(t)← (1− t)Γ0(0) + tΓ1(1)
2 for each control node Pi of Γ do

3 if SquaredDistance(C0, Pi) ≥ ϵ then
4 return false

5 return true

96
Algorithm 6: isSimpleConvex: Return true if the polygon of control points of a rational
parametric Bézier curve is simple and convex (Adapted from [103])

Input: Γ: Rational parametric Bézier curve with control nodes P0, · · · , Pn

1 for i = 1, . . . , (n− 1) do
/* Store the linear segment connecting the nodes */

2 S(t)← (1− t)Pi−1 + tPi+1

3 if i ≤ n/2 then

4 if Pi and Pn are on the same side of S then

5 return false

6 else

7 if Pi and P0 are on the same side of S then

8 return false

9 return true

5.7 Generalized Winding Numbers for Coincident Points

The generalized winding number is, in a strict mathematical sense, undefined for points

located directly on the curve. This poses a practical problem during the implementation of a

containment query, as they are often executed massively in parallel for large clusters of points

without any a priori knowledge of their position relative to the boundary. Furthermore, our desire

for exact geometric fidelity precludes us from applying the standard trick of perturbing such points

randomly to place them definitively on one side of the singular boundary. In spite of this, it is

necessary for compatibility with respect to downstream applications that the algorithm definitively

return a value that adheres to a convention that is mathematically justified and intuitive to the

caller of WindingNumberCurve.

An important aspect of the winding number scalar field is that it is harmonic, being the

unique solution of a Laplacian operator with boundary data prescribed by each side of our curves,

enforcing a jump discontinuity across them. Therefore, the simplest convention for the winding

number of coincident points is to take it as the average value across this jump discontinuity. For

linear segments, this boundary data enforces that the winding number approaches +1/2 from one

side and −1/2 on the other. This means that the winding number should be exactly 0 at every

97

coincident point along linear segments. Similarly, this convention would ensure that the winding

number along a more general closed shape is a fixed half-integer value along its length, changing

only across self-intersections. However, this presents a unique problem for open, curved shapes,

as the winding number is no longer constant along the length of the curve. This underscores the

importance of a single convention for coincident points, as the winding number for individual curves

must be computed without any knowledge of the other components that make up the shape, which

can be unintuitive if that shape is itself closed. Nevertheless, we can evaluate the winding number

at a coincident point for a single curve just as before, by computing the half-integer winding number

of the closed shape and subtracting the contribution of the closing line.

This convention for a coincident winding number is well-justified in a mathematical context

as well. As explained by [79], the generalized winding number can be understood in the context of

ray casting as the average number of intersections from rays cast in all directions from q. When

q is on a straight line, only two of the uncountably infinite possible directions will intersect the

line, resulting in an average of zero intersections. Furthermore, the discontinuity in Equation 5.5

is, in fact, removable, and evaluating the remaining integrand agrees with this interpretation of

coincident winding numbers.

Despite this conceptual clarity, evaluating coincident winding numbers is complicated in

practice, as it is computationally expensive to perform the projection necessary to identify when

a point is located exactly on a Bézier curve [103]. The exception to this is the endpoints, which

are interpolated exactly by the first and last control points of the curve. At such points, the

coincident winding number is equal to the signed angle spanned by the non-coincident endpoint,

and a tangent vector at the coincident endpoint (see Figure 5.10). Furthermore, computing such

a tangent is trivial at the endpoint of a Bézier curve, as it is defined by the endpoint and the

adjacent control node. Interior points become endpoints in linear time by the repeated bisections

of our algorithm. As this spanned angle must account for full revolutions of this span around the

tangent vector, our algorithm only applies this edge-case to curves with simple and convex control

polygons (see Algorithm 7). This particular criterion is typically met after very few bisections, and

98

ensures that no full revolutions can occur on the local subcurve.

Figure 5.10: For points located outside the closed curve (left, center), the winding number is
proportional to the angle subtended by the endpoints. For points located directly on an endpoint
(right), we define the winding number as proportional to the angle subtended between the non-
coincident endpoint and a tangent vector.

Algorithm 7: ConvexEndpointWindingNumber: Return the convention for “coincident
winding numbers” as outlined in Section 5.7

Input: Γ: Rational parametric Bézier curve
q: Query point

Output: wΓ: The winding number evaluated at the endpoint of the curve

1 if q = Γ(0) then

2 return 1
2π ×

(
Signed angle subtended by

−−−→
qΓ(1) and

−−−→
Γ′(0)

)
.

3 else

4 return 1
2π ×

(
Signed angle subtended by

−−−→
qΓ(0) and −−−−→Γ′(1)

)
.

5.8 Numerical Experiments and Results

5.8.1 Robustness of Containment Queries on Curved Geometry

We first show the utility of a generalized winding number approach to containment queries

in the context of messy CAD geometry. We compare our approach to conventional ray casting

for containment, which remains the de-facto standard for exact containment in curved watertight

geometry. Consider the geometry of Figure 5.11, which is composed of 87 linear segments and 477

cubic Bézier curves. We remove the marked curve in Figure 5.11 and determine containment at

each pixel in the image using a simple ray casting algorithm that extends the ray to the right of the

99

pixel and counts the number of intersections with the shape. As expected, the use of a ray casting

algorithm causes catastrophic issues, in the sense that the containment errors are located at a great

distance from the actual geometric error. This makes the model unusable in the applications of

interest without specific oversight and (often user-driven) correction of these errors.

Figure 5.11: (left) A watertight geometric shape, with the exception of the curve in red that is
removed during calculation. (right) Ray casting classifies points as interior (pink) and exterior
(green). As expected, the geometric error leads to numerous errors in containment queries.

We then apply our generalized winding number algorithm to the same geometry in Fig-

ure 5.12, evaluating at each pixel the winding number field generated by the bounding geometry.

In this example, points which we expect to be interior to this shape have winding numbers close

to 1, while the value for points we expect to be exterior is close to 0. We see that deleting the curve

does degrade the field, but that the most severe effects are localized to the site of the geometric

error. In some sense, the locality of this degradation is unintuitive, as containment is necessar-

ily a global property of points relative to bounding geometry, i.e., the winding number at every

point is dependent on every curve. Importantly, however, the influence of distant curves becomes

rapidly negligible. While the exact value of the winding number now a non-integer value (nearly)

everywhere in the domain, away from the deleted curve the difference from the nearest integer is

nowhere large enough to have an adverse effect on the actual determination of containment.

A natural mapping of winding numbers to containment classifications is to round each value

100

to the nearest integer and apply a non-zero rule. For example, in Figure 5.12 we see that the

rounded winding number produces a clear boundary between regions along the 1/2 isocurve. While

this implied boundary lacks the curvature of the deleted curve, it is a reasonable approximation

and nevertheless allows for the surface to be used immediately in applications. This behavior is

especially desirable when geometric errors arise from small gaps between components of the mesh,

as the resulting containment query reflects the simplest closure of the shape permitted by the

provided geometric data.

Figure 5.12: (left) The generalized winding number computed using Algorithm 3. (center) The
winding number in the region around the deleted curve degrades smoothly. (right) Rounding the
winding number produces an approximation that better conforms to the designer’s intuition.

Through Figure 5.13, we reiterate the two important kinds of robustness in this work. The

shape in this example is intentionally deformed such that no pairs of adjacent edges are connected.

From a distance, i.e., the scale at which the model geometry is visually “good enough,” there are

functionally no irregularities in the shape’s appearance. This mirrors the realistic setting, in which

such imperceptible tolerances are unexpected and remain catastrophic for conventional containment

algorithms. As before we apply our algorithm to each pixel in the bounding region, and plot the

winding number field alongside its difference from the nearest integer.

The first type of robustness is derived from our specific computation of the generalized wind-

ing number through Algorithm 3, which is completely robust to non-watertight geometry. Because

we only ever consider individual curves without any reference to their overall arrangement, both

101

the computational performance and accuracy of our calculation is completely unaffected by the

non-watertightness of the shape. Furthermore, our adaptive algorithm ensures that the winding

number is computed stably at arbitrary distances from individual curves. On the other hand, any

containment query derived from generalized winding numbers is robust to geometric artifacts in

the boundary. This is because although even small errors have far-reaching influence on the scalar

field of winding numbers, this influence degrades rapidly and gracefully away from the sources of

these errors. Even at this frequency of topological errors in this example, the resulting values of

the field still very clearly partition the shape into the expected interior and exterior.

It is noted in [79] that a useful perspective on the fractional value of the winding number is

as a measure of confidence for the derived containment query. For example, points for which the

winding number is close to an integer can be considered “more likely” to be classified accurately

according to the unknown, but presumably watertight shape that lacks any of the present boundary

artifacts. On the other hand, points with winding numbers near half-integer values are often close

to the boundaries that are only implied by the rounding heuristic, and correlate with containment

classifications that are less informed by existing surface elements. In Figure 5.13, we specifically

identify each point in the image with a winding number in the range [0.25, 0.75], which are the

only points that we can therefore consider to have an “uncertain” classification according to our

rounding heuristic. From this, we can see that the vast majority of points in this image are classified

with high confidence.

Of course, the rounding heuristic is not the only way one can determine containment from

a fractional winding number, as access to the full winding number field through our algorithm

permits treatment of containment through standard segmentation strategies. For example, [79]

meshes the interior of the shape, utilizing an energy minimization technique to enforce additional

smoothness in the resulting segmentation. Additionally, the above usage of the winding numbers

as a measure of confidence can be made more rigorous through further statistical analysis. In [151],

the generalized winding number field is used as a prior for a number of statistical distributions,

including likelihood of containment. This rigor is desirable for certain applications, as the fractional

102

value of the winding number alone cannot be interpreted as a probability for the accuracy of the

derived containment query. Because we are ultimately concerned with efficient evaluation of the

winding number in this work, we use only the rounding heuristic to determine containment in our

examples.

Figure 5.13: (top) Generalized winding number for a shape that is intentionally deformed to slightly
separate adjacent curves. (bottom) Absolute difference (log scale) between computed winding
number and rounded winding number. Points for which the difference is greater than 0.25 are
highlighted, as this indicates some degree of uncertainty in the classification. As we see, such
points are very sparsely distributed throughout the domain.

5.8.2 Algorithm Performance

We now consider the computational performance of Algorithms 3 and 4. In each of the

following examples, we evaluate our algorithm in the context where exact geometric fidelity is

prioritized, and set all numerical tolerances to zero. For comparison, we consider state-of-the-art

techniques that have been adapted to collections of parametric curves. Perhaps the most common

103

winding number-based approach for watertight geometry would be to discretize the shape into

approximating polygons with linear edges and to apply a standard point-in-polygon algorithm to the

polygonal shapes to determine containment. If watertightness cannot be guaranteed, the generalized

winding number approaches of [79, 175] admit a straightforward adaptation to a linearized shape.

In demonstration of this fact, consider Figure 5.14, where we compare the performance of our

serial implementation of the proposed adaptive strategy to such a linearized method. Specifically,

we consider refinements of each curves in the shape into a fixed number of linear segments. We note

that the shape considered is non-watertight and non-manifold, making it a particularly challenging

case for conventional containment queries. Nevertheless, the fractional winding number field clearly

partitions the space according to an intuitive understanding of its interior.

By comparing wall-clock runtime, we see that the use of a fixed level of refinement of the

curve leads to a more efficient calculation of the generalized winding number as expected, as curve

subdivisions can be computed during a preprocessing step and reused. While the analogous over-

head in the adaptive algorithm can be similarly mitigated through hash maps that cache the results

of curve subdivisions, we consider further implementation optimizations for collections of curves to

be future work, and instead focus here on efficient and accurate calculation for individual curves.

Indeed, when geometric fidelity is not a concern, using a fixed linearization to compute generalized

winding numbers with Algorithm 3 is a reasonable approach, although it may involve a considerable

memory footprint for larger models.

Importantly, such a linearized method offers no guarantees for geometric fidelity. By compar-

ing the level of refinement against an approximate likelihood that points are ultimately misclassified,

we see that although the rate of misclassification decreases with increased linear refinement, it does

so at a rate that we consider to be far too slow to be practical for many applications of interest,

especially for downstream applications that are sensitive to any misclassifications. This is also

an issue for methods that sample the bounding geometry non-deterministically, such as those of

[123, 10, 144]. In contrast, the proposed method is able to achieve perfect geometric fidelity for

points that are arbitrarily close to the boundary. In place of these fixed linearization methods, we

104

turn our attention to those that operate directly on curved geometry without approximation.

Figure 5.14: Given a non-watertight, non-manifold shape, we observe the practical effect of curve
linearization on geometric accuracy and runtime. We compare our adaptive strategy to those that
uses a uniform, piecewise linearization of the curve at fixed levels of refinement. We record the
total time spent to evaluate the generalized winding number for 105 points randomly sampled from
a uniform distribution, and the number of these points which are ultimately misclassified. We see
that a fixed linearization can offer better computational performance, as subdivisions of the curve
can be efficiently precomputed. However, we note that even at high levels of refinement there
are still a considerable number of misclassifications, which is unacceptable in many downstream
applications of interest.

There remains the issue that the methods known to the authors that operate directly on

curved geometry à la Bézier clipping [120] can do so only in the watertight case. This regrettably

105

means that no direct comparison for the performance Algorithm 3 can be made at this time. In

its place, we note that our procedure for computing the exact generalized winding number for any

open, curved object requires applying an arbitrary integer winding number algorithm on the closed

shape and subsequently subtracting out the contribution of the closure of the curve. It is in this

context that we demonstrate the performance of Algorithm 4, which is one such algorithm that

computes the integer winding number of a closed, curved object. We show that Algorithm 4 is

considerably more performant than alternatives utilizing crossing numbers for containment queries

on closed, curved geometry, as such methods necessarily introduce inefficiencies through a reliance

on ray casting.

We first consider a common procedure for ray casting that applies a geometric binary search

to compute ray-Bézier curve intersections [46]. In this algorithm, we extend from the query a ray in

the direction of the closest edge of a bounding box, and recursively bisect the curve until guarantees

for potential intersections can be made. If a subcurve is sufficiently linear (see Algorithm 5) such

that an intersection is guaranteed, then the signed intersection can be recorded. If the ray does

not intersect the subcurve’s bounding box, then it can be discarded. This procedure converges to

points of intersection linearly, and is capable of identifying multiple intersections with the same

curve.

Bézier clipping [120, 150] is a similar procedure, discarding sections of the curve that are

guaranteed to have no intersections with the ray. However, the convergence of this approach to

points of intersection is quadratic, as the curve is instead split into three subcurves at each iteration.

To make the appropriate comparison to Algorithm 4 in the context of exact winding numbers

for non-watertight geometry, we utilize each within the framework described in Algorithm 3. That

is to say, we iterate over each open curve in the model and close it, compute the integer winding

number with Algorithm 4 or one of the above alternate techniques, and subtract out the contribution

of the closure. We note that, while these alternate techniques themselves are well-known in the

context of ray-tracing and containment of closed shapes, computing generalized winding numbers

in this way is, to our knowledge, itself a novel application of their use.

106

In comparing these three algorithms, there are a number of specific implementation details

that govern the wall-time of their evaluation, in particular the use of a spatial index to efficiently

handle far away points. However, we are concerned with their efficiency in the near-curve regime,

where the number of curve evaluations (most commonly occurring as a result of a curve bisection) is

an effective proxy for computational efficiency between the methods. Furthermore, the computation

of the exact fractional value for the generalized winding number only involves the evaluation of a

single arccosine for each curve in the model, and this cost is equivalent across all three methods.

Our first example in Figure 5.15 uses a relatively simple shape featuring at most polynomial,

cubic Bézier curves. To compare the three algorithms (binary search, Bézier clipping, and the

proposed approach presented in Algorithm 4), we randomly sample 250,000 points from a bounding

box around the shape using a uniform distribution, and count the number of curve evaluations on

each that needs to be made to determine containment with perfect geometric fidelity. Again, we

emphasize that all three methods are being used here to compute the generalized winding number,

which they do by computing the integer winding number of the closed shape for each curve in the

model.

As expected, the binary search ray casting algorithm performs the poorest, with a consid-

erable number of points requiring more than 15 curve subdivisions to make an evaluation. This

is because the terminating condition of the naive algorithm is linearity of the curve component

near the intersection, for which the number of bisections increases with curvature. This behavior

is improved considerably with Bézier clipping, which performs more sophisticated subdivision (at

greater computational expense) by considering the convex hull of the curve. However, the proposed

algorithm improves on this further, with no points requiring more than 8 function evaluations, and

most requiring only one or two.

Furthermore, we recognize that for the vast majority of points, zero function evaluations are

required for each algorithm. This is because the first containment check performed in each is one

to an axis-aligned bounding box for the entire curve, and most points lie outside the bounding box

for most curves. For this reason, integer winding numbers for most combinations of points and

107

curves are known to be zero without any curve evaluations.

Binary Search Bézier Clipping Proposed Algorithm

0

1

2

3

4

5

6

N
u
m

b
e
r

o
f
C
u
rv

e
 E

v
a
lu

a
ti
o
n
s

SVG Shape Model
1 4 7 10 13 15+

Number of Curve Evaluations

101

102

103

104

105

N
u
m

b
e
r

o
f
S
a
m

p
le

d
 P

o
in

ts

Binary Search

Bézier Clipping

Proposed Algorithm

Figure 5.15: We compare the cost of a conventional geometric bisection method, Bézier clipping, and
our proposed method on a watertight model. We uniformly sample 250,000 points from a bounding
box and measure the number CAD model evaluations, i.e., curve subdivisions, that are necessary
to evaluate the winding number at each point to full geometric precision. In the histogram, we
omit the number of sampled points that require zero function evaluations, as this occurs whenever
the point is outside each curve’s bounding box, occurring at the same frequency for each method.

One explanation for the relatively poor performance of the two ray casting algorithms is that

such procedures are unnecessarily informative. Not only do ray casting algorithms identify potential

intersections, but they also inherently locate the intersections, information which is rarely needed

when the ray itself is chosen arbitrarily. In contrast, by not needing to compute the location of these

intersections, the proposed algorithm is able to converge with considerably fewer curve evaluations,

despite only doing so linearly. This is particularly relevant in the case where the curves of interest

contain multiple overlapping components, self-intersections, or regions of significant curvature, the

108

latter of these cases being tested directly on a rational curve in Figure 5.16. In these examples,

the ray casting algorithms perform particularly poorly, as any ray extended will intersect the curve

multiple times, incurring additional cost with each.

Figure 5.16: For higher-order curves, additional curve subdivisions are necessary to reach perfect
geometric fidelity. The proposed algorithm still has superior performance in such cases, as the
location of the various intersections need not be computed directly.

Finally, we consider the sensitivity of our procedure for computing generalized winding num-

bers to the numerical tolerance introduced in Algorithm 5. We do this by considering performance

and accuracy as a function of this tolerance, respectively measured in terms of the number of curve

evaluations required to determine containment and the number of misclassifications caused by the

final layer of implied linearization. These metrics are evaluated over 105 points sampled from a

bounding box for the closed shape in Figure 5.17, which for demonstration purposes depicts a 9th

109

order, rational curve that far exceeds the complexity of those typically used in practice. We see that

invoking Algorithm 5 to prematurely terminate the procedure does marginally reduce the overall

computational cost, but that this performance improvement is closely correlated with losses in clas-

sification accuracy. This effect is amplified on shapes with such complex curvature, as it becomes

more likely that the implied linearization imposed by the tolerance will produce misclassifications.

At the same time, we observe that even for very intricate shapes, the performance of Algorithm 4

rapidly stabilizes along both metrics. As a result, our practical preference is to set this tolerance

to zero even in cases where geometric accuracy is not a priority.

Figure 5.17: Beyond a certain threshold, the adaptive nature of the proposed algorithm causes it
to be insensitive to the numerical tolerance in Algorithm 5. In practice, we set this tolerance to
zero, as this ensures exact geometric fidelity while not incurring a large additional computational
burden.

As is always the case when generalized winding numbers are used to determine containment,

there is still an assumption that the collection of curves are reasonably oriented. Because the scalar

field generated by a single curve is computed completely independently of every other curve by

design, a single reversed curve interferes with the contribution of surrounding curves, functionally

reversing nearby containment queries, as can be observed in Figure 5.18. While the induced classi-

fication errors are still local to the geometric error, and would no doubt cause catastrophic errors

without the use of generalized winding numbers, they nevertheless represent a type of geometric

error unaccounted for by the current method.

110

Figure 5.18: GWN field generated by the shape in Figure 5.12, but with the orientation of the high-
lighted curve reversed rather than removed entirely. The reversal of this curve causes surrounding
containment classifications to be swapped within a local region.

5.9 Concluding remarks

In this paper, we proposed a generalized winding number algorithm for collections of para-

metric curves, addressing the inherent challenges for curved geometry that are not shared by their

linear counterparts. For the vast majority of points that are considered “sufficiently far” from a

given curve, we circumvent the need for expensive linearization of the shape by treating the curve

directly as a single segment connecting its endpoints. For all other points, we demonstrated that

our recursive algorithm outperforms existing ray casting algorithms adapted for this context. Fi-

nally, we formalize a procedure for handling winding numbers of points that are coincident with the

curve, further increasing the practicality of our algorithm. In each case, this algorithm makes min-

imal reference to the often near-singular integrals from which the winding number is theoretically

derived, instead operating strictly according to geometric and trigonometric principles. Neverthe-

less, we are able to exactly compute generalized numbers for curved shapes in two dimensions.

Whereas the focus of this work has been on efficiently and robustly computing winding numbers

for individual curves within a collection, follow-up work will consider accelerating the overall query

workflow using a spatial index, as in [79, 10, 180] and exploiting the inherent parallelism within

Algorithm 3 via threaded and/or GPU implementation.

Chapter 6

Generalized Winding Numbers for Trimmed NURBS Surfaces

Figure 6.1: CAD models composed of trimmed NURBS surfaces are ubiquitous in both engineering and
design, but robustly defining an interior for such objects can be challenging in the presence of imperceptible
gaps or overlaps between adjacent patches in a model. We present a method of evaluating the field of
generalized winding numbers, which can be used to define a containment query that is indifferent to the
watertightness of the model. Our algorithm uses Stokes’ theorem to reformulate the problem as a 1D line
integral over the boundary of each patch, which we solve using an adaptive quadrature technique that is
accurate to user tolerance. In circumstances where Stokes’ theorem is otherwise theoretically unjustified (i.e.,
near to the surface), we perform a line-surface intersection test to recover the computational advantages of
our boundary formulation. Edge cases for query points nearer to surface boundaries are handled accurately
and robustly by extracting a parametric disk from the surface and are processed separately.

In collaboration with Kenneth Weiss

112

6.1 Abstract

Efficient and accurate evaluation of containment queries for regions bound by trimmed

NURBS surfaces is important in many graphics and engineering applications. However, the al-

gebraic complexity of surface-surface intersections makes gaps and overlaps between surfaces dif-

ficult to avoid for in-the-wild surface models. By considering this problem through the lens of

the generalized winding number (GWN), a mathematical construction that is indifferent to the

arrangement of surfaces in the shape, we can define a containment query that is robust to model

watertightness. Applying contemporary techniques for the 3D GWN on arbitrary curved surfaces

would require some form of geometric discretization, potentially inducing containment misclassifi-

cations near boundary components. In contrast, our proposed method computes an accurate GWN

directly on the curved geometry of the input model. We accomplish this using a novel reformulation

of the relevant surface integral using Stokes’ theorem, which in turn permits an efficient adaptive

quadrature calculation on the boundary and trimming curves of the model. While this is sufficient

for “far-field” query points that are distant from the surface, we augment this approach for “near-

field” query points (i.e., within a bounding box) and even those coincident to the surface patches

via a strategy that directly identifies and accounts for the jump discontinuity in the scalar field. We

demonstrate that our method of evaluating the GWN field is robust to complex trimming geometry

in a CAD model, and is accurate up to arbitrary precision at arbitrary distances from the surface.

Furthermore, the derived containment query is robust to non-watertightness while respecting all

curved features of the input shape.

6.2 Introduction

In computer graphics and adjacent fields, 3D objects are often defined exclusively in terms

of a boundary representation (B-Rep). While these B-reps are very useful for flexibly designing 3D

objects within a CAD system, in some sense they only tenuously define a legitimate interior volume.

For example, accessing the interior of such an object requires explicitly defining from the B-rep

113

a containment query that can determine whether a given point lies inside or outside the object.

Particularly in the context of general curved surfaces, this containment query is often iterative and

non-trivial to implement robustly and efficiently.

In this work, we consider B-Reps composed of a (possibly unstructured) collection of 3D

non-uniform rational B-spline (NURBS) tensor product surfaces. Many design systems allow these

rectangular patches to be trimmed so that they describe a wider variety of shapes. These trimming

curves are themselves typically defined by a (again possibly unstructured) collection of 2D NURBS

curves in the parameter space of the surface.

While evaluating containment queries on trimmed NURBS surfaces is a generally difficult

task, in this work we focus on the compounding difficulty of performing containment queries on

B-Reps which are not necessarily watertight, in the sense that collection of surface patches may not

form a mathematically closed volume. In graphics-oriented tasks where visibility is the primary

concern, non-watertightness is a natural consequence of holes within a patch, gaps between patches,

or even more general non-manifold edges.

There are many applications in which a well-defined volumetric interior is a pre-requisite,

particularly those in animation or engineering contexts [112, 189]. Even so, B-Rep models designed

specifically for these purposes can be unexpectedly non-watertight, sometimes due to simple human

error in the design process, or more often due to differing tolerances between applications. In

the context of trimmed NURBS surfaces, however, such gaps are inevitable even in well-designed

models due to the complex nature of surface-surface intersections [149]. In other examples, the use

of Boolean operations during the construction of a model can introduce problematic non-manifold

edges. We show examples of each kind in Figure 6.2. In this and other examples throughout this

work, we use CAD models from the ABC Dataset, a collection of CAD models of varying quality

used to benchmark various algorithms in computer graphics and machine learning [91].

A potential solution is to restore model watertightness directly via surface repair. While

direct repair of the model within a CAD engine to close gaps and/or clip overlaps is possible,

such manual correction is often time-consuming and error-prone. Automated systems for surface

114

Figure 6.2: We demonstrate common ways in which a B-Rep model defined by NURBS surfaces
can be non-watertight, such as through the presence of (a) holes, (b) non-manifold edges, (c) edges
that visually appear to be matched to other patches, but could become non-watertight when ported
between systems with differing tolerances.

repair are typically applied globally during the export of CAD models as a part of a larger mesh-

generation pipeline [161, 105]. However, the focus of such work is often the creation of watertight

models composed of linear elements (e.g., triangles), and is still an area of active research for

arbitrary curved and trimmed surfaces.

Indeed, discretization of individual trimmed surfaces into a linear mesh permits immediate

application of not only more traditional surface repair techniques, but also the growing body of

work that defines containment queries for non-watertight shapes [79, 10, 48]. However, there are

many contexts in which this type of approximation through discretization would either be too

costly to capture complex geometry, or has the potential to introduce unforseen and otherwise

unacceptable errors in downstream applications. In this case we take multiphysics simulation

as an important class of examples, and point to the work of Sevilla et al. for a comprehensive

review of the complications that arise when a piecewise linear boundary is used to approximate a

curve [154, 155, 156].

In the context of finite element analysis specifically, this desire for exact geometric fidelity has

115

led to the development of techniques that work directly on boundaries defined by CAD geometry

such as in isogeometric analysis [73, 111]. Particularly relevant to the proposed computational

techniques are methods of immersogeometric analysis, in which fluid-structure interactions are

modeled by placing a complicated CAD model on a simpler computational grid on which the

numerical solution is computed [87, 52]. In such methods, it is necessary to know whether points

that are structured with respect to this background grid are inside or outside the CAD model,

which can be particularly challenging for points located arbitrarily close to the B-Rep.

In total, we seek to extend the capabilities of these and other techniques by introducing an

evaluation method for containment queries with respect to a non-watertight B-Rep of trimmed

NURBS surfaces. We accomplish this through the generalized winding number (GWN) [79], a

mathematical construction that is useful not just in defining such a query, but in a variety of other

geometry processing routines as well, such as Boolean operations [175], surface reconstruction [79],

and others. Specifically, we present in this work the following principal contributions:

• We extend the theory of generalized winding numbers to the context of trimmed NURBS

patches by defining and evaluating the 3D GWN field with respect to such objects. As a

result, we achieve a containment query for B-Reps composed of such shapes that is robust,

and indeed indifferent, to watertightness.

• We describe a novel algorithmic framework for evaluating the GWN with respect to a

trimmed NURBS surface by reformulating the relevant surface integral as a line integral

along the surface boundary via Stokes’ theorem. Doing so greatly improves numerical

stability for the integrals, which we pair with an adaptive quadrature scheme to achieve

results up to arbitrary accuracy.

• We accurately evaluate the GWN for points which are arbitrarily close and even coincident

with the surface by directly identifying and compensating for the jump discontinuity in

the GWN field over surfaces. As part of this process, we robustly handle visibility queries

in the 2D parameter space of each surface with the 2D GWN. This permits evaluation of

116

the GWN field both in the “far-field” and “near-field” of the NURBS surface without any

discretization.

Practical applications of the GWN to large-scale B-Reps typically use a spatial index to

accelerate queries (e.g., [79, 10]), which we intend to pursue in follow-up work. Instead, our focus

in this work is on exact and efficient evaluation of the GWN with respect to individual trimmed

NURBS patch, the cost of which scales nearly linearly with the number of trimming curves. Our

algorithm has been implemented in Axom, a BSD-licensed open-source library of Computer Science

infrastructure for HPC applications [23].

6.3 Background and Related Work

6.3.1 Containment Queries in 3D CAD Applications

While containment queries are a fundamental operation for many CAD applications, methods

of their implementation can vary considerably, especially when dealing with curved geometry.

As in 2D, the typical containment query is built upon the ray-casting method. In the 3D

problem context, there is considerable overlap between this process and the adjacent task of ray-

tracing for the purposes of rendering, which typically require determining the first intersection of a

ray with a surface, but an important distinction is that ray-casting for containment queries permits

an arbitrary direction of the cast ray.

Although much research focus in ray-tracing relates to triangulated surfaces, as many hard-

ware platforms are capable of calculating ray-triangle intersections massively in parallel [65, Chapter

3], there is also interest in applying such techniques directly to trimmed NURBS surfaces [183, 147,

146]. Of particular note are recent methods for ray-tracing bilinear patches, as, similar to triangles,

they admit direct geometric formulae for computing their intersections with rays [140].

On more general curved surfaces, the surface-line intersection routines used to determine con-

tainment are typically more complex and iterative. For example, algebraic methods find solutions in

terms of the parametrization of the ray and/or surface, either through numerical root-finding [110],

117

convex optimization [108], or even via singular value decompositions of matrix embedding prob-

lems [159]. These algebraic methods can often find intersection points to a high degree of numerical

precision, but at the cost of additional sensitivity to the initial configuration of the relevant solver.

On the other hand, geometric subdivision methods successively trim the surface at points where

intersections are not possible, resulting in useful guarantees for their accuracy [120, 43].

However, the shortcomings of ray-casting in 2D persist in 3D as well, as the result remains

highly sensitive to the specific configuration of surface and cast ray, which can lead to inadvertant

misclassifications in watertight cases, and complete inapplicability for non-watertight shapes.

6.3.2 Generalized Winding Numbers in 3D

As described in the 2D problem context in the previous chapter, winding number methods

are far more robust to common issues when determining containment in 3D shapes, with their

non-generalized form being long understood as an alternative to ray-casting polyhedral shapes that

is less sensitive to the choice of ray [24]. Indeed, the generalized winding number itself was first

conceptualized specifically for the purposes of efficient evaluation of 3D point containment queries

on messy STL geometry via a hierarchical spatial index and divide-and-conquer algorithm [79]. This

work was later extended to entirely disconnected triangle soups in [10], improving performance with

an error-controlled approximation of the GWN with respect to groups of mesh elements that are

far from the query point.

Evaluation methods for the GWN field defined by triangle meshes and soups are particularly

computationally efficient, as the solid angle which defines the 3D GWN can be directly and exactly

computed for polygonal shapes. However, if the input surface geometry is not a triangle mesh, a

naive application of these methods necessarily uses some geometric approximation of the surface

to obtain the necessary input type, which in turn causes the GWN field of the approximation to

diverge from the ground truth. At the same time, generating a tesselation of a NURBS surface is

a non-trivial task, and high-resolution meshes can be prohibitively expensive to generate and store

for complex models [183].

118

At the time of writing, there are no methods in the literature for evaluating the GWN field

at arbitrary points relative to curved input geometry, particularly among methods which operate

directly on the surface without any intermediate discretization.

For example, the work of [10] also describes a method of defining the field of GWN for

oriented point cloud data, which could be sampled directly from a CAD-derived surface. Indeed,

the work of [8] describes a method of doing so for the purpose of multiphysics simulation, sampling

points randomly from the CAD surface and using them to robustly define an interior volume for

an otherwise messy shape. However, each point in the derived cloud is weighted by a surface area

from a Voronoi tessellation of the ground-truth surface, where the computed weight may itself be an

approximation depending on implementation. Nevertheless, even if the weights can be accurately

pre-computed directly from the CAD model, they still represent a quantization of the original

surface into discrete, approximated components.

In comparing our objectives to these existing methods, it is useful to distinguish between two

types of inexactness in the computed GWN field. The first is inaccuracy in the GWN calculation,

where the error in the GWN field causes the derived containment query to result in misclassifica-

tions. This is almost exclusively a concern for points near to the surface, particularly when the

GWN is computed using a low-quality intermediate discretization of the surface. In such cases, the

query point can be identified as on one side of the discretized surface while being on the opposite

side of the true surface, resulting in an off-by-one error in the GWN field.

The second is imprecision, which in some sense is a concern unique to the 3D case. In 2D,

it is necessarily true that for a fixed set of input queries, there is some discretization of the input

geometry that will produce the correct GWN field at each query point. However, this is not the

case in 3D — the increased geometric complexity of the surface boundary means that the GWN

field of a discretized, open surface will always diverge from the GWN field of the original surface at

some points, even near to the surface. This is a largely separate concern from the accuracy of the

GWN field, as the typical rounding strategy used to map the GWN field to a containment decision

means that even imprecise GWN fields are (for reasonable error levels) still mapped to the same

119

containment decision.

As another point of comparison, the method of [144] is capable of rapidly evaluating the GWN

field while maintaining geometric fidelity, at the cost of some approximation and consistency in the

evaluation. Specifically, this method solves certain classes of PDEs by means of random walks and

projections, including those which implicitly define the generalized winding number. This method

is accurate (in expectation) by considering surface geometry exactly as provided through these

projections, but loses some degree of precision for individual queries.

More generally, methods which discretize the surface geometry for the purposes of evaluating

the GWN field precisely for far-away query points often do so at the cost of accuracy nearer to the

surface. In this work, we develop a method for evaluating the GWN field that is accurate at arbitrary

points relative to the input surface, and maintains precision through error-controlled numerical

methods, all in service of avoiding misclassifications in the derived containment query.

6.3.3 Evaluating the GWN for Curved 3D Geometry

As described in the previous chapter, winding numbers in 2D measure the number of rev-

olutions that bounding curves make around a point, which, in the watertight case, is equivalent

to the crossing number derived from ray-casting. While conceptualizing the 3D winding number

as revolutions of the boundary around a point is somewhat unclear, one can also consider the 2D

winding number to be a measure of the total, signed angle (a solid angle in 3D) subtended by the

boundary at the query point (see Figure 6.3).

Recall the definition of the 2D GWN wC(q) at a query point q with respect to a curve C

as the total angle subtended by the curve, normalized by a factor of 2π. This results in a simple

integral of the (signed) differential angle dθ,

wC(q) :=
1

2π

∫

C−q
dθ. (6.1)

Written in Cartesian coordinates, this is equivalent to the line integral,

wC =
1

2π

∫

C

x · n̂
||x||2 dx. (6.2)

120

Figure 6.3: We show the integer (middle) and fractional (right) GWN for a simple 2D (top) and
3D (bottom) shape. In both 2D and 3D, the GWN of watertight shapes is integer valued, and
the fractional GWN of non-watertight shapes is equal to the signed angle subtended by the shape
boundary. To more easily visualize the 3D GWN as a scalar field, we consider a 2D slice of the
field as it intersects with the surface.

To evaluate this integral directly via numerical quadrature is difficult, as the near-singular behavior

of the integrand causes conventional quadrature methods to exhibit severe instability for points close

to the curve. For linear elements with endpoints a and b, however, this subtended angle has a simple

and direct formula

wL :=
1

2π
arctan

(||a× b||
a · b

)
, (6.3)

which can be leveraged in a scheme to compute the GWN of an arbtirary curve in 2D without the

use of any quadrature scheme (See Chapter 5.

For the most part, this framework is unchanged for the 3D problem context. The 3D GWN

wS(q) at query point q with respect to a surface S is defined as the total solid angle subtended by

the surface, normalized by a factor of 4π:

wS(q) :=
1

4π

∫

S−q
dΩ, (6.4)

121

which can be written in 3D as

wS(q) =
1

4π

∫∫

S−q

x · n̂
||x||3 dS. (6.5)

The same difficulties of numerical quadrature are also present, in some sense exacerbated by the

necessity of comparably expensive tensor-product quadrature rules in evaluating the surface inte-

gral. The hope, then, is that this too can be avoided through an exact formula for the analogous

linear element. Indeed, the GWN for a 3D triangle defined by vertices a, b, and c is given by

wS :=
1

2π
arctan

(|a · (b× c)|
||a|| ||b|| ||c||+ (a · b)||c||+ (b · c)||a||+ (c · a)||b||

)
, (6.6)

But while any 2D curve can be closed with a straight line, only a trivial subset of 3D surfaces

can be exactly closed by a collection of triangles. For more general 3D surfaces, the closing surface

must itself be a high-order surface [149], and so computing the GWN of the closing surface (for the

purposes of subtracting the value from an integer winding number of the closed surface) is typically

just as difficult as computing the GWN of the original.

It is a known characteristic of the 3D solid angle from which the GWN field is derived that

it can, in certain contexts, be defined entirely from the boundary of the surface. For example,

perhaps the closest adaptation of the method of Jacobson et al. [79] to a 3D curved surface S

would be to discretize only the boundary of the surface by ∂S′ (with ∂S′ ≈ ∂S), and construct a

simple triangulated closure S′ whose GWN field can be computed exactly. For query points which

are far from the original surface, this approach is somewhat reasonable: although some precision

is lost in the discretization, the GWN field of the approximated closure is related to the GWN

field of the original surface for far-away points through the simple formula wS = wS ≈ −wS′ .

However, ensuring the accuracy of such an approach becomes problematic for query points near the

surface. As in the 2D case, the equivalent relationship between wS and wS depends on the accurate

calculation of the integer wS∪S at the query point, which still requires consideration of the geometry

of the original surface. As we will see, our proposed method requires no such discretization of the

boundary.

122

Altogether, this means that computing an accurate GWN for an arbitrary 3D surface by

means of Equation 6.5 fundamentally requires the use of numerical quadrature to compensate for

the unavoidable presence of curved geometry.

There are a number of existing quadrature techniques in the literature that can be imme-

diately applied to Equation 6.5. For example, surface integrals over untrimmed patches can be

evaluated using simple tensor-product quadrature rules. These tensor product rules can also be

applied in the presence of trimming curves with an indicator function that matches curve visibility,

although this direct approach would require an unreasonably high-order quadrature scheme to be

accurate on all types of trimming curves. More sophisticated techniques have been developed to

evaluate integrals over planar regions bound by curves [59, 29], which can be readily extended

to represent the relevant domain of integration for a trimmed NURBS surface, ultimately placing

quadrature nodes only on the visible portions of the surface [60]. However, even these more spe-

cialized quadrature schemes do not address the fundamental issue of the near-singular behavior of

the integrand for query points near the surface.

6.4 Methods

In this work, we present a generalized winding number algorithm that can be accurately

evaluated at arbitrary points in space, regardless of their distance to the ground truth CAD model,

up to an arbitrary user tolerance. We assume that the surface is a trimmed tensor-product NURBS

patch, with trimming curves that are explicitly defined in the parameter space of the knot spans

of the patches by 2D NURBS curves. For each query point, we evaluate the GWN independently

for each surface in the model and sum the results to obtain the final GWN.

Our algorithm is derived from Stokes’ theorem, which reduces the dimension of Equation 6.5

to an integral over the boundary of each surface. For notational simplicity, we assume that the

surface S is translated so that the query point q is at the origin.

In summary, we evaluate the GWN at query point q = 0 with respect to the surface S by

123

evaluating

wS =
1

4π

∮

∂S

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ (6.7)

+
∑

{
intersections of
S and z-axis

}





0.5 if q is on the positive side of S,

−0.5 if q is on the negative side of S.

The first term is our Stokes’-derived boundary formulation, which we evaluate using an error-

controlled adaptive Gaussian quadrature scheme (See Section 6.7.0.4), and the second is a correction

term that accounts for the jump discontinuity in the GWN field over the surface.

Importantly, the nature of this calculation for a given query point (and the associated com-

putational cost) varies considerably according its relative position to the surface and its boundary

edges, as shown in Figure 6.1. We present the full algorithm to compute the GWN of an arbitrary

surface in Algorithm 8.

• Far-field: For points that are far from the surface, i.e., outside some bounding box en-

compassing the surface, the number of intersections is known to be zero, or can be made

to be zero by rotating the surface. We therefore evaluate the GWN directly with only our

boundary formulation.

• Near-field: For points that are near the surface, we still use the same boundary formu-

lation, but must also perform a line-surface intersection test to identify the appropriate

correction term (See Section 6.7.0.1).

• Edge-cases: For points which are near to a boundary edge, the necessary correction term

cannot be reliably computed, and so we instead augment the surface with additional trim-

ming curves to extract the problematic portion. The remaining surface can be evaluated

as the near-field case, and the extracted portion is processed separately, likely as a far-field

case relative to the original query point.

In principle, the appropriate correction term can be computed from the result of an inter-

section test between the surface and an arbitrary line by subsequently rotating the surface so that

124

the line is parallel to the z−axis. Furthermore, there is benefit to selecting a line for which it is

straight-forward to identify (or preferably avoid altogether) certain types of edge-cases. As inter-

sections with lines that are near-tangent to the surface are the most difficult to identify and resolve

via the proposed algorithm, we heuristically select a line with a direction equal to an approximated

average surface normal, which is computed for each surface as preprocessing. In cases where the

symmetry of the surface results in a average normal with near-zero magnitude, we instead select

the line randomly.

We also acknowledge at this point a similar boundary-oriented approach suggested in the

preprint [109], in which the set of boundary curves for a 3D surface are projected onto a unit sphere

around the query point, partitioning its the unit sphere into watertight regions. The GWN of the

query point is then evaluated as the sum of the integer winding number of each region, weighted

by its surface area, a calculation whose precision depends on a discretization of the boundary.

Importantly, this method also involves performing a line-surface intersection test, but does so for

all configurations of query point and surface, and not just those in the near-field. Furthermore, our

proposed method is far less sensitive to the precision of the line-surface intersection test, making

it considerably more reliable (See Section 6.7.0.1).

In the following sections, we justify our method mathematically by first providing an overview

of Stokes’ theorem, and then describing how its application to this problem naturally delineates

each of the three above cases. Finally, we describe our strategy for evaluating the GWN field at

points which are coincident to the surface.

6.4.1 Reformulation with Stokes’ Theorem

In its most general form, Stokes’ theorem states that if a vector field F (x) is defined with

continuous first derivatives on a region in R
3 containing the surface S, then

∫∫

S
∇× F · dS =

∮

∂S
F · dΓ, (6.8)

where ∂S is the total boundary of the surface, which may contain multiple disconnected curves.

125

Evaluating such an integral via numerical quadrature along the lower-dimensional space nat-

urally improves the efficiency of the total method. This is a well-established advantage of Stokes’

theorem, and is indeed the basis of the method proposed by Gunderman et al. [60] for the purposes

of evaluating integrals on trimmed NURBS surfaces. In cases where the “antiderivative” F can be

evaluated exactly for a given definition of ∇× F , the number of quadrature nodes in a scheme of

fixed order n is reduced from O(n2) points on the surface to O(n) points on the boundary. This

approach is less effective for arbitrary surface integrands, however, as computing F numerically at

each quadrature node on the boundary typically returns the complexity of the quadrature scheme

returns to O(n2).

In this problem context, the use of Stokes’ theorem fundamentally improves the stability of

the ensuing quadrature scheme, as query points which are near to the surface but not the boundary

are not subject to the same near-singular behavior in the integrand. Furthermore, we capitalize

on this boundary reformulation through our use of a geometrically adaptive quadrature method,

the computational burden of which is dramatically reduced by considering subdivision only of 3D

space curves.

To apply Stokes’ theorem to the integral in Equation 6.5, we take

∇× F =
1

4π
· x

||x||3 . (6.9)

Recall that we have made the assumption that the query point q is located at the origin, and so

this integrand is continuous on the surface whenever x ̸= 0, i.e., the query point is not coincident

with the surface. (We treat this case explicitly in Section 6.4.2).

Given this definition of ∇× F , we are interested in its “antiderivative” F . There are many

distinct vector fields that satisfy Equation 6.9, and we consider one such field in Cartesian coordi-

nates:

F (x, y, z) =
1

4π

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
. (6.10)

If the theoretical conditions of Stokes’ theorem can be met, then we can evaluate the GWN

126

for an arbitrary surface with the following 1D line integral,

wS =
1

4π

∮

∂S

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ, (6.11)

a reformulation of the problem statement that comes with a number of computational advantages.

However, the formulation of F in Equation 6.11 introduces some theoretical difficulties. For

the conditions of Stokes’ theorem to be met, both the original vector field and its antiderivative

must be continuous not just on its domain of integration (the boundary of the surface) but also on

the original domain of integration (the surface itself). Notably, this antiderivative is discontinuous

whenever x2 + y2 = 0 on the surface, i.e., whenever the surface intersects an infinite line extending

in both z directions from the query point. In such cases, we cannot mathematically justify the

direct use of Stokes’ theorem, even if the resulting line integral is itself continuous.

However, this particular antiderivative F , characterized by a line of discontinuities on the

z-axis, was chosen in this section somewhat arbitrarily. Indeed, one can analogously define a family

of antiderivatives F , each characterized by a different line of discontinuities. Computationally, it

is practical to consider these different choices for F not as explicit vector fields, bur rather as a

rotation of the surface so that the desired line of discontinuities is aligned to the z-axis. In this

way, applying Stokes’ theorem requires choosing an antiderivative F whose corresponding line of

discontinuities does not intersect the surface, and rotating the surface accordingly.

In Figure 6.4, we see examples of different configurations of the surface and the line, and how

the surface can be rotated to avoid the line of discontinuities. In practice, however, one cannot

always identify such a line for query points which are nearer to the surface, nor is it necessarily the

case that one exists (see Figure 6.4(c)).

In the following sections, we describe and justify the use of a correction term for our boundary

formulation that directly accounts for the discontinuity in the antiderivative F , as well as a robust

treatment of edge cases. This permits the use of the boundary formulation in Equation 6.11 for

all possible query points, the computational benefits of which far outweigh the marginal costs of

identifying the case and processing the surface as needed.

127

Figure 6.4: We classify far- and near-field points according to whether the selected line of discon-
tinuities for antiderivative F either (a) does not intersect the surface, (b) can be rotated to avoid
intersecting the surface, or (c) unavoidably intersects the surface.

6.4.1.1 Far-field: Direct Application of Stokes’ Theorem

In cases where the query point is outside a bounding box of the surface, we can easily construct

a line L which contains the query, but does not intersect the surface. This line corresponds to a

particular form of the antiderivative F that is continuous on the surface, and so we can directly apply

Stokes’ theorem to evaluate the GWN. In addition to being the most straightforward application

of Stokes’ theorem in this work, is also the most common since an arbitrary query point will be

considered far from all but a few surfaces in a typical CAD model.

Although there exists an antiderivative F that corresponds to any line L, it is somewhat

tedious to construct F explicitly for an arbitrary line. Instead, we prefer to use Equation 6.11

during numerical evaluation, which assumes that the line of discontinuities is aligned to the z-axis.

This means that in cases where L is not already aligned with the z-axis, we rotate the surface so

that this is the case.

It may also be the case that a z-aligned line intersects the surface, but a line in the direction

of the x- or y-axis does not. In these cases too there are simple analytic forms of antiderivative F ,

and so our implementation uses them directly in place of Equation 6.11, as this does not require

128

Figure 6.5: Far-Field Evaluation: For points that are exterior to a bounding box containing the
surface (a), we directly apply Stokes’ Theorem and evaluate the GWN as an integral along the
surface’s boundary curves (b).

Figure 6.6: Near-Field Evaluation: For points that are interior to a bounding box, the Stokes’
Theorem reformulation cannot be applied immediately. Instead, we can consider the points of
intersection between the surface and a line containing the query. If an intersection occurs well
within the interior of the surface, then we can proceed via integration of the same integrand in
Equation 6.11 while accounting for each intersection (if any) by adding or subtracting a value of
0.5.

rotation of the surface:

wS,x-axis =
1

4π

∮

∂S

〈
zx

(y2 + z2) ||x⃗|| ,
−yx

(y2 + z2) ||x⃗|| , 0
〉
· dΓ (6.12)

129

and

wS,y-axis =
1

4π

∮

∂S

〈
xy

(x2 + z2) ||x⃗|| ,
−zy

(x2 + z2) ||x⃗|| , 0
〉
· dΓ. (6.13)

6.4.1.2 Near-field: Analytically Adjusted Stokes’ Theorem

In cases where the query point is inside a bounding box of the surface, we can no longer

guarantee that there exists a line L which does not intersect the surface. Instead, we consider an

arbitrary direction for L, and must explicitly test for intersection between L and the surface. In

this work, we take the simpler near-field case to be one where all intersections between L and the

surface occur away from the surface edges. We also require each intersection to be non-degenerate,

in the sense that L is not tangent to the surface, and the surface has non-zero normal at each point

of intersection. When these conditions for each intersection are not met, the query point is handled

as an edge-case.

Naturally, distinguishing the near-field and edge cases requires first identifying the location of

all intersections between the surface and the line in the parameter space of the surface. As noted in

Section 6.3, there are many numerical ray-casting algorithms one could apply to find intersections

between this line and the surface, and in principle, any can be used for the purposes of evaluating

the GWN. We describe our own geometric subdivision approach in Section 6.7.0.4, which in contrast

to many algebraic alternatives, is designed to take advantage of the broader GWN algorithm’s high

tolerance for imprecision. It is this imprecision that ultimately makes this method considerably

more robust than traditional ray-casting methods, as we are essentially able to perform a different

surface-line intersection calculation for each surface in the model, with most surfaces not requiring

this calculation at all.

Strictly speaking, any intersection between L and the surface violates the conditions of Stokes’

theorem. However, we propose to compute the GWN using the same boundary integral formulation

as Equation 6.11, but with the condition that for each intersection, the value 0.5 is added or

subtracted according to the orientation of the surface at the point of intersection, resulting in

Equation 6.19. Essentially, this adjustment compensates for the jump discontinuity present in the

130

GWN field along the surface.

We motivate the use of an explicit correction term by means of analogy in two spatial dimen-

sions, and present a rigorous proof in Section 6.5. As summarized in Section 6.3.2, the GWN for an

arbitrary curve in 2D can always be computed in terms of (1) an integer winding number for the

curve closed by a straight line and (2) a generalized winding number defined by that straight line

closure. An important observation, however, is that the fractional component of the curve’s total

GWN is derived exclusively from its boundary (the two points which define the curve’s closure),

and is otherwise completely independent of the curve’s internal geometry. Indeed, given a function

for the GWN field of the closure, in some sense the curve’s internal geometry merely determines

whether we add or subtract integer valued constants to the fractional value provided by this func-

tion to obtain the correct GWN of the curved shape. This can be seen in Figure 6.7, where the

difference in the GWN field between the curve and its closure is integer valued.

Returning to 3D, one can also consider the evaluation of the GWN via Stokes’ Theorem to

always begin with a fractional value that is derived exclusively from the surface boundary, without

any knowledge of the surface’s internal geometry. With this value computed, one must compensate

for the internal geometry via the addition of half-integer values determined through the number

and orientation of intersections of a line with the surface (see Figure 6.8).

It is through this connection that we draw our closest analogy to the treatment of the 2D

GWN in the previous chapter. In both cases, the GWN field is evaluated close to the shape with

the same boundary formulation that defines the GWN in the far-field, but must adjust the value

according to the shape’s internal geometry. In 2D, the relevant boundary formulation is a simple

subtended angle, while in 3D it is not the GWN of any particular shape, but rather the unaltered

boundary integral in Equation 6.11.

6.4.1.3 Edge Cases: Disk Extraction via Trimming Curves

We now consider the remaining edge cases for which the query point is inside the surface

bounding box, but the correction term in Equation 6.19 is theoretically unfounded. This occurs

131

Figure 6.7: In 2D, the difference between the GWN for a curve (left) and the value of a particular
boundary term (in this case the GWN of a linear closure) (middle) is always integer valued, and
partitioned by the geometry (right). This suggests finding the GWN for the curve by evaluating
the boundary term, and adjusting it using integer values determined by the curve.

Figure 6.8: Analogous to the 2D case, the difference between the 3D GWN for a curved surface
(left, shown at two planar slices) and the value of a particular boundary term (middle) is always
half -integer valued, and partitioned by the geometry (right).

when the line of discontinuities intersects the surface at a boundary, at a cusp, or is tangent to

the surface (See Figure 6.9). We treat all edge cases uniformly, by removing from the surface a

disk in parameter space around the point of intersection. This guaratnees that the line does not

intersect the surface at the otherwise problematic intersection point, and permits evaluation via

Equation 6.19. The extracted disk is then fed back into the original algorithm for re-processing.

132

Figure 6.9: Edge-Case Evaluation: For all points that are interior to a bounding box, we consider a
line containing the query point. If the line intersects the surface at (a) a point on the surface near to
the boundary or (b) a point for which a normal cannot be defined (i.e., a cusp), we clip the surface
along a small disk in parameter space. This removes the intersection with the original surface, and
the remaining disk can be fed back into our algorithm for reprocessing. If the intersection occurs at
(c) a tangent point between the line and the surface, we apply a random rotation to the surface that
does not change the GWN evaluation, but is likely to result in a case captured by the procedure
in Section 6.4.1.2.

Importantly, the produced disk occupies a much smaller bounding box than the original surface,

and so the computational cost of the re-processing is significantly reduced (See Figure 6.19).

The choice of disk radius is mathematically arbitrary, but we have found empirically that

fixing the radius r to be 1% of the bounding box diagonal is sufficient to ensure that the disk

is small enough to be processed efficiently, but large enough to avoid numerical instability in

later quadrature. The more important consideration, however, is that the disk is large enough

to compensate for any numerical imprecision in the intersection calculation, in the sense that a

disk centered at the recorded intersection point will also contain the actual intersection point (See

Section 6.7.0.1). Our strategy for handling edge cases is such that it could be used to handle any

query point at increased computional cost, and so we also conservatively treat any intersection

133

within the same distance r of the surface boundary as an edge case. Altogether, this ensures that

the accuracy of the overall GWN evaluation is robust to the intersection calculation.

The only edge case which is not well-handled by this strategy is the case of a line that is

tangent to the surface, as the remaining surface may still intersect the line. In these cases, we

instead rotate the surface (i.e., consider a different line) and feed the rotated surface into the

original algorithm (See Figure 6.9(c)). While this is the most computationally expensive edge case

to handle, it is also the most uncommon.

6.4.2 GWN for Coincident Points

Strictly speaking, the generalized winding number of query points that are coincident with

the surface is undefined, as the fundamental mathematical definition of the GWN, (Equation 6.9)

is discontinuous. On a conceptual level, we require that our algorithm maintain exact geometric

fidelity for completely arbitrary query points, which includes those coincident with the surface.

However, there are many practical reasons why our algorithm should always return a sensible

numeric value for the GWN that is mathematically justified according to some convention.

First and foremost, returning reasonable values for coincident winding numbers makes the

method more amenable to downstream applications of the GWN field, many of which will expect

some intuitive value to be returned. For example, if the shape is indeed watertight, then the

GWN of all coincident points should be half-integer valued. This is a largely intuitive choice, as

it means that when winding numbers are mapped to a containment decision via a simple strategy

like rounding, all coincident points are treated equivalently.

Winding numbers are typically computed in batches without any prior knowledge as to their

position relative to the surface, but it is not difficult to imagine a circumstance in which large,

structured groups of query points do indeed coincide with some similarly structured portion of the

surface. In this case, it is important that the GWN results in numerical values that are consistent

with one another and the rest of the field. This prohibits the common solution of simply perturbing

the query points slightly to avoid coincidence, as this may move truly interior or exterior points

134
Algorithm 8: TrimmedSurfaceGWN Evaluate the generalized winding number for a
trimmed NURBS surface.
Input: S: Trimmed NURBS surface

q: Query point
Output: wS : The GWN evaluated at q

1 Γ← {} // Initialize the 1D curves to later integrate over

2 wS = 0 // Initialize the GWN

3 S ← S − q // Shift the patch so the query point is at origin

4 if q /∈ BoundingBox(S) then
/* Rotate patch so z-axis does not intersect patch */

5 L← Non-intersecting Line

6 S ← RotateToZ(S,L)

7 Γ← BoundaryCurves(S)

8 else

/* Compute approximate intersections between z-axis and S */

9 z, u, v ← LinePatchIntersection(S, z-axis, ϵls)

10 foreach intersection point {(u0, v0), z0} do
11 n⃗← Su(u0, v0)× Sv(u0, v0)

12 if S(u0, v0) is an interior point of S with normal n⃗ ̸= 0 then

/* Add a constant to the GWN according to orientation */

13 if n⃗zz0 > 0 then

14 wS = wS − 0.5
15 else if n⃗zz0 < 0 then

16 wS = wS + 0.5
17 else

18 wS = wS + 0.0

19 else if S is tangent to the z-axis at S(u0, v0) then
/* Rotate the surface and try again */

20 return TrimmedSurfaceGWN(RandomRotation(S), 0)

21 else

/* Extract a disk in parameter space from S with radius equal to 1%

of the patch parameter space bounding box */

22 S, Sdisk ← ExtractParameterDisk(S,D)

23 wS = wS + TrimmedSurfaceGWN(Sdisk, 0)
/* Proceed with the rest of the surface */

24 Γ← BoundaryCurves(S)

25 foreach 1D Curve in Γ do

26 wS = wS + EvaluateLineIntegral(C, ϵq)

27 return wS

135

across a boundary.

This is a problem unique to curved shapes, as the GWN of a point coincident with a line

or triangle is straightforward to identify and exactly set equal to zero. We address the analogous

issue for 2D curves in the previous chapter by defining the winding number of coincident points

to be the average of the value across the jump discontinuity of the scalar field. This value can be

computed exactly in 2D, as it is equivalent to the value of the angle subtended by a tangent line

to the curve at the query point and each endpoint. The difficulty then is is identifying when the

query point is coincident with the curve, as doing so directly is unnecessary for all but coincident

points.

In 3D, we analogously take the winding number of coincident points to be the average of the

values computed across the jump discontinuity of the scalar field. However, the line-surface inter-

section routine we call for near-field evaluation of the GWN field immediately identifies such points,

which allows for more explicit handling of the discontinuity. For example, if the intersection point

is known to be interior within the surface, then the jump discontinuity is known by Equation 6.19

to contribute a value of 0.5 on one side and −0.5 on the other. This means that if the origin is at

the intersection, we add the average of these two values, i.e., zero, to the integral evaluated along

the boundary curves.

The only unaddressed case is when the query point is located coincident with a boundary

curve of the surface. This case is uniquely difficult to solve via our Stokes’ theorem reformulation, as

the evaluated antiderivative is non-trivially discontinuous along its domain. Similarly, this prevents

the use of more general quadrature strategies that are built around dimension reduction via Stokes’

Theorem such as that described by Gunderman et al. [60]. We handle these edge cases in much the

same way as in Section 6.4.1.3, where we remove a disk from the surface around the query point.

The GWN calculation for the larger subdivided surface is performed as normal, but we consider

the GWN of the removed disk to be zero, an assumption that only holds in the near-field because

the query point is coincident to the disk. To strengthen this assumption, we remove a much smaller

disk than in the general case.

136

Although this procedure does introduce some small amount of error in the overall calculation,

we find it to be largely insignificant for downstream containment queries, as the side to which a

given half-integer GWN value is rounded is largely dependent on the floating point error throughout

the broader method. However, one could address such points more directly with other integration

techniques. Of particular note is that, the analogous discontinuity in the original surface integrand

in Equation 6.5 is, in fact, removable in the case of coincident points. Somewhat paradoxically, this

means that evaluating the surface integral for coincident points is considerably more stable than

would otherwise be the case for near-field query points. Therefore we handle this case with a more

standard technique that avoids placing quadrature nodes on the boundary altogether, such as the

method of Chin et al. [29] to perform the necessary integral directly over the portion of the patches’

parameter space that is made visible by the trimming curves. Naturally this 2D surface integral

would be considerably more computationally expensive than our Stokes’ theorem formulation, but

it would only need to be applied for a small subset of query points to achieve accurate results.

6.5 Analytic discontinuity fix for Near-Field GWN

We now provide a formal proof of the correction term in Equation 6.19, which suggests that

one can account for discontinuities in the Stokes’ theorem formulation analytically by adding or

subtracting 0.5 for each intersection between the surface and the z-axis.

As in Section 6.4.1.2, we assume that all intersections occur on the strict interior of the

surface, have well-defined normal vectors on the surface at the point of intersection (i.e., do not

occur on cusps of the surface), and are such that the z-axis is not tangent to the surface. An

important consequence of these assumptions is that there is necessarily a neighborhood around

the point of intersection which is locally flat, meaning there is some other line in 3D space that

does not intersect the surface within this neighborhood. As established in Section 6.4.1.1, this

means that the value of the winding number with respect to the portion of the surface within this

neighborhood depends only on the neighborhood’s boundary. In other words, one can deform the

surface in the interior of this neighborhood without changing the winding number evaluated over

137

the entire surface.

In particular, we consider a deformation of the surface within this neighborhood so that within

it there exists a flat disk that is orthogonal to the z-axis, a process akin to to “flattening” the surface

around points of intersection between the z-axis and the surface. Importantly, this procedure does

not alter the value of the generalized winding number, nor its numerical calculation within the

proposed algorithm, but does considerably simplify its analytic evaluation within subsequent steps

of this proof.

To reiterate, our objective is to evaluate the generalized winding number with respect to the

surface S by computing numerically only an integral along its boundary. Thus far, we have demon-

strated that this task is equivalent to evaluating the generalized winding number with respect to a

surface which is deformed around points of intersection with the z-axis. For notational simplicity,

we continue to refer to this deformed surface as S. To evaluate wS , we consider the relevant surface

integral to be partitioned by the flat disk, D, which is constructed by our choice of deformation,

such that

wS =
1

4π

∫∫

S

x⃗ · n̂
||x⃗||3 dS,

=
1

4π

∫∫

D

x⃗ · n̂
||x⃗||3 dS +

1

4π

∫∫

S−D

x⃗ · n̂
||x⃗||3 dS.

We assume at this point, without loss of generality, that there is only a single point of intersec-

tion between the surface and the z-axis, recognizing that each point of intersection results in an

additional disk, and an additional partition of the integral which can be evaluated in the same way.

By construction, the punctured surface S − D does not intersect the z-axis, and so we can

138

apply Stokes’ Theorem to this portion of the integral:

wS =
1

4π

∫∫

D

x⃗ · n̂
||x⃗||3 dS +

1

4π

∫∫

S−D

x⃗ · n̂
||x⃗||3 dS

=
1

4π

∫∫

D

x⃗ · n̂
||x⃗||3 dS

+
1

4π

∮

∂(S−D)

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ

=
1

4π

∫∫

D

x⃗ · n̂
||x⃗||3 dS

+
1

4π

∮

∂Dc

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ

+
1

4π

∮

∂S

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ,

where ∂S is the total boundary of S prior to the removal of the disk D, and ∂Dc is the boundary

of the disk, oriented negatively so that its orientation is consistent with ∂S. Of these three terms,

we only compute numerically the integral of the line around the boundary ∂S, as described in

Section 6.7, i.e., the same collection of curves over which we integrate to find wS in the case where

S does not intersect the z-axis. For the remaining terms, we instead consider their behavior as the

radius of the disk D approaches zero.

The more direct of the two is the surface integral over the diskD. Because this value is exactly

equal to wD, i.e., the winding number of the surface D with respect to the origin, it necessarily

goes to 0 as the disk decreases in surface area. Therefore it remains to show that the line integral

around ∂Dc approaches ±0.5 as the radius of the disk approaches 0.

By the construction of the deformed surface, we can parameterize the boundary of this disk

on t ∈ [0, 1] straightforwardly as

Γ(t) = ⟨r cos(2πt),−r sin(2πt), z0⟩ ,

where z = z0 ̸= 0 is the center of the disk and r is its radius. We substitute this parameterization

of Γ(t) and the curve differential dΓ into the integral in question and after some simplification, we

have

139

1

4π

∮

∂Dc

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ (6.14)

=
1

4π

∫ 1

0

−r sin(2πt)·z0·−2πr sin(2πt)−r cos(2πt)·z0·−2πr cos(2πt)

(r2 cos2(2πt)+r2 sin2(2πt))
√

r2 cos2(2πt)+r2 sin2(2πt)+z2
0

dt (6.15)

=
1

2

∫ 1

0

z0r
2(sin2(2πt) + cos2(2πt))

r2
√
r2 + z20

dt (6.16)

= −z0
2

∫ 1

0

1√
r2 + z20

dt (6.17)

= − z0

2
√
r2 + z20

. (6.18)

Clearly, as r → 0+, we have that this value approaches −0.5 if z0 > 0 and 0.5 if z0 < 0.

Altogether, in the case where there is an intersection between between the z-axis and the original

surface S, we can write

wS =
1

4π

∮

∂S

〈
yz

(x2 + y2) ||x⃗|| ,
−xz

(x2 + y2) ||x⃗|| , 0
〉
· dΓ

+





0.5 if the origin is above the intersection point,

−0.5 if the origin is below the intersection point.

In essence, this means that in many cases where Stokes’ Theorem does not otherwise apply due

to the presence points on the surface that intersect with the z-axis, we can practically compute

the generalized winding number by evaluating an integral along the boundary of the surface, and

adding or subtracting the value 0.5 according to the orientation of the surface at this intersection.

6.6 Numerical Experiments and Results

6.6.1 Generalized Winding Numbers on Open CAD Models

We first justify our choice of a boundary formulation in our solution method by comparing

the accuracy of a 2D numerical integration scheme that solves Equation 6.5 to a 1D numerical

integration scheme that solves Equation 6.19. We perform this comparison by evaluating the GWN

field at two slices of the sphere model from Figure 6.11(d) using a simple and direct application of

140

a 20-point Gaussian quadrature rule. The derived 1D method involves applying this 20-point rule

to each boundary curve for a total of 4 · 20 evaluations of the NURBS surface. On the other hand,

the 2D scheme involves a tensor product 20-point rules for a total of 202 evaluations of the NURBS

surface.

We show the results of this comparison in Figure 6.10, where we see that errors in the 2D

scheme are present for all points near the surface, where errors in the 1D scheme are only present

for points near the surface boundary. While it is true that both types of errors can be mitigated

through the use of adaptive quadrature, applying such a strategy to a 2D scheme would quickly

require unreasonably many surface evaluations to achieve the same level of accuracy as our adaptive

1D scheme. Not to mention the fact that the accuracy of the 2D scheme is further compromised

by the presence of trimming curves, which are far more naturally handled in the 1D scheme.

We now turn our attention to the full implmenetation of our algorithm, which solves Equa-

tion 6.19 at arbitrary points up to arbitrary accuracy with a more sophisticated, error-controlled

adaptive quadrature scheme (See Section 6.7.0.4). To demonstrate the versatility of our algorithm,

we evaluate the GWN on a number of example CAD models taken from the ABC dataset [91] (see

Figure 6.11). For the shapes in Figure 6.11(a-c), we have intentionally and arbitrarily made the

models non-watertight by removing portions of the surface for the purposes of demonstration.

For both watertight shapes and the portions of non-watertight shapes that are far from

disconnected boundaries, we observe that the GWN field neatly partitions the domain into exterior

and interior regions. In this way, it is clear for values which are near integers as to how the

corresponding point should be classified: points where the GWN field is close to 0 where the query

point should be considered outside the shape, and close to 1 where the query point should be

considered inside the shape.

Closer to these gaps in the shape, however, we see that the GWN field has degraded to

values with a larger fractional component. In some sense, this degradation depicts an increasing

amount of uncertainty in the subsequent containment classification. The simplest strategy to map

these fractional values to a containment decision is to round them to the nearest integer, as this

141

Figure 6.10: We compare equivalent fixed-order, non-adaptive numerical integration techniques to
solve (a) Equation 6.5 via a 2D tensor product Gaussian quadrature scheme and (b) Equation 6.19
via a 1D Gaussian quadrature scheme. Although both methods utilize the same 20-point Gaussian
quadrature rule, the derived 2D method requires evaluating the surface 202 times, while the derived
1D method requires doing so 4 · 20 times. Nevertheless, the scheme in (b) results in a more sparse
distribution of numerical errors.

is guaranteed to agree with the boundary for points that are nearby and provides a reasonable

classification for points which are further away.

As examples, we consider in Figure 6.12 the non-watertight shapes in Figure 6.11(a, c), and

construct a 0.5-isosurface of the GWN field. In the case of the “spring” shape, the isosurface does

indeed faithfully represent a flat boundary at the end of the coil. On the other hand, a nearly

identical gap in the “bobbin” shape has a corresponding isosurface with a concave dent. This can

142

Figure 6.11: We demonstrate our calculation of the GWN field on shapes of varying size, complexity,
and watertightness. The 3D scalar field is viewed on various non-planar slices through the model
where, for clarity of illustration, we have increased the opacity of all values less than 0.5, i.e., points
which would be classified as “exterior” by a simple rounding heuristic.

143

be attributed to the fact that the GWN is a global property of the bounding geometry. Despite

the GWN field rapidly decaying away from each surface in the model, far-away parts of the shape

nevertheless carry a non-negligible influence on the GWN field everywhere in space. In the “bobbin”

shape (Figure 6.11(c)), the GWN at the points of the removed disk are, in fact, slightly less than

0.5 due to the presence of asymmetric gaps in the top and bottom of the shape. In contrast, the

GWN in the “spring” shape (Figure 6.11(a)) is exactly 0.5 due to the gaps being coplanar with one

another, which is largely a coincidence of the shape’s specific geometry.

Figure 6.12: The fractional values of the GWN field can be mapped to a specific containment
classification by rounding to the nearest integer. (a) For some shapes, this implied boundary
between interior and exterior regions closely matches originally missing surfaces. (b) For many
other surfaces, the implied boundary isosurface may be unexpectedly curved. (c) The surface in
(b) viewed from the side.

More generally, we make no claim that the raw GWN field is an optimal proxy for the

containment query in the much broader context of surface repair (see [48] for a thoughtful discussion

of the topic). In this work however, we are primarily interested in applications of the GWN in

contexts where the priority is faithfully representing input geometry, as opposed to describing an

unknown, ground-truth surface from which the input geometry is a subset. Even still, the GWN

field has been shown to be useful as input for other techniques, such as those that use more

sophisticated classification algorithms [79] or use the GWN as a prior for more rigorous statistical

analyses [151]. While we do not explore such applications further in this work, we believe that the

accurate and efficient evaluation of the GWN field as presented is a necessary precursor to enabling

144

such techniques on more general CAD models.

6.6.2 Accuracy Evaluation

The key feature of Algorithm 8 is that it is capable of evaluating the GWN field exactly with

respect to arbitrary input geometry. We can see this in Figure 6.13 by considering the GWN on a

small, highly detailed subset of the complex gear model from Figure 6.11(d). In specific contrast

with methods involving linear discretization into a triangle mesh or related format, this evaluation

can be done at arbitrary points in space without the need for a potentially unknown amount of

preprocessing. While modern surface tessellation schemes can use a linear deflection parameter

that is sufficient for controlling how far the triangulation can be from the original shape, it can be

difficult to know a priori if this level of discretization is necessary for the same level of accuracy

at a particular point. This can lead to unnecessary computational expense in the form of globally

dense triangulations. In contrast, by operating directly on the trimmed surfaces in a shape, our

algorithm is adaptive for each query to the requested level of accuracy.

Figure 6.13: By operating directly on the trimmed surfaces of the CAD geometry, we are able to
evaluate the GWN field exactly at arbitrary distances to the surface without additional preprocess-
ing.

To see more quantifiably the effect of discretization on evaluation of the GWN field, we

145

103 104 105 106

Number discretized elements (triangles or points) [log scale]

0

20

40

60

80

100
%

 q
ue

ry
 p

oi
nt

s m
isc

at
eg

or
ize

d

1e-01 1e-02 1e-03 1e-04 1e-05

Original WN algorithm on triangle mesh
Fast WN algorithm on triangle mesh
Fast WN algorithm on point cloud

103 104 105 106

Number discretized elements (triangles or points) [log scale]

0

20

40

60

80

100

%
 q

ue
ry

 p
oi

nt
s m

isc
at

eg
or

ize
d

1e-01 1e-02 1e-03 1e-04 1e-05

Original WN algorithm on triangle mesh
Fast WN algorithm on triangle mesh
Fast WN algorithm on point cloud

103 104 105 106

Number discretized elements (triangles or points) [log scale]

0

2

4

6

8

10

Av
er

ag
e

pr
oc

es
sin

g
tim

e
(s

ec
on

ds
)

1e-01 1e-02 1e-03 1e-04 1e-05

Averaged Original WN Time
Averaged FWN Triangle Soup Time
Averaged FWN Point Cloud Time

Figure 6.14: Linear discretizations of a NURBS unit sphere as triangle meshes and point clouds
necessarily approximate the geometry. When applying existing linear WN approaches [79, 10] to
these meshes, this leads to miscategorized containment queries for query points close to the surface,
especially with lower resolution meshes. The charts show the percentage of 10k query points that are
miscategorized by the different approximated approaches when the samples are taken at distances
in the vicinity of 10−4 (left) and 10−6 (center) from the surface. The meshes are generated from
the CAD model using Open Cascade’s deflection parameter (gray annotations), corresponding to
allowable distance from the discretized mesh to the CAD surface. At the same time, increased
discretization resolutions lead to increased memory requirements (shown on the x-axis in terms of
the number of discretized triangles or point primitives) and to higher averaged processing times
(right plot). In our use of the point cloud method [10], we project the point samples to the surface
of the sphere, and use the sphere normals. In all examples, we note that our GWN algorithm
returns no misclassifications among all sampled points.

adapt existing GWN techniques for triangle meshes and point clouds to a non-watertight CAD

model that has been tessellated at varying levels of deflection [124], i.e. sufficiently resolved

triangulations to capture features up to a given distance from the surface. For the experiments in

Figure 6.14, we utilized the libigl [80] implementations of the technique of [79] as applied to such

a triangulated shape, which we refer to as “Original WN”, as well as the libigl implementation of

the algorithms from [10] for point clouds (“Fast WN on point cloud”) and triangle meshes (“Fast

WN triangle mesh”), computing an exact GWN field for the approximated geometry. Specifically,

we used Open Cascade to generate several triangle meshes at specified deflection values ranging

from 10−1 to 10−5 for a unit sphere NURBS model defined by six biquartic patches [33]. Each

lower order of magnitude of deflection is satisfied by approximately an order of magnitude more

triangles, with the highest resolution mesh requiring about 1.6 million triangles to resolve features

at distances of at most 10−5 from the surface. We also generated a point cloud from each triangle

mesh by taking a random sample within each corresponding triangle and projecting its position

and normal to lie on the unit sphere. We then queried the GWN on these meshes using collections

146

of query points at successively closer distances to the surface. Figure 6.14(a) shows the percentage

of ten thousand query points inside the sphere at a distance of 10−4 from the surface that were

misclassified as outside the sphere, while Figure 6.14(b) shows the same results for a collection of

points at a distance of around 10−6 from the surface. As can be seen from the figure, surfaces that

were discretized using a deflection of 10−5 are able to properly resolve the containment of points

at distances of 10−5, but the coarser meshes cannot. While finer meshes are able to resolve closer

points, the disretization grows exponentially larger, requiring more memory and processing time, as

shown in Figure 6.14(c). In contrast, our method is able to accurately classify the entire collection

of points without the need for an expensive intermediate discretization.

6.6.3 Performance Evaluation

We now demonstrate the performance of Algorithm 8. The following numerical experiments

were conducted on an AMD Ryzen 7 5700 CPU with 32GB of RAM. These results are computed

sequentially, although we note that the evaluation of the GWN field at many points is a highly

parallelizable task.

Although a triangulated CAD model is composed of significantly more primitive components

than the original collection of surfaces, methods that operate on CAD geometry are typically more

expensive than equivalent operations on STL data types. However, our use of precomputed subdi-

vision surfaces and efficient caching of per-curve quadrature nodes allows us to evaluate the GWN

field at a practical rate, even without the use of more sophisticated hierarchical data structures,

the implementation of which we largely consider to be future work.

In Table 6.1 we show the average time needed to evaluate each query point on a uniform grid

of 50×50×50 points located in a bounding box of each shape, as well as a per-query average. Across

all query points, we also consider the average time needed to evaluate the GWN for each surface in

the shape, further sorted between each of the three cases described in Section 6.4.1, i.e., far-field,

near-field, and edge cases. We also record the fraction of all point-surface GWN calculations across

the shape which are classified as each of these three cases to better understand the distribution of

147

computational cost.

Shape (a) (b) (c) (d)

Number of Patches 2 18 228 1784
Number of Trimming Curves 8 76 1092 10256

% Far-field Evaluation 11.24% 82.73% 99.85% 98.96%
% Near-field Evaluation 45.37% 9.210% 0.107% 00.96%
% Edge Case Evaluation 43.38% 8.053% 0.038% 00.07%

Avg. Time across Query Points 0.0299 0.0054 0.00198 0.0431

Avg. Time for Far-field 1.125× 10−5 9.644× 10−5 0.000837 0.0083
Avg. Time for Near-field 0.000155 0.00143 0.000651 0.0303
Avg. Time for Edge Cases 0.0297 0.00385 0.000495 0.0044

Table 6.1: All times in seconds. We evaluate the GWN field at a uniform grid of query points for
each shape, and record the average time spent to resolve each query. We also show the number of
query points that are treated by each of the three cases described in Section 6.4.1, and the total
time needed to resolve each of these cases. We further explore the performance of the spring model
in Table 6.16.

From Table 6.1, we can see several key features of the performance of our algorithm. Most

notably, we see that although the total time needed to evaluate the GWN field in principle scales

linearly with the number of trimming curves, the total time is influenced far more by the distribution

of query points into the three described cases. For example, although shape (c) has many more

trimming curves than shape (b), it takes less time overall to evaluate its GWN at the selected query

points, as a greater fraction of them are classified as far-field cases.

However, these results also demonstrate that the largest influence on run-time performance

is the adaptive quadrature method used to guarantee accurate numerical results, and which itself

is determined by the applicability of our memoization strategy as described in Section 6.7.0.4. This

process caches the position of quadrature nodes along each trimming curve in 3D space as they

are computed at each level of refinement. Such a strategy is highly effective at amortizing the cost

of repeated evaluations of the GWN field for the same surface, but is less effective in cases like

shapes (c) and (d), where the larger number of surfaces in the shapes means more query points

would be needed to reach the same level of numerical efficiency. Furthermore, this memoization

strategy cannot be straightforwardly applied to edge cases, as the process of disk extraction alters

148

the trimming curves, and therefore the placement of quadrature nodes.

As an example, shape (a) represents a perhaps unexpectedly challenging case for our algo-

rithm where, despite being composed of only two untrimmed patches, it takes the longest to process.

Because the two patches largely share a bounding box, there are few query points are classified

as far-field from either, and of those that remain, many must be classified as edge cases. At the

same time, these edge cases must be resolved without the computational benefits of memoization,

and the long boundaries of each patch means that many levels of subdivision must be needed to

accurately evaluate the GWN field at these points.

One strategy to compensate for this is to refine the surface, splitting it into smaller patches

prior to evaluation. In contrast to the refinement of linear meshes, this operation does not change

the numerical result of our algorithm, but can have a significant effect on performance. Indeed,

by splitting the two patches of shape (a) according to their knot spans (i.e., Bézier extraction), we

can improve computational performance by an order of magnitude, as shown in Figure 6.15 and

Table 6.16. In this example, refinement causes many more query points to be classified as far-field,

which can be evaluated with only the efficient cached quadrature.

6.7 Discussion

In this section, we highlight the computational components that support our implementation

and numerical experiments. Although there are some specifications within these methods that are

unique to our application, we expect that an alternate approach that meets these same requirements

would be similarly suitable.

6.7.0.1 Line-Surface Intersections

To accurately evaluate the sum in Equation 6.19 requires a robust intersection test between

an arbitrary line and an input trimmed NURBS surface. We reiterate that this test is only necessary

in the near-field of the surface, or else the line can be selected according to the surface’s bounding

box to ensure no intersections could be recorded.

149

Figure 6.15: By subdividing the surface, we have considerably improved the performance of our
algorithm. Although we have added more patches and therefore the number of integrals that must
be evaluated, many more points are considered to be in the far-field of other patches, which permits
use of more efficient quadrature rules.

Shape (a) (a, refined)

Number of Patches 2 64
Number of Trimming Curves 8 256

% Far-field Evaluation 11.24% 99.31%
% Near-field Evaluation 45.37% 0.67%
% Edge Case Evaluation 43.38% 0.002%

Avg. Time across Query Points 0.0299 0.000523

Avg. Time for Far-field 1.125× 10−5 0.000399
Avg. Time for Near-field 0.000155 5.77× 10−5

Avg. Time for Edge Cases 0.0297 6.645× 10−5

Figure 6.16: All times in seconds. Comparative results between the original surface and its refined
equivalent. Notably, reducing the size of each patch dramatically reduces the distances at which
edge cases need to be recorded, and so we are able to more effectively utilize our memoization
strategy for far-field query points.

In brief, we find intersections between a line and an untrimmed NURBS patch by recursively

subdividing the patch and removing portions of the untrimmed surface where intersections cannot

occur, verified through a bounding box of the surface. As a base-case for recursion, we treat patches

which are “approximately bilinear” (i.e., have control points which are nearly coincident with the

150

surface along a uniform grid) using the GARP algorithm (Geometric Approach to Ray/bilinear

Patch) [140], which describes a closed-form solution for the intersection of a line with a bilinear

patch. Once an intersection with the bilinear patch is recorded, its coordinates in parameter space

are mapped back to the parameter space of the original surface. When all intersections with the

untrimmed patch are recorded, we purge intersection points which occur outside the parameter

space defined by the trimming curves, evaluated via the 2D GWN for improved robustness [163].

The full algorithm is presented in Algorithm 9.

The use of this algorithm exposes the parameter ϵls, which determines when a sub-patch is

considered to be approximately bilinear (See Algorithm 11). This parameter naturally influences

both the accuracy and the precision of the line-surface intersection routine, as increasing ϵls means

the base-case bilinear patch may diverge more from the ground-truth geometry. However, decreasing

ϵls also increases the number of recursive subdivisions needed to capture the intersection, although

we note that this computational cost is somewhat marginal relative to the burden of the recursive

quadrature algorithm. In our numerical experiments, we have found a choice of ϵls = 10−6 to

be reasonable in terms of computational efficiently, while still providing sufficient accuracy and

precision for the intersection routine.

With respect to accuracy, it is important that the value of ϵls be sufficient that true intersec-

tions are not missed, which occurs most frequently when the line is nearly tangent to the surface.

While this issue can be mitigated with a more conservative tolerance for ϵls, the problem is more

easily avoided in the context of the broader GWN algorithm by selecting the line so that it is

orthogonal or nearly-orthogonal to the surface at the point of intersection. Directly identifying

such a line would require additional processing, such as a closest point query, the cost of which

may exceed that of the GWN calculation. It is for this reason that we heuristically select the line

in the direction of an approximated average surface normal, which is effective for the majority of

non-adversarial CAD surfaces.

On the other hand, the nature of the proposed GWN algorithm is such that, beyond a certain

threshold, improving the precision of the line-surface intersection routine beyond that which is

151

sufficient to ensure its accuracy does not influence the subsequent containment decision. This is

because the intersection point only affects the evaluation of Equation 6.19 through a fixed, half-

integer value, and so the line-surface intersection routine only needs to be precise enough to (1)

correctly identify which side of the surface the query point is on, and (2) ensure the query point is

correctly handled as an edge case.

The first requirement is met by determining surface orientation only after the intersection

point is mapped back to the parameter space of the original surface. This means that even if the

query point is misclassified as being on the wrong side of the bilinear patch, it is only misclassified

with respect to the original surface in adversarial cases.

To address the second requirement, we first consider the case where perform a preprocessing

step on each untrimmed NURBS surface to linearly extend its parameter space by 1% of the

patch’s parameter space bounding box [181]. This means the intersection routine can robustly

capture “near-misses” with the surface in edge cases where an intersection needs to be recorded,

but is not due to numerical error. We also choose a somewhat conservative radius for the disk

removed in the treatment of edge cases (also equal to 1% of the patch’s parameter space bounding

box), which ensures that both the true intersection point and the approximate intersection point

are both contained by the same extracted disk. In doing so, the remaining surface will not intersect

the line regardless, and the GWN algorithm can proceed as normal.

To demonstrate this insensitivity to the choice of ϵls, we evaluate the GWN with respect to

the “teardrop” shape in Figure 6.17. The bottom of this shape is spherical, but is composed of 4

degenerate, bicubic patches rather than the biquintic patches used in the example of Figure 6.10.

The top shape is generated by rotating a polynomial cubic Bézier curve around the z-axis, which

provide inflection points which pose additional challenge for the line-surface intersection test.

Around this shape, 105 points are randomly sampled from a uniform distribution in an axis-

aligned bounding box. For these points, we consider both the number of misclassifications out of

105 across varying levels of ϵls, as well as the average wall-clock run-time needed to evaluate the

GWN across all points. In this example, we set the tolerance for the adaptive quadrature algorithm

152

ϵq = 10−6. As expected, we see that the number of misclassified points rapidly decreases to zero,

while the associated cost of the algorithm increases as more surface subdivisions are needed to

evaluate intersection points. We note, however, that this increased computational cost is indeed

marginal relative to the total cost of the algorithm.

Figure 6.17: We evaluate the 3D GWN on 105 query points uniformly sampled from an axis-
aligned bounding box across various tolerance levels for ϵls. We observe that beyond a certain
threshold, there is sufficient accuracy in the line-surface intersection routine to ensure there are no
misclassifications among the sampled points.

6.7.0.2 Adaptive Quadrature

To precisely evaluate the line integral in Equation 6.19 requires a numerical integration scheme

that is accurate for the near-singular integrand, even if the line integral is numerically stable on a

larger domain than the surface integral in Equation 6.5 (See Figure 6.10).

In our implementation, we evaluate the integral to arbitrary accuracy with a recursive sub-

division approach, applying a fixed-order Gaussian quadrature rule at each level of recursion. We

stop the recursion when the difference between the evaluated integral on the entire curve and the

sum of the integrals on the two halves is less than a user-defined tolerance ϵq.

Gaussian rules are useful as they are capable of maintaining high accuracy even without

153
Algorithm 9: LinePatchIntersection Find all intersections between a line and a
trimmed Bézier or NURBS surface.
Input: L: Line

S: Trimmed Bézier or NURBS surface
ϵls: Numerical tolerance for isApproximatelyBilinear

Output: t, u, v: Lists of the parameters of intersections

/* Initialize empty lists for intersections */

1 t, u, v ← {}, {}, {}
2 if not intersects(L, BoundingBox(S)) then
3 return t, u, v

4 if isApproximatelyBilinear(S, ϵls) then
/* Find up to two line-bilinear patch intersections */

5 t, u0, v0 ← GARP(S,L, ϵ)
6 u, v ← MapToOriginalKnotSpace(u0, v0)
7 return t, u, v

8 else if S is a Bézier surface then

9 return t, u, v ← LineBezierIntersectionRecursive(L, S)
10 else

11 Si ← ExtractBezier(S)
12 foreach Bézier Patch Si do
13 t0, u0, v0 ← LineBezierIntersectionRecursive(L, Si)
14 u0, v0 ← RescaleToKnotSpace(S, u0, v0)
15 concatenate(t, t0)
16 concatenate(u, u0)
17 concatenate(v, v0)

18 t, u, v ← RemoveDuplicates(t, u, v, ϵ)

19 foreach Intersection point ui, vi do
20 if (ui, vi) /∈ TrimmingCurves(S) then
21 pop(t, ti) pop(u, ui) pop(v, vi)

22 return t, u, v

specific structure in the integrand. Our recursive subdivision strategy is specifically chosen because

it effectively concentrates quadrature nodes near unstable regions of the integrand, i.e., when the

query point is close to the 3D space curve which defines the domain of integration. Elsewhere,

where the integrand is stable, we maintain the typically high accuracy of Gaussian quadrature

without additional computational expense. To improve the computational performance of our

own implementation further, we cache the quadrature nodes and surface tangents at each level

of recursion, and reuse these values across multiple queries. The full algorithm is presented in

154
Algorithm 10: LineBezierIntersectionRecursive Recursively find all intersections
between a line and an untrimmed Bézier surface. Use approximate bilinearity as a base
case for recursion. Uses GARP algorithm for internal line-bilinear patch intersection [140].

Input: L: Line
B: Untrimmed Bézier surface
ϵls: Numerical tolerance for isApproximatelyBilinear

Output: t, u, v: Lists of the parameters of intersections

1 if not intersects(L, BoundingBox(S)) then
2 return t, u, v

3 if isApproximatelyBilinear(S, ϵls) then
/* Find up to 2 line/bilinear patch intersections via GARP algorithm */

4 t0, u0, v0 ← GARP(S,L)
5 u0, v0 ← MapToOriginalParameterSpace(u0, v0)
6 concatenate(t, t0)
7 concatenate(u, u0)
8 concatenate(v, v0)
9 return

10 B1, B2, B3, B4 ← split(B)
11 foreach Bézier Patch Bi do

12 t0, u0, v0 ← LineBezierIntersectionRecursive(L,Bi, ϵls)
13 u0, v0 ← RescaleToKnotSpace(B, u0, v0)
14 concatenate(t, t0)
15 concatenate(u, u0)
16 concatenate(v, v0)

17 return t, u, v

Algorithm 12.

The exposed numerical tolerance ϵq in effect determines how many digits of accuracy are

achieved in the computed GWN field. To demonstrate how the choice of ϵq affects the accuracy

and computational efficiency of the algorithm, we repeat the experiment depicted in Figure 6.17 in

Figure 6.18, varying ϵq during the evaluation of the GWN with respect to 105 uniformly sampled

points from a bounding box of the “teardrop” shape. In these examples, we set ϵls = 10−6. The

results of this example most significantly differ from Figure 6.17 in that there is a more clear

relationship between algorithm precision and computational performance.

However, we do observe a similar insensitivity with respect to accuracy, as the number of

misclassified points is indeed equal to zero for all values less than ϵq < 0.01. This is not unexpected,

155
Algorithm 11: isApproximatelyBilinear Returns true if a Bézier patch is approxi-
mately bilinear according to the position of its control points

Input: S: Order (p, q) Tensor product Bézier patch
Input: S: Order (p, q) Tensor product Bézier patch

ϵ: Numerical tolerance for distance

1 B(u, v)← Bilinear surface defined by 4 vertex control points

2 if p ≤ 1 or q ≤ 1 then

3 return True

4 for i = 0 . . . p do

5 for j = 0 . . . q do

/* Select the control point with these indices */

6 Bi,j = ControlPoint(B, i, j)

/* Evaluate the bilinear surface on a uniform grid */

7 B̃i,j = B(ip ,
j
q)

8 if squared distance(Bi,j , B̃i,j) > ϵ then
9 return False

10 return True

as in principle only a single digit of accuracy is needed to determine containment, as the floating

point value of the GWN is mapped to containment in these examples only through rounding to the

nearest integer However, we also see that for ϵq = 0.1, there is a single recorded misclassification.

This suggests that to ensure a correct classification, the numerical tolerance must be chosen low

enough to avoid an incorrect agreement among subdivisions of the domain, and for this reason all

presented numerical tests use a fixed value of ϵq = 10−6.

6.7.0.3 Disk Extraction

Handling edge cases efficiently requires a specific type of surface subdivision in which the

surface is split according to a disk defined in parameter space around a given point (See Figure 6.19).

We accomplish this through through the insertion of extra trimming curves around the given point.

To the original surface, we add an extra trimming loop around each point in parameter space, and

remove all existing trimming curves within the loop. To a copy of the original surface, we remove

156

Figure 6.18: We evaluate the 3D GWN on 105 query points uniformly sampled from an axis-
aligned bounding box across various tolerance levels for ϵls. We observe that beyond a certain
threshold, there is sufficient accuracy in the line-surface intersection routine to ensure there are no
misclassifications among the sampled points.

Algorithm 12: EvaluateLineIntegral Numerically evaluate the integral in Equa-
tion 6.19 with an adaptive Gaussian quadrature rule of fixed order. For a fixed curve
and recursive depth, the quadrature nodes are cached and reused across queries.

Input: C: Trimming curve
ϵq: Numerical tolerance for stopping criterion

/* Assumes that the query point is the origin */

1 w = GaussianQuadrature(C)

2 if C is sufficiently far from the origin then

3 return w

4 C1, C2 ← bisect(C)
5 w1 = GaussianQuadrature(C1)
6 w2 = GaussianQuadrature(C2)
7 if |w − (w1 + w2)| < ϵq then

8 return w1 + w2

9 else

/* Repeat the quadrature on each half */

10 return EvaluateLineIntegral(C1, ϵq) + EvaluateLineIntegral(C2, ϵq)

all trimming curves exterior to the loop in parameter space. This processing is greatly simplified

by the use of 2D generalized winding numbers in the calculation of visibility within the parameter

157

space of the surface, as these trimming curves need not be explicitly connected to form closed loops.

Figure 6.19: We show the effect of disk extraction as applied to the edge case in Figure 6.9(a).

6.7.0.4 Evaluation of 2D GWN via Stokes’ Theorem

In the previous chapter, we have presented a method of evaluating the 2D GWN field through

a purely geometric routine based on successive curve subdivision as a method of altogether avoiding

the use of numerical quadrature rules. A natural question then, is if the proposed evaluation

method of the 3D GWN via Stokes’ theorem can be similarly applied the 2D problem domain as

an alternative method of avoiding unstable numerical integration.

158

To consider this, we revisit the integral formulation of the 2D GWN in Equation 6.2, which

defines the 2D GWN for a query point at the origin as

wC =
1

2π

∫

C

x · n̂
||x||2 dx. (6.19)

Expressed as an integral over a vector field, we have

wC =
1

2π

∫

C

〈 −y
x2 + y2

,
x

x2 + y2

〉
· dr⃗, (6.20)

=
1

2π

∫

C
⟨P,Q⟩ dr⃗.

To apply the fundamental theorem of line integrals, the specification of Stokes’ theorem to a 2D

curve, requires defining a potential function F , for which ∇F = ⟨P,Q⟩, which is most directly

satisfied by the function

F (x, y) := arctan
(y
x

)
, (6.21)

which would suggest the 2D GWN to be evaluated simply as

wC =
1

2π
(F (C(1))− F (C(0))) (6.22)

=
1

2π

(
arctan

(
C(1).y
C(1).x

)
− arctan

(
C(0).y
C(0).x

))

where C(0), C(1) ∈ R
2 are the endpoints of the curve. In many ways, this particular formulation

is the most direct analogue to the evaluation of the GWN via Equation 6.11. However, as is the

case in 3D, such a formulation clearly cannot define the GWN at arbitrary points in space, as the

endpoints provide no specific information about the internal geometry of the curve. To see how

this formulation impacts evaluation of the GWN field, we follow the example of Figure 6.7, and

compare the results of Equation 6.22 to the ground truth GWN.

As in 3D, the fundamental mathematical issue with this formulation is that the arctan used

for the potential function has a branch cut which interferes with the calculation for certain query

points. Importantly, we see in Figure 6.20 that this is not universally a concern, as query points

which are “far-away” from the curve (in the sense that the query is to the left or to the right of

159

Figure 6.20: In 2D, the difference between the GWN for a curve (left) and the value of a particular
Stokes’ theorem derived boundary term (middle) is always half-integer valued, and partitioned by
the geometry (right). This is analogous to the 3D case in Figure 6.8, although this particular
formulation is not as useful for evaluating the 2D GWN as the framework presented in Chapter 5.

both curve endpoints) do indeed produce the correct value. This is exactly the observation made

for our 3D application of Stokes’ theorem, and in both cases the correct value can be obtained

through a correction term which accounts for the number of intersections of a particular line with

the surface.

Furthermore, the 2D vector field also permits use of a different potential function, each of

which introduces a different branch cut that would, in principle, influence the correction term added

For example, if we substitute the arctan in Equation 6.21 for the atan2 function, then necessary

correction term accounts for line-curve intersections not in the direction of the y−axis, but rather

the x−axis.

In any case, the formulation provided by Equation 6.22 is closely associated with the angle

subtended by the line defined by the curve endpoints at the query, i.e., the GWN of the closure.

From this perspective, the technique suggested in the previous chapter is reframed as a way of

correcting the result of some Stokes’ theorem formulation through an integer containment query

test, rather than a line-curve intersection test. In some sense, there is a computational advantage

to the method of the previous chapter as well, as the fractional component of the GWN can be

evaluated with a single arccosine, rather than two calls to arctangent. It is for this reason that we

160

consider the more strictly geometric solution presented in the previous chapter to be the superior

solution strategy, and consider the problem of finding a more strictly geometric solution to the 3D

problem an interesting avenue for future work.

6.8 Conclusions

In this work we have demonstrated our algorithm for efficiently and reliably computing the

generalized winding number field defined by unstructured collections of trimmed NURBS patches.

This permits the definition of a robust containment query that can be applied to general CAD

models, even in the presence of non-watertightness and other geometric errors.

For points which are far from the surface, we evaluate the relevant surface integral using a

novel application of Stokes’ Theorem, reducing the computational complexity needed to evaluate

the GWN field to a collection of line integrals defined by trimming curves. For points which are

near to the surface, the same reformulation into line integrals is applied, but importantly is paired

with a procedure to adjust the numerical value so that it exactly maintains the geometric fidelity

of the input model.

Although the focus of this work is primarily the theoretical underpinnings of our Stokes’

theorem reformulation and its implications for the evaluation of the GWN for individual surface

patches, we are interested in applying hierarchical approximation methods as in [10] to improve

batch performance across collections of patches, particularly in the case of far-field evaluation.

Similarly, we are interested in potential performance improvements that come about from the use

of more specialized integration techniques, such as those described in Klintegerg et al. [90], which

have been demonstrated as suitable for evaluating the 2D GWN field more efficiently than generic

quadrature methods.

Finally, we are very interested in further exploring the problem of robustly handling trimming

curves. For our algorithm to function properly, we require that the trimming curves for each patch

are “well-posed,” in the sense that they properly define an enclosed region in the parameter space

of the patch. While this requirement is somewhat relaxed by the use of the 2D GWN to evaluate

161

containment in the trimming curves, it is still occasionally not met by trimming curves generated

by CAD software (See Figure 6.21).

Figure 6.21: We show an untrimmed NURBS patch (a) along with its trimmed counterpart (b). A
common problem in computer graphics is a lack of inoperability between different CAD systems.
In this case, the Rhinocerous 3D modeling engine considers the trimming curves in a way that is
sensible for the patch, but exporting the trimming curves directly from the .STEP file produces
messy geometry that cannot be immediately resolved through a robust containment query.

Chapter 7

3D Multi-plane Moment-of-Fluid Interface Reconstruction

7.1 Abstract

Moment-of-fluid (MOF) methods for interface reconstruction approximate the region occu-

pied by material in each mesh element only through reference to its geometric moments. We present

a 3D MOF method that represents the material (POM) in each cell as the convex intersection of the

cell and multiple half-spaces, each selected to minimize the least-squares error between computed

moments of the approximated material and provided reference moments.

This optimization problem is highly non-linear and non-convex, making the numerical result

very sensitive to the initial guess. To create an effective initial guess in each cell, we construct an

ellipsoid from 0th-2nd order reference moments such that its shape corresponds with that of the

POM. Within this ellipsoid we inscribe a polyhedron, and initialize the minimization problem with

the half-spaces defined by each of its faces. This polyhedron has minimally 4 faces, and using up to

3rd order moments permits optimization over up to 20 unknown values. We therefore define MOF

methods that utilize 4, 5, or 6 half-spaces, correspondingly initialized with the faces of a single

inscribed tetrahedron, triangular prism, or hexahedron. Stability of the non-linear optimization

is further improved with a prepossessing step that normalizes the reference moments according to

the axes of the reference ellipsoid. Using this approach, the non-linear least-squares solver reliably

converges to a near-global minimum from a single initial guess.

In collaboration with Mikhail Shashkov

163

7.2 Introduction

7.2.1 Background and Rationale

In simulating the flow of multiple materials, their shape must be accurately captured over

a discrete computational mesh. The goal of material interface reconstruction is then to use data

provided by the simulation of this flow to approximate the intersection of the region occupied by

material with each mesh element—the per-cell pieces of material (POM)—while conserving the

volume of each POM.

Among volume tracking techniques, methods for piecewise linear interface calculation (PLIC)

are widely used for their simplicity and utility in adjacent applications. Such methods define

the interface in each cell with a single linear element whose position is informed by the tracked

volume, thereby enforcing a physically conservative solution. At the same time, the orientation

of this segment is chosen to resemble that of the underlying material fragment. In the volume-of-

fluid family of methods, the orientation is informed by the volume fraction of neighboring cells,

such as via an estimate of the gradient of the volume fraction field [134, 106], a coupled level-set

method [171], or more recently methods of machine learning [22].

There is also longstanding interest in VOF methods which represent the per-cell interface with

more complex geometry, which serves to increase their accuracy or permit more direct analysis of

derived quantities like curvature. For example, there are 2D PLIC methods which represent the

interface as a single “bent” line [145, 101], or even multiple disjoint segments [102, 66]. Other

methods utilize high-order curves and surfaces to approximate the interface, such as parabolas and

paraboloids [135, 45, 44], splines [53], or circular arcs and spheres [117, 104, 27].

However, in all of these examples, the placement of the interface is necessarily informed by

the data of neighboring cells. In contrast, a key feature of moment-of-fluid (MOF) methods is that

each POM is approximated using only data from the cell it occupies. In particular, we consider

the geometric moments of the piece of material, the most general geometric characteristics of any

shape [51].

164

In this work, we describe a new MOF method for 3D interface reconstruction, for which

we assume that the moments of each POM up to some order (referred to hereafter as reference

moments) are given to us according to the specific setting. As a motivating example, we consider

hydrodynamic simulation. At the initial time, moments can be obtained from the known initial

material shape by its exact or approximate intersection with cells of the mesh. At later times, the

material moments have been advanced in time according to the governing physics of the problem,

the simplest process being advection [158, 2]. In this work, however, we consider the origin of these

moments to be irrelevant to their use in the described MOF methods.

In general, the MOF approach for interface reconstruction defines an approximation of the

POM by intersecting the computational cell with some shape. These shapes are parameterized

in such a way that the difference between the moments of their intersection with the cell and

that cell’s reference moments can be minimized via numerical optimization. As the prototypical

example, the original MOF-PLIC method in 2D uses the material volume (zeroth-order moment)

and centroid (ratios of first-order and zeroth-order moments) to determine parameters of a single

half-plane [39]. These parameters are selected to minimize the error between the reference centroid

and the computed centroid of the material polygon approximates the POM in the cell.

This methodology extends readily to 3D, using the intersection of a single half-space and the

cell to approximate the material polyhedron for each POM [2, 114]. It also allows for extensions that

approximate the POM with a more complex interface, again using only local data. Such extensions

in 2D include methods that utilize circular arcs [157], more general quadratic curves [164, 139], or

multiple linear segments [158, 68, 31]. In cases where the interface has more parameters than a

single plane, higher-order moments can be incorporated in the error function to ensure that the

ensuing minimization problem is not underdetermined.

7.2.2 Motivation

There are many incentives to develop computationally efficient interface reconstruction meth-

ods in 3D, particularly those that utilize local information to reproduce geometrically complex

165

material. For example, the exclusive use of per-cell data makes such a method more robust to

unstructured computational meshes. Furthermore, the computational benefits of a parallelizable

method like MOF become even more pronounced as the number of cells increases with spatial

dimension.

However, there is considerably more variety in the kinds of geometric features that cannot

be adequately captured by the single plane used in a typical MOF-PLIC method, several of which

we categorize in Figure 7.1. Many of these features are described by extruding their 2D analogues

along the third dimension, such as “wall”-type shapes and edge-corners that require two planes

to be reproduced exactly. Others are more unique to 3D space, such as 3D filaments and tips,

as well as vertex-corners, each of which require three planes to accurately reproduce. Finally,

four planes are necessary to adequately approximate regions that are entirely embedded within

a computational cell. With these shapes in mind, we target a MOF method that represents the

interface by the convex intersection of, at minimum, four half-spaces. To our knowledge, there

exist no contemporary methods of performing a 3D MOF interface reconstruction with interface

geometry more complex than a single plane.

We prioritize a reconstruction method with linear boundary components because doing so

ensures it is compatible with adjacent physics applications. For example, performing dynamic re-

constructions through a Lagrangian pre-image requires computing intersections between material

and arbitrary backtraced computational cells, and so there is little fundamental difference applying

such a technique to a single plane (as in [2]) and in the proposed multi-plane technique. Sim-

ilarly, such a method generalizes far more readily to multi-material scenarios using the strategy

of nested dissection described in [2], as exact moments can be computed from the intersection of

arbitrarily many material interfaces. This is often not the case for methods which consider curved

interfaces: even if one can compute exact moments for the intersection of the computational cell

and a sphere [170] or paraboloid [44], the problem becomes intractable when even two separate

curved interfaces are considered. We consider the specific implementation of the proposed MOF

method within these applications to be future work.

166
One Plane Two Planes Three Planes Four Planes

Flat Edge-corner Vertex-corner Embedded Material

Wall Filament

Filament Tip

Figure 7.1: Shape types that can be described by up to four planes. We target a method that can
reproduce these types of geometric features

As in the typical MOF approach, we formulate interface reconstruction as a non-linear opti-

mization problem that finds a representation of the approximate POM to best match its computed

moments to some provided reference moment data.

As an aside, we follow the notation of [157] and distinguish between MOF methods with

subscripts and superscripts. For example, consider the MOF2
2hp method for 2D interface recon-

struction, where the superscript represents the maximum order of the moments considered, and

the subscript represents the type of bounding geometry used, in this case 2 half-planes. Despite

the slight abuse of notation, it will be clear from context whether the method is designed for use

2D or 3D space. For example, MOF2
2hp is assumed to be a 2D method using two half-planes. The

167

analogous 3D method is MOF2
2hs, which uses the same order of moments, but instead bounds the

POM by two 3D half-spaces.

In MOF2
2hp and many derived 2D techniques, an ellipse is used to create the initial guess for

the relevant non-linear optimization problem [158]. A unique reference ellipse can be constructed

from moment data up to second-order so that its volume and centroid coincide with the material,

and so that the length and orientation of its main axes correspond with the principle directions

and magnitude of elongations of the ground-truth material. Although the construction of this

reference ellipse generalizes readily to three spatial dimensions in the form of a reference ellipsoid,

the analogous usage is necessarily different in 3D, in large part due to same complexities of 3D

space that motivate high-order MOF methods in the first place.

The least-squares error between computed moments and reference moments used in the ob-

jective function of many MOF methods is often both highly non-linear and non-convex as a function

of the chosen parameterization, and so typical descent methods tend towards local minima if the

initial guess is far from the desired global minimum. This makes the numerical result of the opti-

mization highly sensitive to the choice of initial guess. To compensate for this, the final interface

in MOF2
2hp is generated through repeated solutions of the optimization problem, each of which is

initialized using a pair of edges from a polygon inscribed in the reference ellipse. the intersection

of one pair with the cell will sufficiently approximate the material so that the subsequent descent

algorithm convergences to the true global minimum.

While this is already an expensive process in 2D, the analogous procedure in 3D is largely

infeasible. This is due to the additional combinatorial burden of selecting faces from an inscribed

polyhedron combined with the increased cost of solving the non-linear optimization. A possible

alternative to the combinatorial approach in 2D is presented in the MOF2
PIE method of [31], where

the interface is instead represented by the intersection of the computational cell with all half-

planes defined by the edges of the polygon inscribed in an ellipse. The position of the polygon is

fixed relative to the ellipse, and then the ellipse’s 5 parameters are optimized in a typical MOF

fashion, minimizing the difference between computed and reference moments. This permits the use

168

of a single initial guess for the non-linear optimization, the reference ellipse itself. This approach

potentially generalizes directly to 3D, with an interface represented by a polyhedron inscribed in a

9 parameter ellipsoid, initialized using reference moments. However, such a method is limited by

the large number of configurations possible for the connectivity of vertices and edges for general

polyhedron, making it difficult for the same initial guess to converge to all possible geometric

features of interest.

It is through comparison to these methods that we motivate our proposed strategy for in-

terface reconstruction, guided by a desire to represent complex 3D geometry with as few solutions

of the non-linear optimization problem as possible. As in MOF2
PIE , we initialize the optimization

procedure with an interface represented by the faces of a polyhedron inscribed in the reference

ellipsoid, each of which define a half-space in the intersection with the cell. However, rather than

parameterizing the optimization through the parameters of the circumscribing ellipsoid, we instead

optimize over the full set of parameters of each plane defined by the polyhedron.

Properly defining a closed, inscribed polyhedron requires at minimum 4 faces to form a

tetrahedron, which is also conveniently sufficient to appropriately recreate our target geometries

depicted in Figure 7.1. However, this results in a non-linear least-squares problem with minimally

12 parameters, which is underdetermined when only the 10 zeroth- to second-order moments are

considered. To compensate for this, we instead minimize the least-squares error over the 20 mo-

ments up to third order. This fully describes the MOF3
4hs method, which utilizes 3rd order moments

to construct an interface out of 4 half-spaces, initialized from a single tetrahedron inscribed in the

reference ellipsoid. At the same time, using third-order moments also permits extension to a 15

parameter MOF3
5hs method and a 18 parameter MOF3

6hs before the optimization problem becomes

underdetermined. Incorporating higher-order moments is also useful from a purely geometric per-

spective, as third-order moments encode a greater amount of information about the material’s

orientation, a fact that has motivated [31] to consider a 2D MOF3
PIE method alongside MOF2

PIE .

To clarify the objectives of this work, we expect the proposed family of methods to reliably

reproduce shapes of the types depicted in Figure 7.1, most of which can be theoretically described

169

by only three planes. However, in cases where the shape is described by four or more planes, we

claim that it is only likely for the proposed family of methods to achieve an exact reconstruction

from a single initial guess. Ultimately, this technique utilizes an important trade-off between

computational cost and reliability interface reconstruction. Each of MOF3
4hs, MOF3

5hs, and MOF3
6hs

solve an increasingly expensive minimization problem, one which uses more half-spaces than would

be necessary to reproduce the target shapes in Figure 7.1. Yet the use of additional, intentionally

redundant half-spaces in the optimization avoids the even greater cost of repeating the minimization

procedure with different initial guesses to more confidently reach the global minimum.

This paper proceeds as follows. In Section 7.3, we present an overview of the relevant details

on 3D moments including formulas related to the translation, scaling, and rotation transformations.

These are used to normalize given moment data and in the construction of the reference ellipsoid.

Next, in Section 7.4 we discuss details of the new MOF interface reconstruction method. This

includes definition of the objective function for non-linear optimization, our choice of initial guess,

and the customized Levenberg-Marquardt algorithm used, among other details. We summarize the

proposed MOF algorithms in Section 7.5. We present numerical results in Section 7.6, including the

results of reconstruction on a single computational cell as well as across the full mesh. Discussion

related to practical implementation is presented in Section 7.7. This includes the reconstruction of

non-convex material, the appearance of geometric artifacts, 3D polyhedra with identical moments

up to some order, and sensitivity to noise in reference moment data. Conclusions and a discussion

on future work to be done is in Section 7.8. Finally, acknowledgements are given in Section 7.9.

7.3 Moments Primer

7.3.1 Translation, Scaling, and Rotation of Volume Moments

To introduce the necessary notation, we restate the objective of the proposed method as

finding an approximation of the material Ω within a convex computational cell C. We denote this

approximation as Ωr.

170

In this work, we consider standard 3D geometric moments of Ω given by

Mijk =

∫

Ω
xiyjzk dV. (7.1)

These “raw” moments describe important geometric features of the material, such as the

volumeM000 and centroid c⃗ = (M100/M000,M010/M000,M001/M000). However, it is useful and often

necessary to consider alternate formulations and transformations of moment data. For example,

consider a shift transform S(sx, sy, sz) : Ω → Ω′. If the material is shifted by s⃗ = (sx, sy, sz)

according to Ω̂ = Ω− s⃗, then its moments can be computed as

M ′
ijk =

∫

Ω−s⃗
xiyjzk dV =

∫

Ω
(x− sx)i(y − sy)j(z − sz)k dV. (7.2)

Importantly, this latter formulation allows one to compute these moments directly from their raw

counterparts without reference to the underlying material Ω. For example, moments up to second

order are given by

M ′
000 =M000

M ′
100 =M100 − sxM000

M ′
010 =M010 − syM000

M ′
001 =M001 − szM000

M ′
200 =M200 − 2sxM100 + s2xM000 (7.3)

M ′
020 =M020 − 2syM010 + s2yM000

M ′
002 =M002 − 2szM001 + s2zM000

M ′
110 =M110 − sxM010 − syM100 + sxsyM000

M ′
101 =M101 − sxM001 − szM100 + sxszM000

M ′
011 =M011 − szM010 − syM001 + syszM000.

Similarly, one can apply a scaling L(lx, ly, lz) : Ω→ Ω′ to moment data along each coordinate

axis by (lx, ly, lz) using the transform

M ′
ijk = l1+i

x l1+j
y l1+k

z ·Mijk (7.4)

171

Finally, we also consider rotations around the origin, R(α, β, γ) : Ω → Ω′ defined by the

following rotation matrix:

R(α, β, γ) =




cβcγ sαsβcγ − cαsγ cαsβcγ + sαsγ

cβsγ sαsβsγ + cαcγ cαsβsγ − sαcγ

−sβ sαcβ cαcβ



, (7.5)

where α, β, and γ are rotations around the x-, y-, and z-axes respectively. Written explicitly, this

gives the transformation

M ′
ijk =

∫

R(Ω;α,β,γ)
xiyjzk dV

=

∫

Ω
(cβcγx+ (sαsβcγ − cαsγ)y + (cαsβcγ + sαsγ)z)

i · (7.6)

(cβsγx+ (sαsβsγ + cαcγ)y + (cαsβsγ − sαcγ)z)j ·

(−sβx+ sαcβy + cαcβz)
k dV

Under this transformation, the rotated first-order moment data are given by

M ′
000 =M000

M ′
100 = cβcγM100 + (sαsβcγ − cαsγ)M010 + (cαsβcγ + sαsγ)M001 (7.7)

M ′
010 = cβsγM100 + (sαsβsγ + cαcγ)M010 + (cαsβsγ − sαcγ)M001

M ′
001 = −sβM100 + sαcβM010 + cαcβM001.

Higher order moments can be computed similarly. We also note for future use that the inverse

transformation R−1(α, β, γ) has the same form as Equation 7.6, but with the inverse of the rotation

matrix in Equation 7.5.

7.3.2 Reference Ellipsoid and Normalization

To ensure stability during numerical optimization, we normalize the reference moments

M r
ijk with the transformations described in Section 7.3.1 such that the underlying material Ω

is translation-invariant and scale-invariant. This is a critical step for the proposed MOF methods,

172

as it makes subsequent optimization steps far more robust to unimportant features of the material,

such as spatial position and size within the cell.

As our first transformation, we create “central moments” M
r
ijk which correspond to the

reference momentsM r
ijk shifted by the centroid c⃗ = (M r

100/M
r
000,M

r
010/M

r
000,M

r
001/M

r
000) according

to Equation 7.2. Under this transformation, we can then consider other useful properties of the

second-order central moments, which encode information about the orientation of the material.

Specifically, we define a covariance matrix for the material in terms of its central moments, given

by

A =
1

M
r
000




M
r
200 M

r
110 M

r
101

M
r
110 M

r
020 M

r
011

M
r
101 M

r
011 M

r
002



. (7.8)

This matrix is necessarily symmetric and positive semi-definite, and so it defines a quadratic form

xTAx whose zero level set xTAx = 0 corresponds to a reference ellipsoid in R
3. Historically,

quadratic forms of this kind have been used in 2D to define effective initial guesses for the non-linear

optimization problem, as the position and orientation of the derived ellipse roughly corresponds to

the position and orientation of the underlying material [158, 31]. In this work, we normalize the

material according to the corresponding reference ellipsoid through both a rotation transformation

and a scaling transformation. Done properly, the centered material Ω and its corresponding mo-

ments M
r
ijk are normalized so that the transformed moments M̂ r

ijk of the transformed Ω̂ generate

a diagonal covariance matrix, and therefore a spherical reference ellipsoid.

To this end, let λ0, λ1, λ2 be the three eigenvalues ofA with associated eigenvectors v(0), v(1), v(2).

These eigenvectors can be used to define rotation angles

α = atan2(v(1)z , v(2)z),

β = asin(−v(0)z),

γ = atan2(v(0)y , v(0)x).

These angles are selected so that, when used in the inverse rotation transformation R−1(α, β, γ),

173

the orientation of the centered material Ω is “undone”, and the resulting intermediate material is

aligned with the Cartesian axes. Furthermore, each axis-length a, b, c of this ellipsoid is proportional

to the square root of an eigenvalue of A, which permits a scaling of each such that the respective

lengths are equal. At the same time, we resolve the ambiguity in the constant of proportionality

by selecting lx, ly, and lz so that the result is also normalized to have unit material volume M̂ r
000.

Together, this results in the following scaling coefficients lx, ly, and lz:

lx =
1√
λ0

(√
λ0λ1λ2

M
r
000

)1/3

, ly =
1√
λ1

(√
λ0λ1λ2

M
r
000

)1/3

, lz =
1√
λ2

(√
λ0λ1λ2

M
r
000

)1/3

. (7.9)

By construction, applying these to the reference central volume momentM
r
000 through Equation 7.4

results in

M̂ r
000 = lxlylzM

r
000 =

1√
λ0λ1λ2

(√
λ0λ1λ2

M
r
000

)
M

r
000 = 1 (7.10)

as desired.

Taken together, this sequence of transformations turn the material Ω into Ω̂ that is centered

at the origin, has unit volume, and is not stretched along any particular axis. We can see an example

of each stage of this normalization in Figure 7.2. From another perspective, we can consider this

mapping to apply not to Ω, but to the entire space in which it is embedded. This means that during

optimization, the raw moments of the reconstruction are matched to the raw moments of Ω̂, since

these are equal to the centered, rotated, and scaled moments of Ω by construction. Importantly,

this makes the process of “normalization” wholly disjoint from any manipulation of the objective

function (see Section 7.4.1). After the optimal reconstruction of Ω̂ is found, we reverse this sequence

of transforms to place it back in physical space.

7.4 MOF Algorithms Details

7.4.1 Non-linear Optimization

We construct our objective function from the non-linear least-squares error in raw moments

up to third order between the given reference moments and the actual moments of the reconstructed

174

(a) Original (b) Rotated (c) Scaled

Figure 7.2: Example of orientation-aligned material normalization. Given the original material (a),
we apply a rotation (b) and scaling (c) to the space so that optimization can be performed in a
reference space for which the reference ellipsoid (red) for the true material (gray) is spherical.

approximation to the material, but do so in reference space. In 3D, there are a total of 20 moments

up to third order, which permits optimization over the 12 parameters of MOF3
4hs, 15 parameters of

MOF3
5hs, or 18 parameters of MOF3

6hs before the system becomes underdetermined. Each individual

oriented plane n̂ · x = d is parameterized by angles θ ∈ [0, 2π), ϕ ∈ [0, π) that define normal

n̂ = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)), and the signed distance from the origin d. This provides

us with the following objective function:

E(Ωr; Ω) =
∑

0≤i+j+k≤3

(
M̂ r

ijk − M̂ijk

)2
(7.11)

with M̂ r
ijk representing the raw moments calculated for the reconstruction and M̂ijk representing

the reference moments scaled to the reference space. While we assume that reference moments will

be provided via an outside application (i.e., hydrodynamic simulation), in this work we calculate

reference moments for static tests from the intersection of high-polygon surface models and the cells

of a mesh for demonstration purposes in this work. The computational cell C is also transformed

into the same reference space, which we denote Ĉ.

175

We minimize this objective function using the Levenberg-Marquardt algorithm for solving

unconstrained non-linear least-squares problems [107]. This algorithm is implemented in the C++

linear algebra library Eigen [57], which computes gradients of the objective function using centered

finite differences in leiu of an analytic representation. In general, the dampening term used in

the Levenberg-Marquardt algorithm makes it quite robust to an ill-conditioned Jacobian relative

to standard Gauss-Newton solvers, making it particularly well-suited to this problem where only

approximate gradients are available. The use of finite differences also means that the computational

cost of optimization largely scales with the number of input parameters, as material moments up

to third-order must be re-computed for changes in each. Doing so at each iteration, combined

with the number of iterations necessary for convergence, requires the calculation of moments up to

third-order be performed efficiently. For this reason we use the Interface Reconstruction Library

(IRL), which provides routines for performing intersections between planes and general polyhedra

using efficient half-edge data structures [30]. Fortunately, once the material polyhedron is computed

by clipping the computational cell with each plane in the reconstruction, the cost of computing

additional high-order moments is marginal.

The primary feature of the proposed method is to initialize this optimization procedure using

the planes generated by inscribing a polyhedron in the reference ellipsoid, which is a unit sphere in

reference space by construction. For MOF3
4hs and MOF3

6hs we use a single regular tetrahedron and

cube respectively for this purpose, and for MOF3
5hs we use a triangular prism. We show an example

of each kind of inscribed polyhedron in Figure 7.3. The exact orientation of the initial polyhedron

in the sphere is somewhat arbitrary, as the nature of the orientation-normalization means that

no specific configuration is more likely to converge to the global minimum than any other. In the

provided numerical experiments, we initialize the relevant polyhedron with the vertices in Table 7.1,

defined in spherical coordinates.

Although the normalization scheme is also designed so that the reference ellipsoid (a sphere)

has volume equal to the volume of the reference material, the inscribed polyhedron will naturally

have a significantly smaller volume. As a result, we modify this shape prior to the initiation of

176

(a) Initial reference ellipsoid
in physical space

(b) Inscribed polyhedra (top) and intersection
with computational cell in reference space (bottom)

Figure 7.3: Example of initial inscribed polyhedra. We normalize reference moments so that the
reference ellipsoid in physical space (a) is spherical in reference space. We then inscribe a single
polyhedron with the corresponding number of faces (b) as the initial guess for optimization. Note
that each sphere has been scaled in reference space so that the volume of the intersection of the
inscribed shape with the cell is equal to the reference value.

the Levenberg-Marquardt algorithm so that the intersection of the inscribed polyhedron and Ĉ has

volume equal to that of the reference material M̂ r
000. This is an important preprocessing step for

this specific implementation of Levenberg-Marquardt, which uses the initial error in each individual

moment to define internal scaling factors. When this volume correction is not performed, the large

difference in volume between the reference and approximate interface relative to the errors in first-

and second- order moments (which are initially close to zero by construction) causes the algorithm

to become unstable.

177

Tetrahedron Triangular Prism Cube

(
π/2, arctan(

√
2/2)

) (
0, arctan(

√
2)
) (

0, arctan(
√
2)
)

(
π/2, π − arctan(

√
2/2)

) (
2π/3, arctan(

√
2)
) (

π/2, arctan(
√
2)
)

(
π − arctan(

√
2/2), 3π/2

) (
4π/3, arctan(

√
2)
) (

π, arctan(
√
2)
)

(
arctan(

√
2/2), 3π/2

) (
0, π − arctan(

√
2)
) (

3π/2, arctan(
√
2)
)

(
2π/3, π − arctan(

√
2)
) (

0, π − arctan(
√
2)
)

(
4π/3, π − arctan(

√
2)
) (

π/2, π − arctan(
√
2)
)

(
π, π − arctan(

√
2)
)

(
3π/2, π − arctan(

√
2)
)

Table 7.1: Spherical coordinates (u, v) for each initial polyhedron inscribed in a unit sphere param-
eterized by S(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v)).

7.4.1.1 Customized Levenberg-Marquardt Algorithm

While the standard unconstrained Levenberg-Marquardt solver using the default parameters

supplied by Eigen is usually sufficient, we empirically observe improved convergence to a global

solution in numerical tests when we impose geometric constraints on the involved planes. For

example, we restrict the angle parameters of each plane, θ, ϕ, to the intervals [0, 2π) and [0, π)

respectively using the modulo operator after each step of optimization to avoid numerical blowup

that can occur when computed gradients become unstable, as well as restricting the maximum step

size used during the calculation of finite differences for such periodic parameters.

More impactful is our restriction of the distance parameter d for each plane. Ordinarily, it

is possible for a plane to become entirely disconnected from the computational cell. When this

happens, perturbations in the planes’ parameters do not result in any changes to the computed

moments of the interface, and so all local gradients are zero. This means that planes become

“stuck” when they are disconnected from the surface, and do not influence the material interface

for all subsequent optimization iterations. As a result, we restrict the parameter d for each plane

to an interval that ensures the plane intersects the computational cell.

178

To construct this interval for a given plane with unit normal n̂, we note the plane defined by

n̂ · x = n̂ · v = d necessarily contains the point v, and moves continuously with d along the normal

direction n̂. Because the computational cell is polyhedral, we need only check its vertices v to find

the maximum and minimum values of d = n̂ · v which still correspond to planes n̂ · x = d that

intersect the cell at least one point of the cell. Altogether, this mean that for each plane, we must

clamp the value of the distance d to the interval

d ∈ [min{n̂ · v},max{n̂ · v}]

after each optimization step to ensure the resulting plane still intersects the computational cell.

While this step does not completely remove the possibility of the converged-to interface involving

fewer planes than are parameterized by the method, it does improve the overall stability and

robustness of the optimization algorithm.

7.4.2 Enforcing the Volume Constraint

It is necessary that the volume of the reconstructed interface Ωr exactly matches that of the

reference material Ω in order for other applications of interest utilizing the reconstruction to be

properly volume conserving. While the specific implementation of Levenberg-Marquardt in Eigen

solves the unconstrained non-linear least squares problem without accounting for this restriction on

the volume, we observe empirically that the volume of the reconstruction immediately produced is

nevertheless very close to the reference volume. To correct this further, we follow the procedure in

[31], which contracts or dilates all planes of the reconstruction simultaneously along their normal

direction to directly enforce the volume constraint. Specifically, we begin with an initial set of

distances {di}Ni=1 for each of N planes in the reconstruction, and find the scalar displacement δ for

which the convex intersection of the cell and the same planes with distances {di+ δ}Ni=1 has volume

equal to the reference. Effectively, this becomes a non-linear root-finding problem that is solved

with the Illinois method [38], a modified version of the Regula-Falsi method that is well suited

for this application, as the non-linear function is monotonic, and an initial bracketing interval is

179

readily available by considering the vertices of the cell (See Figure 7.4.) We note that this necessarily

introduces very small deviations in the remaining moments, but this effect is ultimately negligible

to the overall quality of the reconstruction. It is for this reason that we do not apply the same

constraint at every step in the optimization, as to do so would be unnecessarily computationally

expensive.

Figure 7.4: Example of root-finding problem for volume conservation. We plot the volume of
captured material as a function of plane displacement parameter δ, and show the corresponding
interface for different values of δ. We use the Illinois method to solve for the value of δ which gives
the target volume, as the volume varies monotonically with the δ, and an initial bracketing interval
is simple to compute.

180

7.4.3 Nonconvex Reconstruction

In this work, we have enforced that the material be equal to the convex intersection of the

reconstruction planes, primarily for reasons of simplicity and efficiency in implementation. However,

this can clearly only describe a subset of possible shapes. We extend this somewhat by allowing

the half-spaces to represent the boundary of the complement of the convex intersection as well.

While this too is only a second subset of possible shapes, their union is often sufficient for practical

applications.

To the best of authors knowledge, there is no way of knowing a priori whether the under-

lying material is convex or not. To address this, we calculate two solutions for the non-linear

optimization problem in each cell, one that assumes a convex reconstruction and one that assumes

a reconstruction whose complement is convex. The first is performed using the original reference

data Mijk, while the second uses their complement in the unnormalized cell C, given by

M c
ijk =MC

ijk −Mijk,

whereMC
ijk are the raw moments of the unnormalized cell C. We note that these two reconstructions

could be performed in parallel.

The results of each optimization are stored and then compared. Importantly, the proposed

method uses a different normalization for each set of moment data, and so it is necessary for the

compared errors to each be considered in the original, unnormalized, physical space. If it is found

that the convex-complement method more accurately captures the reference moment data, then an

internal flag is set to denote for downstream applications that utilize the reconstruction. Often,

such applications will require decomposition of the non-convex material into a union of convex

shapes, which we demonstrate in Figure 7.10.

7.5 Summary of the MOF Algorithm

We summarize the main steps of the proposed family of MOF interface reconstruction algo-

rithms below. Given a computational cell, its reference moments, and the number of half-spaces N

181

used in the MOF3
Nhs reconstruction, perform the following steps:

(1) Normalize the reference moments so that the reference ellipsoid is spherical (Section 7.3.2)

(2) Construct an initial polyhedron inscribed in the sphere (Table 7.1)

(3) Enforce that the polyhedron has the same volume in the cell as the normalized reference

data (Section 7.4.2)

(4) Apply the Levenberg-Marquardt algorithm on the planes defined by the polyhedron (Sec-

tion 7.4.1)

(5) Again, enforce that the reconstruction has the same volume in the cell as the normalized

reference data (Section 7.4.2)

(6) Repeat the above steps for the complement of the reference moment data (Section 7.4.3)

(7) Evaluate the error for each reconstruction against their respective reference moment data:

• If the first error is smaller, return the intersection of the half-spaces in the first recon-

struction.

• If the second error is smaller, return the complement of the intersection of the half-

spaces in the second reconstruction as the union of a set of convex polyhedra.

7.6 Results

7.6.1 Single Cell Tests

We begin by demonstrating this method on simple single-cell examples for known shapes

where an exact reconstruction is possible. In such cases where the target shape is known, we can

use an error metric derived from the symmetric difference, which is defined for arbitrary sets as the

total region contained in either set, but not their intersection. In the context of material interface

reconstruction, this symmetric difference error metric measures the sum of the volume of the true

182

material that our approximation has failed to capture, and the volume of the approximation that

does not capture the true material. Written mathematically, we have

S(Ωr; Ω) :=

∫

Ωr\Ω
dV +

∫

Ω\Ωr

dV. (7.12)

In practice, however, we only have access to the moment-derived least-squares error as an error

metric for the reconstruction E(Ωr; Ω) (see Section 7.4.1).

7.6.1.1 Exact Reconstructions

We show in Figure 7.5 the “vertex-corner” shape introduced in Section 7.2. The computa-

tional cell is taken to be the cube [−0.5, 0.5]3, with the three planes with normals and distances

defined by

n̂1 = ⟨1.0,−0.1,−0.1⟩, d1 = 0.0,

n̂2 = ⟨−0.1, 1.0,−0.1⟩, d2 = 0.0,

n̂3 = ⟨−0.1,−0.1, 1.0⟩, d3 = 0.0.

As expected, MOF3
4hs is able to perfectly recreate this shape, both exactly matching each of

the 20 reference moments and resulting in zero symmetric difference error, shown in Table 7.2. We

note that although MOF3
4hs is in some sense over-parameterized for this geometry, as we allow the

placement of four planes when three is sufficient to achieve an exact reconstruction, we are able

to exactly reconstruct the shape. In this example, the redundant plane is tangent to the resulting

material polyhedron at its optimum placement, but does not influence its shape. Similar results are

observed with MOF3
5hs and MOF3

6hs, but with more redundant planes in the final reconstruction.

For an additional point of comparison, we make reference to a simple one-plane MOF method

utilizing third-order moments. We initialize this MOF3
1hs method with a plane whose normal

points from the material centroid to the cell centroid, a reasonably effective initial guess for such

a method. As shown in Figure 7.5, this provides a poor approximation of the geometry, and will

perform even worse in following examples, where even more portions of the shape are detached

from the cell boundary.

183

(a) True material (red) and
the reconstruction from moments (b) One-plane reconstruction

Figure 7.5: A comparison between the proposed multi-plane MOF method (a) and a single-plane
MOF method (b) on a corner feature. We exactly reconstruct the “vertex-corner” using three of
the four planes used in MOF3

4hs.

We perform a similar test on the same computational cell for the “tip” shape in Figure 7.6,

defined by the planes

n̂1 = (−1.0, 0.0, 0.2) , d1 = 0.1,

n̂2 =
(√

2,
√
2, 0.2

)
, d2 = 0.0,

n̂3 =
(√

2,
√
2, 0.2

)
, d3 = 0.0.

Again, MOF3
4hs achieves an exact reconstruction while a one-plane method necessarily makes

the shape unrecognizable to maintain the volume constraint.

To further test the robustness of our method, we repeat this test in Figure 7.7 using the same

“tip” shape, but occupying a much smaller volume in the cell. Specifically, we translate the cell

along the positive z direction to occupy the [−0.5, 0.5] × [−0.5, 0.5] × [0.2986, 1.2986] so that the

section of filament that intersects with the cell has the same geometry, but a calculated volume of

184
Moment MOF3

1hs MOF3
4hs

M000 −9.57776× 10−13 −1.38778× 10−17

M100 −0.00264148 6.93889× 10−18

M010 −0.00293966 1.73472× 10−17

M001 −0.00232491 1.38778× 10−17

M200 0.00218141 −1.73472× 10−18

M110 0.000683377 −5.20417× 10−18

M101 0.000475685 −3.46945× 10−18

M020 0.00228779 −8.67362× 10−18

M011 0.000575576 −5.20417× 10−18

M002 0.00207197 −6.93889× 10−18

M300 −0.00107547 −2.1684× 10−18

M210 −0.000503406 8.67362× 10−19

M201 −0.000422462 0
M102 −0.0004949 1.30104× 10−18

M111 0.000259171 1.30104× 10−18

M102 −0.00043277 8.67362× 10−19

M030 −0.00112707 −4.33681× 10−19

M021 −0.000452824 1.30104× 10−18

M012 −0.000471645 8.67362× 10−19

M003 −0.00102168 0

E(Ωr; Ω) 0.0574 1.923× 10−17

Symmetric
0.645554 2.498× 10−15

Difference

Table 7.2: Per-moment errors between reference data and the reconstructed interface for the
“vertex-corner” example in Figure 7.5.

3.19117× 10−14. The resulting tetrahedron has coordinates at

p1 = (−0.04226039, 3.1973229× 10−5, 0.298600)

p2 = (−0.04226039,−3.1973229× 10−5, 0.298600) (7.13)

p3 = (−0.042228417, 7.6165203× 10−18, 0.298600)

p4 = (−0.042241661, 7.609744× 10−18, 0.29869365)

Despite needing to handle a volume that is close to machine precision, our family of methods

is nevertheless able to match the shape exactly. This is largely due to our unique normalization

procedure, which causes the method to be extremely robust to the size of the material. As a result

of this normalization, the optimization performed previous example and this one are near-identical

185

(a) True material (red) and
the reconstruction from moments

(b) One-plane reconstruction

Figure 7.6: A comparison between the proposed multi-plane MOF method (a) and a single-plane
MOF method (b) on a “tip” feature. We exactly reconstruct the shape using three of the four
planes in MOF3

4hs.

in reference space, with the only difference being a larger normalized cell for the smaller material.

(a) True material (red) and
the reconstruction from moments

on a [−0.5, 0.5]3 computational cell.

(b) Figure zoomed to material.
E(Ωr; Ω) = 1.874× 10−16

S(Ωr; Ω) = 1.425× 10−17

Figure 7.7: Robustness test for small material volume. Note that relative to the cell, the true
material (a) is so small as to occupy only a single pixel in this rendering. Nevertheless, the proposed
method achieves an exact reconstruction (b).

Finally, we consider in Figure 7.8 an example that is even more adversarial for MOF3
1hs,

in which the material is entirely disconnected from the cell boundary. As before, the proposed

186

MOF3
4hs method is able to accurately recover the shape, while having, in some sense, the mximum

error possible with respect to the symmetric difference.

(a) True material (red) and
the reconstruction from moments

(b) One-plane reconstruction

Figure 7.8: A comparison between the proposed multi-plane MOF method (a) and a single-plane
MOF method (b) on material that is fully embedded within the computational cell. We exactly
reconstruct the shape using all four planes in MOF3

4hs.

7.6.1.2 Inexact Reconstructions

In addition to the sharp target features depicted in Figure 7.1, our method is also capable of

approximating shapes with smooth features, which no planar reconstruction can recover exactly.

We perform these tests using the MOF3
6hs method as a representative of the proposed family.

In the following examples, we consider the intersection of our computational cell with ellip-

soids of varying size, position, and orientation. To obtain the reference moments, we construct a

polyhedron that approximates the geometry of the curved object, from which we can compute the

moments of its intersection with the cell using the clipping methods from the IRL software package

described in Section 7.4.1. While these do not exactly match the moments of a true truncated ellip-

soid, the symmetric difference errors are computed with respect to this approximating polyhedron,

and not the ground truth geometry.

In Figure 7.9, we consider three such ellipsoids, and define each for reproducibility with

187
a b c α β γ x0 y0 z0

Ellipsoid 1 0.32 0.40 0.98 4.9 -1.4 3.3 -0.10 0.34 0.20
Ellipsoid 2 0.35 0.23 0.58 5.1 2.3 4.0 0.37 0.41 0.59
Ellipsoid 3 0.48 0.60 0.57 4.7 4.0 1.7 0.10 -0.18 0.48

Table 7.3: Parameters for single-cell ellipsoid tests in Figure 7.9.

parameters defined by the values in Table 7.3. Numerically, we parameterize these ellipsoids through

the lengths of their three axes a, b, c (parallel to the x-, y-, and z-axis respectively) and the rotation

matrix R(α, β, γ) defined in Equation 7.5, followed by a shift to have the center (x0, y0, z0).

As seen in Figure 7.9, we see qualitative agreement with the ground truth material, as well

as error metrics which indicate that we have accurately represented the surface by capturing the

relevant geometric features.

Ellipsoid 1 Ellipsoid 2 Ellipsoid 3

T
ru
e
M
at
er
ia
l

M
O
F
3 6
h
s

E(Ωr) 0.0004765 1.04518× 10−6 0.0002632
S(Ωr) 0.042901 0.0005620 0.0244484

Figure 7.9: Example reconstructions on curved shapes. We test MOF3
6hs on shapes for which an

exact reconstruction is not possible. Despite this, the reconstructed interface accurately captures
important geometric features.

188

We can also test our method on the complement of the third ellipsoid to demonstrate the

ability of the proposed methods to reproduce non-convex shapes. We plot in Figure 7.10 both

the trial convex reconstruction and convex-complement reconstruction, observing that because the

convex-complement reconstruction has a lower moment error, it is accepted as the final reconstruc-

tion. Importantly, because the moment data over which the optimization is performed is identical

between this case and that demonstrated for Ellipsoid 3 in Figure 7.9, the material approximations

returned by the two methods are themselves complements. It is for this reason that we primarily

restrict our numerical tests to convex material, as the problem of reconstructing materials whose

compliment is convex in the cell is equivalent to the problem of reconstruction convex material.

Decomposition into
True Material Convex MOF3

6hs Non-convex MOF3
6hs Convex Polyhedra

E(Ωr) 0.0197032 0.000237875
S(Ωr) 0.190205 0.0233722

Figure 7.10: Example of reconstruction of non-convex material. Because the interface generated
by the complement of a convex shape produces lower moment error, it is returned as the final
interface. We also demonstrate the decomposition of a reconstructed non-convex material into
convex polyhedra for related applications utilizing the reconstruction.

Finally, we can also use smooth shapes to illustrate differences between the MOF3
4hs, MOF3

5hs,

and MOF3
6hs methods. In cases where an exact reconstruction is possible, the trade-off of interest

is that optimizing over additional (potentially redundant) planes improves the reliability of the

method, in other words the likelihood of an accurate recovery from a single initial condition. How-

ever, when exact recovery is not possible, the relevant trade-off is instead between computational

cost and accuracy, as more planes in the reconstruction mean that a better approximation of curved

geometry is possible. As we can see in Figure 7.11, increasing the number of planes in the recon-

189

struction does improve the error, but also the total cost of the method. Importantly, while the cost

of each method scales directly with the number of planes in the reconstruction, the complexity of

the polyhedral cell also has a large impact on the performance of the method, as additional cell faces

each have the same performance impact on the moment calculation as an additional reconstruction

plane.

In spite of this example, we note that it is not necessarily the case that a reconstruction

with more planes will always result in greater reconstruction accuracy. For example, we observe for

Ellipsoid 2 of Figure 7.9 that the optimal interface found by our method is defined by five planes,

rather than the six that the global minimum foudn by the MOF3
6hs method would be expected

to have. In principle, this is because the proposed family of multi-plane methods are designed to

reliably converge to accurate three-plane solutions, which is the maximum number necessary to

exactly capture the sharp features in Figure 7.1. On the other hand, shapes with only flat features

are well-approximated by fewer planes, which introduces spurious local minima for the optimization

problem. From this perspective, it is in some sense an unintended advantage of our reconstruction

approach that for smooth shapes with sharp features, it tends to converge to solutions that utilize

as many planes as are parameterized (We explore this further in the discussion of Figure 7.18).

MOF3
4hs MOF3

5hs MOF3
6hs

R
ec
on

st
ru
ct
ed

E
ll
ip
so
id

E(Ωr) 0.00188321 0.00102675 0.000476561
S(Ωr) 0.0675061 0.0525182 0.0429109

Total Time (s) 0.0805 0.174 0.203
Iteration Count 20 33 21

Time per Iteration (s) 0.004025 0.00527 0.00967

Figure 7.11: Comparison of run-time vs. accuracy among multi-plane MOF methods. In cases
where an exact reconstruction is not possible, the use of additional planes results in an approximated
interface that is more computationally expensive, but can result in considerably lower error.

190

7.6.2 Mesh Tests

As would be the case in a practical application, it is necessary that our method is performant

when considered across all computational cells in a mesh. We note that the local nature of any

moment-of-fluid method means that accuracy across an entire mesh be equivalent to accuracy across

each individual cell. However, in addition to providing a wide breadth of single-cell examples, we

evaluate the proposed method across an entire mesh to demonstrate the quantitative advantages

of a multi-plane reconstruction scheme.

7.6.2.1 Cube Test

In our first example in Figure 7.12, we consider MOF3
1hs and MOF3

4hs on the cube [−0.5, 0.5]3

that we have rotated by R(1.2,−0.82, 1.0) around the origin (See Equation 7.5) and then trans-

lated by (0.05, 0.10,−0.05) to avoid unfairly exploiting the shape’s symmetry. This shape is then

reconstructed on an N × N × N uniform grid of cells across the larger cube [−1, 1]3. Although

the MOF3
1hs method used for comparison does approach the ground truth with successive refine-

ment, the nature of the shape’s corner features makes it impossible to represent the shape exactly.

Furthermore, the orientation of the shape makes it difficult for a PLIC method recover its edges

exactly at any refinement level on an axis-aligned grid, even in the presence of a more sophisticated,

adaptive refinement scheme.

In these examples, we consider in Table 7.4 the maximum of both the moment error E(Ωr; Ω)

and the symmetric difference error S(Ωr; Ω) across all cells in the mesh. To account for potential

outliers in the values of these error metrics across cells, we also consider their average across all

mixed cells in the mesh, that is to say, cells which are neither empty nor completely filled by the

material. In Figure 7.12 we see that even at the coarsest level of refinement, our MOF3
4hs method

visually recovers the shape near-identically, in contrast to the unrecognizable geometry produced

MOF3
1hs method. These results are supported numerically by Table 7.4, which shows that we indeed

produce an interface with less error along each of the described metrics.

191
3× 3× 3 Grid 9× 9× 9 Grid 27× 27× 27 Grid

M
O
F
3 1
h
s

M
O
F
3 4
h
s

Figure 7.12: Comparison between single-plane and multi-plane reconstruction schemes for a cube
across a Cartesian mesh. Using a multi-plane reconstruction scheme allows for more accurate
reproductions on coarser grids. The true material is outlined in red. The relevant error metrics are
presented in Table 7.4.

7.6.2.2 Ellipsoid Test

To consider an example that better resembles practical application, we apply MOF3
4hs,

MOF3
5hs, and MOF3

6hs on a convex shape that cannot be recovered exactly in Figure 7.13, which

depicts an ellipsoid defined by the parameters in Table 7.5. As in the previous example, we consider

an orientation of the shape that is not aligned with the grid of cells, which are placed in the cube

[−1, 1]3.

We see in this example that the multi-plane reconstruction offered by each of MOF3
4hs,

MOF3
5hs, and MOF3

6hs each offer a dramatic improvement over the single-plane technique, ade-

quately recovering the primary geometric features even at remarkably low resolution grids. Even in

the case of a single-cell grid, we can see that our method is able to recover a crude approximation

192
MOF3

1hs MOF3
4hs MOF3

5hs MOF3
6hs

1
×
1
×
1
G
ri
d

2
×

2
×
2
G
ri
d

8
×
8
×
8
G
ri
d

3
2
×
32
×
32

G
ri
d

Figure 7.13: Comparison between single-plane and several multi-plane MOF reconstruction schemes
for an ellipsoid over a Cartesian mesh. Using a multi-plane reconstruction scheme allows for more
accurate reproductions on coarser grids. The target ellipsoid is suggested in red wireframe on the
first row, although the shape from which ground truth moments are computed is of considerably
higher resolution.

193
E(Ωr; Ω)

Grid Resolution 3× 3× 3 9× 9× 9 27× 27× 27
(# Mixed Cells) (23) (189) (1752)

MOF1
1hs

Cell Average 1.3284e-03 6.0892e-06 2.9583e-08
Maximum 5.4000e-03 8.3435e-05 1.2974e-06

MOF1
4hs

Cell Average 2.0053e-07 2.4080e-07 1.1596e-10
Maximum 4.3996e-06 1.2727e-07 5.0307e-08

S(Ωr; Ω)

Grid Resolution 3× 3× 3 9× 9× 9 27× 27× 27
(# Mixed Cells) (23) (189) (1752)

MOF1
1hs

Cell Average 4.1915e-02 1.8975e-04 2.5371e-06
Maximum 1.2922e-02 1.8596e-03 6.7378e-05

MOF1
4hs

Cell Average 1.0440e-05 7.2676e-06 1.9463e-08
Maximum 2.1353e-04 1.2985e-05 9.7976e-06

Table 7.4: Evaluation of our moment error metric E(Ωr; Ω) and the symmetric difference error
metric S(Ωr; Ω) for the cube example in Figure 7.12. We see that the MOF3

4hs method results in a
significantly error across both metrics.

a b c α β γ x0 y0 z0
Ellipsoid 0.1 -0.1 0.1 0.9 -1.07 0.7 3.30719 0.18485 4.93365

Table 7.5: Parameters for multi-cell ellipsoid test in Figures 7.13, 7.14, and 7.15

of the completely embedded material, which is impossible when only a single plane is used in the

reconstruction.

Additionally, considering reconstruction accuracy across an entire mesh allows for a more

comprehensive analysis of how grid refinement impacts each of the proposed methods. As one would

expect, Figure 7.13 demonstrates that the reconstruction is more accurate both with increasing

levels of grid refinement and increasing numbers of planes used in the representation. However, we

also observe that it is for the coarser grids that increasing the number of planes brings about the

most improvement. For example, MOF3
6hs offers a dramatic improvement over MOF3

1hs, and even

over MOF3
4hs, on the 2 × 2 × 2 grid, being clearly recognizable as depicting the original ellipsoid

shape. On the other hand, the different methods visually perform very similarly on a 32× 32× 32

grid. This is because as the cell-size decreases, the local geometry of the shape becomes increasingly

194

flat, and the POM in each cell is already well approximated by a single plane. We note, though,

that this is not always the case, as shapes with sharp features (as in Figure 7.12) cannot be well

approximated by a PLIC method at any level of refinement for an arbitrary mesh.

We further explore this point on the same ellipsoid shape by considering reconstruction

accuracy as function of cell index through the heatmaps in Figure 7.14, where the two error metrics

are evaluated over a 16 × 16 × 16 grid. We note that although there is a considerable amount of

cell-to-cell variability for each error metric within a single shape, this can be attributed to varying

material volume in each cell. Nevertheless, cell-to-cell comparisons between the different methods

are appropriate, as the interface in each cell’s reconstruction is attempting to match the same data.

We observe in Figure 7.14(a) that the accuracy of the MOF3
1hs method, both in terms of

moment error E(Ωr; Ω) and the symmetric difference error S(Ωr; Ω), generally correlates with the

curvature of the shape, where areas of high curvature tend to have higher reconstruction error. At

the same time, the proposed multi-plane methods are far more robust to such qualities and, as

seen in Figure 7.13, can be observed to outperform MOF3
1hs most in regions of high curvature. We

consider the overall distribution of these errors more directly through histograms over the same

data in Figure 7.14(b), where we observe that we see a broad improvement in error across the

domain of each of our methods against MOF3
1hs.

At the same time, we observe through in this example that the difference between the MOF3
4hs,

MOF3
5hs, and MOF3

6hs methods is somewhat minimal. This is largely due to the resolution of the

grid, as the curvature across a single cell within 16× 16× 16 grid is (on average) not high enough

to see strong visual improvement between the three methods. On the other hand, we can repeat

this analysis for a coarser 4× 4× 4 grid in Figure 7.15 and see more clearly the advantage of using

MOF3
6hs over MOF3

5hs and MOF3
4hs.

7.6.2.3 Nonconvex Test

Next, we consider the proposed family of methods on a shape with many non-convex features

in the form of five “creases” positioned around an ellipsoid shape. We generate this shape according

195
Per-Cell Errors on 16× 16× 16 Mesh Grid

(a) MOF3
1hs MOF3

4hs MOF3
5hs MOF3

6hs

(b)

F
re
q
u
en

cy

log
10

(E(Ωi; Ω)) log
10

(S(Ωi; Ω))

Figure 7.14: Error comparison between methods evaluated for an ellipsoid over a Cartesian mesh.
Although MOF3

1hs can provide a sufficient representation for regions of low curvature, the use of
a multi-plane scheme makes the accuracy of the reconstruction more tolerant to regions of higher
curvature. Even still, the proposed family of multi-plane schemes still improves accuracy over one-
plane alternatives when considered across the entire shape.

196
Per-Cell Errors on 4× 4× 4 Mesh Grid

(a) MOF3
1hs MOF3

4hs MOF3
5hs MOF3

6hs

(b)

F
re
q
u
en

cy

log
10

(E(Ωi; Ω)) log
10

(S(Ωi; Ω))

Figure 7.15: The results of Figure 7.14 reproduced on a coarser grid. We can see more clearly the
advantages of using more planes per cell in the reconstruction, as MOF3

5hs and MOF3
6hs are shown

to be significantly more performant than MOF3
4hs.

197

to the following parametric surface:

x(u, v) = 0.04 (1.5 sin(u)(6 cos(v)− cos(6v)) ,

y(u, v) = 0.04 (1.5 sin(u)(6 sin(v)− sin(6v)) ,

z(u, v) = 0.24 cos(u).

The shape generated by this surface is then rotated around the origin by the rotation matrix

R(−0.1,−1.67, 0.0) and translated by the point (0.2, 0.2,−0.2). We see as before in Figure 7.16

that proposed family of methods can far more accurately capture subgrid and curved features of

the shape, and that successive refinement of the mesh improves the quality of this reconstruction

relative to the ground truth.

It is through this example that we demonstrate the principle advantage of MOF3
4hs, MOF3

5hs,

and MOF3
6hs: the ability to achieve the same level of accuracy on a coarser grid. To do this, we

explore the minimum level of mesh refinement needed for the MOF3
1hs PLIC method to achieve the

same overall level of accuracy as each of our multi-plane methods.

We first consider the shape in its entirety over a 5 × 5 × 5 grid, chosen heuristically as the

minimum level over which the MOF3
Nhs methods reasonably approximate the curved features of

the shape. For each grid, we sum the symmetric difference error across cells in the mesh. In

contrast to the moment error, the sum of the symmetric difference error metric directly represents

the total error in the shape. In Figure 7.17, we see similar performance among the proposed family

of methods, which suggests that few individual cells in the 5× 5× 5 mesh have prominent enough

sharp features to fully exert all planes available to the reconstruction method. However, we can see

that an 7× 7× 7 grid of cells is necessary to reconstruct the shape with accuracy roughly equal to

the MOF3
4hs, and an 8×8×8 grid is needed to surpass the accuracy of MOF3

5hs and MOF3
6hs. This

correlates to a nearly three-fold increase in the number of mixed-material cells (58 vs. 163), serving

in part to justify the increased cost of a multi-plane MOF method compared to the analogous PLIC

procedure.

In many ways, we consider such a demonstration to be more effective than formal convergence

198

MOF3
1hs MOF3

4hs MOF3
5hs MOF3

6hs

1
×
1
×
1

G
ri
d

4
×
4
×

4

G
ri
d

8
×
8
×
8

G
ri
d

16
×
16
×
16

G
ri
d

Figure 7.16: Comparison between reconstruction methods on a non-convex shape over a Cartesian
mesh. Using a multi-plane reconstruction scheme permits reconstruction of non-convex regions
wihin a single cell. The target shape is suggested in red wireframe on the first row, although the
shape from which ground truth moments are computed is of considerably higher resolution. For
the 4× 4× 4 grid, we also emphasize in red the MOF3

1hs and MOF3
5hs reconstruction in one cell for

further discussion in Section 7.7.1, and in cyan the MOF3
4hs reconstruction for further discussion

in Section 7.7.2.

199
MOF3

4hs MOF3
5hs MOF3

6hs

5
×
5
×
5

ΣS(Ωr) 6.6399× 10−3 6.4442× 10−3 5.9523× 10−3

5× 5× 5 6× 6× 6 7× 7× 7 8× 8× 8

M
O
F
3 1
h
s

ΣS(Ωr) 1.2462× 10−2 8.9779× 10−3 6.9487× 10−3 5.5949× 10−3

Figure 7.17: Error comparison across varying levels of refinement evaluated for a non-convex mate-
rial. Additional levels of refinement are needed for a PLIC method to achieve the same aggregate
levels of accuracy. In this example, an 8 × 8 × 8 grid is required for MOF3

1hs to achieve the same
total symmetric difference error as MOF3

6hs. At the top of the MOF3
6hs reconstruction we have

emphasized one POM in yellow for further discussion in Figure 7.18.

analysis for exploring the performance of our reconstruction technique, as the particulars of the

ground truth geometry often have a far more significant influence on reconstruction accuracy than

the resolution of the mesh. For example, we observe in Figure 7.17 that the error of each MOF3
Nhs

method on the 5×5×5 grid varies considerably with the complexity of the geometric features present

in a given cell. This is also true for the PLIC method on the same grid, but as the mesh resolution is

increased, the error becomes more uniformly distributed among the cells. This primarily illustrates

that as the size and frequency of cells containing problematic geometric features decrease, the total

error decreases as well. The same is also true of our MOF3
Nhs methods, but as seen in Figure 7.11,

there are comparatively fewer advantages to using our multi-plane methods when the geometry in

a cell is already locally smooth.

To see this more clearly, we consider another example of mesh refinement the POM in the

200

MOF3
6hs example of Figure 7.17 which we have highlighted in yellow. This shape, despite having

relatively high curvature, has no sharp features at the coarsest level of resolution. In Figure 7.18,

we can see that there is over an order of magnitude of difference between the PLIC method and

the six-plane reconstruction on the original cell. However, as the mesh resolution increases, the

comparative improvement becomes markedly smaller. In some sense, this represents a shortcoming

of our numerical scheme. Although our choice of initial condition can reliably recover sharp features,

it is not particularly well-suited for a high-fidelity reconstruction of smooth features, as there exist

spurious local minima around reconstructions that use fewer planes than are available. For example,

we observe in this case that the MOF3
5hs method actually outperforms the MOF3

6hs method on the

2× 2× 2 and 3× 3× 3 grid, despite having fewer parameters. Ultimately, however, the key result

of this figure is that the MOF3
6hs method is able to reconstruct features on a single cell with an

accuracy that the PLIC method requires a 3× 3× 3 grid to achieve.

7.7 Discussion

7.7.1 Reconstruction of Nonconvex Material

The proposed family of methods are intended to accurately represent both convex material or

material whose complement is convex, but many shapes have features for which neither is the case.

This is shown somewhat adversarially in the example of Section 7.6.2.3, which has the property

where all non-convex material localized to a cell is also not the complement of a convex shape.

We highlight all such cells in Figure 7.19, and can observe that the error in the method along

either error metric is concentrated to cells which do not contain convex material. Indeed, in all

cells that do contain convex material, the MOF3
6hs method achieves significant agreement with the

ground-truth geometry.

We also observe through Figure 7.19 that the majority of cells use a convex material in the

approximation, despite the material itself being non-convex. For a particularly difficult example,

we refer back to the material highlighted in red in Figure 7.16, for which MOF3
5hs uses a convex

201
1× 1× 1 2× 2× 2 3× 3× 3

M
O
F
3 6
h
s

ΣS(Ωr) 6.96227× 10−5 3.6633× 10−5 2.7864× 10−5

M
O
F
3 5
h
s

ΣS(Ωr) 9.5327× 10−5 2.8328× 10−5 1.8954× 10−5

M
O
F
3 4
h
s

ΣS(Ωr) 1.2266× 10−4 4.3528× 10−5 2.2858× 10−5

M
O
F
3 1
h
s

ΣS(Ωr) 4.8481× 10−4 1.0026× 10−4 4.8324× 10−5

Figure 7.18: Error comparison for a single cell across varying levels of refinement. We can see
that additional levels of refinement are needed to capture important geometric features accurately,
particularly in areas of high or variable curvature.

approximation that, visually at least, appears to be a poor approximation of the natural crease in

the ground-truth shape. We investigate this particular cell in Figure 7.20, where we see that the

complex geometric features of the material fragment make both the convex and convex-complement

202

Figure 7.19: Reconstruction of material that is neither convex nor has a convex complement.
Although the proposed technique can effectively approximate convex material, it is difficult to use
such a reconstruction strategy to represent material which is neither convex nor the complement
of a convex shape, as shown by the increased error for such cells.

reconstructions largely undesirable. Nevertheless, we see that the convex reconstruction (which has

functionally combined the two components of ground-truth material) provides a better approxi-

mation along each of the two measured error metrics. We also see in this single cell example that

both trial materials generated by MOF3
5hs outperform the PLIC reconstruction, as such a technique

can (at best) only accurately represent convex material in a convex cell. In either case, we can

see throughout the provided examples that the multi-plane method dramatically outperforms the

PLIC method numerically, despite the result appearing visually unintuitive.

203
True Material MOF3

1hs Nonconvex MOF3
5hs Convex MOF3

5hs

E(Ωr) 0.069195 0.0248674 0.0223386
S(Ωr) 0.125328 0.11804 0.0915591

Figure 7.20: Reconstruction of a single POM that is neither convex nor has a convex complement.
Although the selection of a nonconvex material appears unintuitive for this type of shape, it nev-
ertheless provides a considerably lower error both in terms of the moment error and the symmetric
difference error.

7.7.2 Geometric Artifacts

In each of the proposed MOF methods, we occasionally observe that one or more planes used

in the reconstruction only exclude a very small volume from the convex intersections of half-spaces

that represents the approximated material. When the material itself is convex, these artifacts

manifests through “gaps” or “holes” between adjacent cells that are otherwise filled in the ground-

truth shape. The same type of artifact is more prominent visually, however, in the case where

the material is non-convex, such as that emphasized in cyan in Figure 7.16, where thin “slices” of

material appear catastrophic for the quality of the interface.

The primary source of these artifacts is mathematical. The geometric moments used in the

objective function vary continuously with our parameterization of the reconstructed interface with

no direct influence from cell boundaries. These “gaps” or “slices” in the reconstruction have near-

zero volume, and so this means that during optimization, there is no little to no distinction between

returned interfaces that have or lack such artifacts, as they functionally do not contribute to the

error.

From the perspective of the reconstruction problem, we consider these artifacts to be a simple

visual error whose visually striking appearance can be attributed almost entirely to the particular

viewing angle at which the shape is observed.

204

Similarly from a physical perspective, they can be expected to be functionally inert with

respect to Lagrangian remapping as well, as the fact that they have near-zero volume means their

individual moments do not meaningfully contribute to the intersection with a backtraced cell.

However, we acknowledge that there are circumstances in which material interactions between the

surface of such spurious components can be impactful for physics applications.

We consider the more rigorous treatment of these surface interactions to be separate from the

reconstruction problem, but we nevertheless suggest the approach of straight-forwardly removing

from the reconstruction any plane that only clips a small volume from the cell. By weighting this

cutoff volume by the reference material volume, we also ensure that cells with only small volume

components are not completely removed. While by definition this procedure only removes material

with otherwise insignificant volume, the total volume within the cell must still be tightly controlled

to preserve physically in numerical simulation. In such cases where the volume has diverged from

the reference, we can re-enforce the volume constraint on the remaining clipping planes through

the same root-finding problem employed during optimization at a cost that is less than that of a

single optimization step (See Section 7.4.2). We demonstrate the results of this strategy on each

of the proposed family of methods on an 8 × 8 × 8 grid of cells for the shape in Figure 7.16. In

Figure 7.21 we see that even an extremely conservative tolerance for the cut volume works well to

remove these artifacts.

7.7.3 Shapes with Identical Moments

Although the entire set of geometric moments is sufficient to uniquely identify any shape,

numerical restrictions require that a method such as ours only consider a finite subset of available

moment data during optimization. This leads to cases in which multiple geometrically distinct

shapes have identical moments up to a certain order, typically when the shape itself posses symme-

try of some kind. A possible solution would be to simply use additional high-order moments in the

construction of the interface to distinguish such shapes. Indeed, it is for this reason that we only

propose MOF methods that use, at minimum, third-order moments, as we observe empirically that

205
MOF3

4hs MOF3
5hs MOF3

6hs

R
aw

ou
tp
u
t

W
it
h
ar
ti
fa
ct
s

re
m
ov
ed

Figure 7.21: Example of visual artifact removal. Because the optimization procedure is indifferent
to the number of components that compose each material in a cell, there are often superficial
artifacts introduced by bounding planes that define regions of near-zero volume. This is especially
noticeable in the case of convex-complement reconstructions, as such artifacts have the appearance
of thin sheets or lines. Nevertheless, we consider these extraneous features to be largely irrelevant
to downstream physics applications, and suggest a simple strategy for removing them.

there exist too many possible symmetries for geometric objects in 3D for second-order moments to

be sufficient.

However, we note that even using third-order moments, there are many shapes that remain

indistinguishable. For example, this can be observed in any regular cube inscribed in the same

sphere (See Figure 7.22), all of which have identical moments up to and including third-order.

Indeed, any MOF3
6hs method attempted on these shapes will terminate immediately, as the initial

inscribed cube matches the available moments exactly.

At the same time, we have observed that considering more than third-order moments also

leads to undesirable results, likely because fourth-order moments individually encode less important

information than quantities derived from lower-order moments like the centroid. This is particularly

problematic when the proposed optimization procedure weights all moments equally. For example,

a reconstruction that more closely matches the 15 fourth-order moments than the 10 third-order

moments will likely be less accurate to the underlying geometry.

206

Figure 7.22: Example of distinct shapes with some identical moments. These shapes have identical
moments up to third order, and can therefore not be distinguished by any of the proposed methods.

Nevertheless, we observe throughout this work that cases where moments up to third-order

are incapable of distinguishing shapes are largely adversarial, and the reconstructions generated by

the provided MOF3 methods are suitably capable of expressing realistic geometric features.

7.7.4 Sensitivity to Noise in Reference Moment Data

In a practical application, the provided reference moments are subject to numerical error.

For example, one possible source of error is the physics simulation scheme under which the material

evolves over time, from which moment data is calculated. This causes the material itself to erro-

neously drift, which impacts the accuracy of the interface reconstruction relative to the unknown

ground truth.

Another potentially more manageable source is the calculation of moment data itself from the

polyhedral approximation after each step of the simulation. Here too the accuracy of the interface

reconstruction method is affected, but now instead relative to data from a previous state of the

simulation. While this error cannot be accounted for by interface reconstruction techniques, it is

important that the non-linear optimization scheme used by the proposed family of methods is not

unnecessarily sensitive to slight numerical issues with reference moment data.

To demonstrate this, we consider a sphere placed on a 3× 3× 3 grid, a shape for which the

exact shape cannot be recovered exactly. The sphere itself is centered at (0.1,−0.1, 0.1) and has a

207

radius of 0.7 to avoid unfairly exploiting the symmetry of the shape in the reconstruction.

After computing ground-truth moment data for this shape, we add an increasing amount of

normally distributed noise to each raw moment to simulate this second kind of numerical error. We

then perform a reconstruction with the proposed family of methods, as well as the simple MOF3
1hs

PLIC method for further comparison. Specifically, we add a sample ni from the normal distribution

N (0, 10−L) to each moment for varying levels of noise L, in effect perturbing the moment data in

the Lth decimal place. For context, the ground-truth moments vary amongst themselves on the

order of 10−3 ∼ 10−5. We compile these results for various levels of noise in Figure 7.23. The first

row of noisy results shows a fairly realistic case, where a noise level L = 8 corresponds roughly to

the rounding that would be observed if double precision values were converted to single precision.

This is essentially a perturbation in the 6th significant figure. As shown in the figure, this has

functionally no impact on the accuracy of the method.

By L = 5, the inaccuracy borders on unrealistic, as we have now perturbed most pieces of data

in at least their 3rd significant figure. By this point the quality of the reconstruction has suffered

significantly, particularly with the increased presence of visible geometric artifacts stemming from

the use of non-conex reconstructions, yet we nevertheless can recognize the original sphere shape.

By the 3rd level of noise, all values have zero digits of accuracy after perturbation, and it is only at

this point does the shape become completely unrecognizable and unusable. Altogether, these results

demonstrate that the non-linear optimization scheme is fairly robust to imprecision in moment data,

and more generally, that moment information is a useful method of encoding geometric features of

polyhedra.

7.8 Conclusions and Future Work

In this work we have presented a novel approach to 3D interface reconstruction, in which we

approximate material as the convex intersection (or the complement thereof) of 4, 5, and 6 half-

spaces. The parameters of each half-space are selected through the minimization of a non-linear

optimization problem over zeroth-order through third-order reference moments. In many ways,

208
MOF3

1hs MOF3
4hs MOF3

5hs MOF3
6hs

N
o
N
oi
se

L
=

8
L
=

5
L
=

3

Figure 7.23: Example of the effect of noise in moment data on interface reconstruction. For noise
level L, we add to each piece of moment data a random sample from the normal distribution
N (0, 10−L). While the presence of noise in reference moment data makes it impossible to recon-
struct the shape accurately with respect to the ground truth, our non-linear optimization scheme
is nevertheless stable enough to withstand small perturbations in moment data before becoming
unusable.

this work represents the natural progression of the existing body of literature in 2D multi-plane

interface reconstruction, where we have combined the geometric expressiveness derived from using

multiple independently parameterized planes (as in MOF2
2hp) with the computational efficiency

derived from using a single initial condition for the non-linear optimization (as in MOF3
PIE). At

the same time, our approach is aided by a custom normalization procedure that uses data from a

209

reference ellipsoid to transform the space over which optimization is performed, thereby improving

robustness and computational efficiency of the method. Through these techniques, we are able to

create material approximations that far outpace PLIC methods on the same level of resolution, in

particular being able to more accurately resolve areas of high curvature or sharp features.

The development of this family of techniques leaves much room for further improvements,

both computationally and algorithmically. For example, the largest barrier to reaching a true global

minimum as opposed to a somewhat acceptable local minimum during optimization is the presence

of “inactive planes,” in which one of the planes reaches a plateau of the objective function, for which

the local gradient is zero. In such cases, the plane becomes fixed in this position for the remainder

of the optimization procedure. While the current approach of “clamping” planes to be tangent

to the cell alleviates this issue, it is an ad hoc solution that could be improved in future work.

Furthermore, while the generic Levenberg-Marquardt algorithm used for numerical optimization

is effective at solving this problem, it is possible that more specified procedures could achieve an

improved optimal solution at a faster rate, particularly those that utilize automatic differentiation.

Finally, there exist many existing techniques in the MOF literature which could be more-

or-less immediately applied to the proposed multi-plane method. As described in Section 7.2.2,

defining the interface with half-spaces makes the proposed method highly compatible with contem-

porary advection strategies, and in principle generalizes well to multi-material scenarios.

Additionally, one could improve computational performance across a mesh through a method

that adaptively selects the number of planes to use in the reconstruction, as areas of low curvature

are often sufficiently captured by a single plane, while the advantages between MOF3
4hs, MOF3

5hs,

and MOF3
6hs increase with increasing curvature.

7.9 Acknowledgement

The work of this chapter was done under the auspices of the National Nuclear Security Ad-

ministration of the US Department of Energy at Los Alamos National Laboratory under Contract

No. 89233218CNA000001. The authors gratefully acknowledges the support of the US Depart-

210

ment of Energy National Nuclear Security Administration Advanced Simulation and Computing

Program. LA-UR-24-30258.

Bibliography

[1] Anirudh Acharya, Theodore Kypraios, and Mădălin Guţă. A comparative study of estimation
methods in quantum tomography. Journal of Physics A: Mathematical and Theoretical,
52(23):234001, May 2019.

[2] Hyung Taek Ahn and Mikhail Shashkov. Multi-material interface reconstruction on general-
ized polyhedral meshes. Journal of Computational Physics, 226(2):2096–2132, 2007.

[3] Rehman Ali, Carl D. Herickhoff, Dongwoon Hyun, Jeremy J. Dahl, and Nick Bottenus.
Extending retrospective Encoding for Robust Recovery of the Multistatic Data Set. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(5):943–956, 2020.

[4] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Du-
douit, A. Fisher, Tz. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm,
D. Medina, and S. Zampini. MFEM: A modular finite element methods library. Computers
& Mathematics with Applications, 81:42–74, jan 2021.

[5] P. Asente, M. Schuster, and T. Pettit. Dynamic planar map illustration. ACM Transactions
on Graphics, 26(3):30:1–10, July 2007.

[6] Anirudh Asuri Mukundan, Thibaut Ménard, Jorge César Brändle de Motta, and Alain
Berlemont. A 3d moment of fluid method for simulating complex turbulent multiphase flows.
Computers & Fluids, 198:104364, 2020.

[7] E. Aulisa, S. Manservisi, R. Scardovelli, and S. Zaleski. Interface reconstruction with
least-squares fit and split advection in three-dimensional cartesian geometry. Journal of
Computational Physics, 225(2):2301–2319, 2007.

[8] A. Balu, M. R. Rajanna, J. Khristy, F. Xu, A. Krishnamurthy, and M.-C. Hsu. Direct
immersogeometric fluid flow and heat transfer analysis of objects represented by point clouds.
Computer Methods in Applied Mechanics and Engineering, 404:115742, February 2023.

[9] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi. Maximum-likelihood
estimation of the density matrix. Phys. Rev. A, 61:010304, Dec 1999.

[10] G. Barill, N. Dickson, R. Schmidt, D. I. W. Levin, and A. Jacobson. Fast winding numbers
for soups and clouds. ACM Transactions on Graphics, 37(4), July 2018.

[11] A. J. Barlow, P.-H. Maire, W. J. Rider, R. N. Rieben, and M. J. Shashkov. Arbitrary
Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows.
Journal of Computational Physics, 322:603–665, 2016.

212

[12] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2d
euler equations. Journal of Computational Physics, 138(2):251–285, 1997.

[13] T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio. Scalable reconstruction of density
matrices. Phys. Rev. Lett., 111:020401, Jul 2013.

[14] T Baumgratz, A Nüßeler, M Cramer, and M B Plenio. A scalable maximum likelihood
method for quantum state tomography. New Journal of Physics, 15(12):125004, dec 2013.

[15] Sayantan Bhadra, Varun A. Kelkar, Frank J. Brooks, and Mark A. Anastasio. On hal-
lucinations in tomographic image reconstruction. IEEE Transactions on Medical Imaging,
40(11):3249–3260, 2021.

[16] S. Bischoff, D. Pavic, and L. Kobbelt. Automatic restoration of polygon models. ACM
Transactions on Graphics, 24(4):1332–1352, October 2005.

[17] Robin Blume-Kohout. Hedged maximum likelihood quantum state estimation. Physical
Review Letters, 105(20), November 2010.

[18] Robin Blume-Kohout. Optimal, reliable estimation of quantum states. New Journal of
Physics, 12(4):043034, apr 2010.

[19] Nick Bottenus. Recovery of the complete data set from focused transmit beams. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(1):30–38, 2018.

[20] Nick Bottenus, Jacob Spainhour, and Stephen Becker. Comparison of spatial encodings
for ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 70(1):52–63, 2023.

[21] J. C. Bowers, J. Leahey, and R. Wang. A ray tracing approach to diffusion curves. Computer
Graphics Forum, 30(4):1345–1352, 2011.

[22] Andrew Cahaly, Fabien Evrard, and Olivier Desjardins. Plic-net: A machine learning ap-
proach for 3d interface reconstruction in volume of fluid methods. International Journal of
Multiphase Flow, 178:104888, Aug 2024.

[23] A. Capps, R. Carson, B. Corbett, N. Elliott, J. Essman, B. Gunney, B. Han, C. Harrison,
R. Hornung, M. Larsen, A. Moody, E. Pauli, R. Settgast, L. Taylor, K. Weiss, C. White,
B. Whitlock, M. Yang, and G. Zagaris. Axom: CS infrastructure components for HPC
applications, 2017–2024. https://github.com/llnl/axom.

[24] P. C. P. Carvalho and P. R. Cavalcanti. Ii.2 - point in polyhedron testing using spherical
polygons. In A. W. Paeth, editor, Graphics Gems V, pages 42–49. Academic Press, Boston,
1995.

[25] Marco Cerezo, Alexander Poremba, Lukasz Cincio, and Patrick J. Coles. Variational quantum
fidelity estimation. Quantum, 4:248, March 2020.

[26] Yinran Chen, Jing Liu, Xiongbiao Luo, and Jianwen Luo. ApodNet: Learning for High
Frame Rate Synthetic Transmit Aperture Ultrasound Imaging. IEEE Transactions on Medical
Imaging, 40(11):3190–3204, 2021.

https://github.com/llnl/axom

213

[27] Yujie Chen, Junhua Gong, Dongliang Sun, Dongxu Han, Peng Wang, Bo Yu, and Wen-Quan
Tao. A three-dimensional curve interface reconstruction algorithm for two-phase fluid flow.
Journal of Computational Physics, 520:113489, 2025.

[28] RY Chiao, LJ Thomas, and SD Silverstein. Sparse array imaging with spatially-encoded
transmits. 1997 IEEE Ultrasonics Symposium, pages 1679–1682, 1997.

[29] E. B. Chin and N. Sukumar. Scaled boundary cubature scheme for numerical integration over
planar regions with affine and curved boundaries. Computer Methods in Applied Mechanics
and Engineering, 380:113796, 2021.

[30] Robert Chiodi and Olivier Desjardins. General, robust, and efficient polyhedron intersection
in the interface reconstruction library. Journal of Computational Physics, 449:110787, Oct
2021.

[31] Robert Chiodi and Mikhail Shashkov. A moment-of-fluid interface reconstruction using poly-
gon inscribed in ellipse in 2d. Journal of Computational Physics, 528:113814, 2025.

[32] Jon Claerbout. Geophysical image estimation by example. LULU COM, 2014.

[33] J. E. Cobb. Tiling the sphere with rational Bézier patches. In TR UUCS-88-009, pages 1–14.
University of Utah USA, 1988.

[34] R S C Cobbold. Foundations of Biomedical Ultrasound. Biomedical Engineering Series.
Oxford University Press, 2007.

[35] P. Colella, D. Graves, T. Ligocki, D. Trebotich, and B. V. Straalen. Embedded boundary
algorithms and software for partial differential equations. Journal of Physics: Conference
Series, 125(1):012084, July 2008.

[36] Marcus Cramer, Martin B Plenio, Steven T Flammia, Rolando Somma, David Gross,
Stephen D Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai Liu. Efficient quan-
tum state tomography. Nature communications, 1(1):149, 2010.

[37] Marcus P. da Silva, Olivier Landon-Cardinal, and David Poulin. Practical Characterization
of Quantum Devices without Tomography. Phys. Rev. Lett., 107(21):210404, 2011.

[38] M. Dowell and P. Jarratt. A modified regula falsi method for computing the root of an
equation. BIT, 11(2):168–174, June 1971.

[39] Vadim Dyadechko and Mikhail Shashkov. Moment-of-fluid interface reconstruction. Technical
report, Los Alamos National Laboratory, Los Alamos, NM, Oct 2005. Technical Report LA-
UR-05-7571.

[40] Vadim Dyadechko and Mikhail Shashkov. Reconstruction of multi-material interfaces from
moment data. Journal of Computational Physics, 227(11):5361–5384, 2008.

[41] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degen-
erate cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, January 1990.

214

[42] A. Efremov, V. Havran, and H.-P. Seidel. Robust and numerically stable Bézier clipping
method for ray tracing NURBS surfaces. In Proceedings of the 21st Spring Conference on
Computer Graphics, SCCG ’05, pages 127–135, New York, NY, USA, 2005. Association for
Computing Machinery.

[43] A. Efremov, V. Havran, and H.-P. Seidel. Robust and numerically stable Bézier clipping
method for ray tracing NURBS surfaces. In Proceedings of the 21st Spring Conference on
Computer Graphics, SCCG ’05, pages 127–135, New York, NY, USA, 2005. Association for
Computing Machinery.

[44] Fabien Evrard, Robert Chiodi, Austin Han, Berend van Wachem, and Olivier Desjardins.
First moments of a polyhedron clipped by a paraboloid. SIAM Journal on Scientific
Computing, 45(5):A2250–A2274, 2023.

[45] Fabien Evrard, Robert Chiodi, Berend van Wachem, and Olivier Desjardins. Simulating
interfacial flows: a farewell to planes. arXiv preprint arXiv:2401.15012, 2024.

[46] G. E. Farin. Curves and surfaces for CAGD: A practical guide. Morgan Kaufmann, 2001.

[47] N. Feng, M. Gillespie, and K. Crane. Perspectives on winding numbers. Technical report,
Carnegie Mellon University, 2023.

[48] Nicole Feng and Keenan Crane. A heat method for generalized signed distance. ACM Trans.
Graph., 43(4), July 2024.

[49] Jaromı́r Fiurášek and Zden ěk Hradil. Maximum-likelihood estimation of quantum processes.
Phys. Rev. A, 63:020101, Jan 2001.

[50] Steven T. Flammia and Yi-Kai Liu. Direct fidelity estimation from few pauli measurements.
Physical Review Letters, 106(23), jun 2011.

[51] Jan Flusser, Barbara Zitova, and Tomas Suk. Moments and Moment Invariants in Pattern
Recognition. Wiley Publishing, 2009.

[52] J. E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J. A. Evans, and D. Kamensky.
Interpolation-based immersed finite element and isogeometric analysis. Computer Methods
in Applied Mechanics and Engineering, 405:115890, 2023.

[53] I. Ginzburg and G. Wittum. Two-phase flows on interface refined grids modeled with vof, stag-
gered finite volumes, and spline interpolants. Journal of Computational Physics, 166(2):302–
335, 2001.

[54] Sobhan Goudarzi and Hassan Rivaz. Deep reconstruction of high-quality ultrasound images
from raw plane-wave data: A simulation and in vivo study. Ultrasonics, 125:106778, 2022.

[55] Andreas Griewank and Andrea Walther. Evaluating Derivatives. Society for Industrial and
Applied Mathematics, second edition, 2008.

[56] David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker, and Jens Eisert. Quantum
state tomography via compressed sensing. Phys. Rev. Lett., 105:150401, Oct 2010.

[57] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

215

[58] D. Gunderman. High-Order Spatial Discretization and Numerical Integration Schemes for
Curved Geometries. PhD thesis, Department of Applied Mathematics, University of Colorado
Boulder, 2021.

[59] D. Gunderman, K. Weiss, and J. A. Evans. Spectral mesh-free quadrature for planar regions
bounded by rational parametric curves. Computer-Aided Design, 130, 2020.

[60] D. Gunderman, K. Weiss, and J. A. Evans. High-accuracy mesh-free quadrature for trimmed
parametric surfaces and volumes. Computer-Aided Design, 141:103093, 2021.

[61] D. Gunderman, K. Weiss, and J. A. Evans. High-accuracy mesh-free quadrature for trimmed
parametric surfaces and volumes. Computer-Aided Design, 141:103093, December 2021.

[62] M Guţă, J Kahn, R Kueng, and J A Tropp. Fast state tomography with optimal error bounds.
Journal of Physics A: Mathematical and Theoretical, 53(20):204001, apr 2020.

[63] C. Hafner, C. Schumacher, E. Knoop, T. Auzinger, B. Bickel, and M. Bächer. X-CAD:
Optimizing CAD models with extended finite elements. ACM Trans. Graph., 38(6), November
2019.

[64] E. Haines. I.4. - point in polygon strategies. In P. S. Heckbert, editor, Graphics Gems, pages
24–46. Academic Press, 1994.

[65] E. Haines and T. Akenine-Möller, editors. Ray tracing gems. Apress, 2019. http:

//raytracinggems.com.

[66] Austin Han, Robert Chiodi, and Olivier Desjardins. Capturing thin structures in vof simula-
tions with two-plane reconstruction, 2024.

[67] T Harrison, A Samplaleanu, and Roger Zemp. S-sequence spatially-encoded synthetic aper-
ture ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 61(5):886–890, 2014.

[68] Philippe Hergibo, Timothy N. Phillips, and Zhihua Xie. A moment-of-fluid method for
resolving filamentary structures using a symmetric multi-material approach. Journal of
Computational Physics, 491:112401, 2023.

[69] C.W. Hirt, A. A. Amsden, and J. L. Cook. An Arbitrary Lagrangian-Eulerian computing
method for all flow speeds. Journal of Computational Physics, 14(3):227–253, 1974.

[70] K. Hormann and A. Agathos. The point in polygon problem for arbitrary polygons.
Computational Geometry, 20(3):131–144, 2001.

[71] Addison Howard, Eunbyung Park, and Wendy Kan. Imagenet object localization challenge,
2018.

[72] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, and A. Krishnamurthy. Direct immersogeometric
fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43:143–158,
2016. Geometric Modeling and Processing 2016.

[73] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics
and Engineering, 194(39):4135–4195, 2005.

http://raytracinggems.com
http://raytracinggems.com

216

[74] Dongwoon Hyun. A universal end-to-end description of pulse-echo ultrasound image recon-
struction. In Stephen Aylward, J. Alison Noble, Yipeng Hu, Su-Lin Lee, Zachary Baum,
and Zhe Min, editors, Simplifying Medical Ultrasound, pages 128–138, Cham, 2022. Springer
International Publishing.

[75] Dongwoon Hyun, Leandra L. Brickson, Kevin T. Looby, and Jeremy J. Dahl. Beam-
forming and speckle reduction using neural networks. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 66(5):898–910, 2019.

[76] Dongwoon Hyun, Alycen Wiacek, Sobhan Goudarzi, Sven Rothlübbers, Amir Asif, Klaus
Eickel, Yonina C. Eldar, Jiaqi Huang, Massimo Mischi, Hassan Rivaz, David Sinden, Ruud
J. G. van Sloun, Hannah Strohm, and Muyinatu A. Lediju Bell. Deep learning for ultrasound
image formation: Cubdl evaluation framework and open datasets. IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 68(12):3466–3483, 2021.

[77] Jaroslav Řeháček, Zden ěk Hradil, E. Knill, and A. I. Lvovsky. Diluted maximum-likelihood
algorithm for quantum tomography. Phys. Rev. A, 75:042108, Apr 2007.

[78] D. M. Ingram, D. M. Causon, and C. G. Mingham. Developments in Cartesian cut cell
methods. Mathematics and Computers in Simulation, 61(3):561–572, 2003.

[79] A. Jacobson, L. Kavan, and O. Sorkine. Robust inside-outside segmentation using generalized
winding numbers. ACM Trans. Graph., 32(4):1–12, 2013.

[80] A. Jacobson, D. Panozzo, C. Schüller, O. Diamanti, Q. Zhou, N. Pietroni, et al. libigl: A
simple C++ geometry processing library. Google Scholar, 2013.

[81] Daniel F. V. James, Paul G. Kwiat, William J. Munro, and Andrew G. White. Measurement
of qubits. Phys. Rev. A, 64:052312, Oct 2001.

[82] Matthew Jemison, Eva Loch, Mark Sussman, Mikhail Shashkov, Marco Arienti, Mitsuhiro
Ohta, and Yaohong Wang. A coupled level set-moment of fluid method for incompressible
two-phase flows. Journal of scientific computing, 54(2-3):38, 2013.

[83] J.A. Jensen. Simulation of advanced ultrasound systems using field ii. In 2004 2nd IEEE
International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821),
pages 636–639 Vol. 1, 2004.

[84] Jørgen Arendt Jensen, Svetoslav Ivanov Nikolov, Kim Løkke Gammelmark, and
Morten Høgholm Pedersen. Synthetic aperture ultrasound imaging. Ultrasonics, 44:e5–e15,
2006.

[85] Mok Kun Jeong and Sung-Jae Kwon. A new method for assessing the performance of signal
processing filters in suppressing the side lobe level. Ultrasonography, 40:289 – 300, 2020.

[86] Anatoli B Juditsky and Arkadi S Nemirovski. Nonparametric estimation by convex program-
ming. The Annals of Statistics, 37(5A):2278 – 2300, 2009.

[87] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks,
and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure inter-
action: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics
and Engineering, 284:1005–1053, 2015. Isogeometric Analysis Special Issue.

217

[88] M. J. Kilgard. Polar stroking: New theory and methods for stroking paths. ACM Transactions
on Graphics, 39(4):145:1–15, August 2020.

[89] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[90] L. Klinteberg and A. H. Barnett. Accurate quadrature of nearly singular line integrals in
two and three dimensions by singularity swapping. BIT Numerical Mathematics, 61:1–36, 07
2020.

[91] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev, M. Alexa, D. Zorin,
and D. Panozzo. Abc: A big CAD model dataset for geometric deep learning. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. Commun. ACM, 60(6):84–90, may 2017.

[93] Johannes Kromer and Dieter Bothe. Face-based volume-of-fluid interface positioning in ar-
bitrary polyhedra. Journal of Computational Physics, 449:110776, 2022.

[94] Murali K. Kurmapu, V.V. Tiunova, E.S. Tiunov, Martin Ringbauer, Christine Maier, Rainer
Blatt, Thomas Monz, Aleksey K. Fedorov, and A.I. Lvovsky. Reconstructing complex states
of a 20-qubit quantum simulator. PRX Quantum, 4:040345, Dec 2023.

[95] Magnus Dalen Kvalev̊ag, Anders Emil Vr̊alstad, Ole Marius Hoel Rindal, Tore Grüner
Bj̊astad, Bastien Denarie, Kjell Kristoffersen, Svein-Erik Måsøy, and Lasse Løvstakken.
vbeam: a fast and differentiable beamformer for optimizing ultrasound imaging. In 2023
IEEE International Ultrasonics Symposium (IUS), pages 1–4, 2023.

[96] Hannah Lange, Matjaž Kebrič, Maximilian Buser, Ulrich Schollwöck, Fabian Grusdt, and
Annabelle Bohrdt. Adaptive quantum state tomography with active learning. Quantum,
7:1129, October 2023.

[97] Ben P Lanyon, Christine Maier, Milan Holzäpfel, Tillmann Baumgratz, Cornelius Hempel,
Petar Jurcevic, Ish Dhand, AS Buyskikh, Andrew J Daley, Marcus Cramer, et al. Efficient
tomography of a quantum many-body system. Nature Physics, 13(12):1158–1162, 2017.

[98] Weichao Liang, Francesco Ticozzi, and Giuseppe Vallone. Optimizing measurements se-
quences for quantum state verification. Quantum Information Processing, 22(11), November
2023.

[99] Alexander Lidiak, Casey Jameson, Zhen Qin, Gongguo Tang, Michael B Wakin, Zhihui Zhu,
and Zhexuan Gong. Quantum state tomography with tensor train cross approximation. arXiv
preprint arXiv:2207.06397, 2022.

[100] Shengfeng Liu, Yi Wang, Xin Yang, Baiying Lei, Li Liu, Shawn Xiang Li, Dong Ni, and Tianfu
Wang. Deep learning in medical ultrasound analysis: A review. Engineering, 5(2):261–275,
2019.

[101] Shengping Liu, Heng Yong, Shaodong Guo, Yiqing Shen, and Guoxi Ni. An improved
continuity-preserving interface reconstruction method for multi-material flow. Computers
& Fluids, 224:104960, 2021.

218

[102] J. López, J. Hernández, P. Gómez, and F. Faura. An improved plic-vof method for tracking
thin fluid structures in incompressible two-phase flows. Journal of Computational Physics,
208(1):51–74, 2005.

[103] Y. L. Ma and W. T. Hewitt. Point inversion and projection for NURBS curve and surface:
Control polygon approach. Computer Aided Geometric Design, 20(2):79–99, 2003.

[104] Ram Kumar Maity, T. Sundararajan, and K. Velusamy. An accurate interface reconstruction
method using piecewise circular arcs. International Journal for Numerical Methods in Fluids,
93(1):93–126, 2021.

[105] E. Marchandise, C. Piret, and J.-F. Remacle. CAD and mesh repair with Radial Basis
Functions. Journal of Computational Physics, 231(5):2376–2387, 2012.

[106] Tomislav Marić, Douglas B. Kothe, and Dieter Bothe. Unstructured un-split geometrical
volume-of-fluid methods – a review. Journal of Computational Physics, 420:109695, 2020.

[107] Donald Marquardt. An algorithm for least square estimation of non-linear parameters. SIAM
Journal on Applied Mathematics, 11:431–441, Jun 1963.

[108] Z. Marschner, P. Zhang, D. Palmer, and J. Solomon. Sum-of-squares geometry processing.
ACM Transactions on Graphics, 40(6), December 2021.

[109] Cedric Martens and Mikhail Bessmeltsev. One-shot method for computing generalized wind-
ing numbers, 2024.

[110] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical ray tracing of trimmed NURBS
surface. Journal of Graphics Tools, 5, 09 2000.

[111] B. Marussig and T. Hughes. A review of trimming in isogeometric analysis: Challenges,
data exchange and simulation aspects. Archives of Computational Methods in Engineering,
25:1–69, 06 2017.

[112] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. Efficient
elasticity for character skinning with contact and collisions. ACM Trans. Graph., 30(4), July
2011.

[113] A. A. Mezentsev and T. Woehler. Methods and algorithms of automated CAD repair for
incremental surface meshing. In IMR, pages 299–309. Citeseer, 1999.

[114] Thomas Milcent and Antoine Lemoine. Moment-of-fluid analytic reconstruction on 3d rect-
angular hexahedrons. Journal of Computational Physics, 409:109346, 2020.

[115] Massimo Mischi, Muyinatu A. Lediju Bell, Ruud J. G. van Sloun, and Yonina C. Eldar. Deep
learning in medical ultrasound—from image formation to image analysis. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12):2477–2480, 2020.

[116] Mohammadreza Mohammadi and Agata M. Brańczyk. Optimization of quantum state to-
mography in the presence of experimental constraints. Phys. Rev. A, 89:012113, Jan 2014.

[117] Stewart Mosso, Christopher Garasi, and Richard Drake. A smoothed two- and three-
dimensional interface reconstruction method. Comput. Vis. Sci., 12(7):365–381, Sep 2009.

219

[118] D. Nehab and H. Hoppe. Random-access rendering of general vector graphics. ACM
Transactions on Graphics, 27(5), December 2008.

[119] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010.

[120] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed rational surface patches.
SIGGRAPH Comput. Graph., 24(4):337–345, sep 1990.

[121] C. R. Noble, A. T. Anderson, N. R. Barton, J. A. Bramwell, A. Capps, M. H. Chang,
J. J. Chou, D. M. Dawson, E. R. Diana, T. A. Dunn, D. R. Faux, A. C. Fisher, P. T.
Greene, I. Heinz, Y. Kanarska, S. A. Khairallah, B. T. Liu, J. D. Margraf, A. L. Nichols,
R. N. Nourgaliev, M. A. Puso, J. F. Reus, P. B. Robinson, A. I. Shestakov, J. M. Solberg,
D. Taller, P. H. Tsuji, C. A. White, and J. L. White. ALE3D: An Arbitrary Lagrangian-
Eulerian multi-physics code. Technical report, Lawrence Livermore National Laboratory, 5
2017.

[122] Takumi Noda, Naoki Tomii, Keiichi Nakagawa, Takashi Azuma, and Ichiro Sakuma. Shape
estimation algorithm for ultrasound imaging by flexible array transducer. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, PP:1–1, 06 2020.

[123] F. S. Nooruddin and G. Turk. Simplification and repair of polygonal models using volumetric
techniques. IEEE Transactions on Visualization and Computer Graphics, 9(2):191–205, 2003.

[124] Open Cascade SAS. Open cascade technology. https://dev.opencascade.org/, 2011. Ver-
sion 7.8.

[125] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin. Diffusion
curves: A vector representation for smooth-shaded images. ACM Transactions on Graphics,
27(3):92:1–8, August 2008.

[126] Sam Pallister, Noah Linden, and Ashley Montanaro. Optimal verification of entangled states
with local measurements. Phys. Rev. Lett., 120:170502, Apr 2018.

[127] M. A. Park, R. Haimes, N. J. Wyman, P. A. Baker, and A. Loseille. Boundary representation
tolerance impacts on mesh generation and adaptation. In AIAA AVIATION 2021 FORUM,
2021.

[128] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[129] N. Patrikalakis and T. Maekawa. Shape Interrogation for
Computer Aided Design and Manufacturing. 01 2010.

[130] Vincent Perrot, Maxime Polichetti, François Varray, and Damien Garcia. So you think you
can DAS? a viewpoint on delay-and-sum beamforming. Ultrasonics, 111:106309, mar 2021.

[131] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

https://dev.opencascade.org/

220

[132] L. Piegl and W. Tiller. The NURBS book. Springer Science & Business Media, 1996.

[133] L. A. Piegl and A. M. Richard. Tessellating trimmed NURBS surfaces. Computer-Aided
Design, 27(1):16–26, 1995.

[134] James Edward Pilliod and Elbridge Gerry Puckett. Second-order accurate volume-of-fluid
algorithms for tracking material interfaces. Journal of Computational Physics, 199(2):465–
502, 2004.

[135] Glenn Robert Price. A piecewise parabolic volume tracking method for the numerical
simulation of interfacial flows. University of Calgary Calgary, AB, 2000.

[136] Zhen Qin, Casey Jameson, Zhexuan Gong, Michael B. Wakin, and Zhihui Zhu. Optimal
allocation of pauli measurements for low-rank quantum state tomography, 2024.

[137] Zhen Qin, Casey Jameson, Zhexuan Gong, Michael B. Wakin, and Zhihui Zhu. Quantum
state tomography for matrix product density operators. IEEE Transactions on Information
Theory, 70(7):5030–5056, July 2024.

[138] Karthik Ranganathan and William F. Walker. Cystic resolution: A performance metric for
ultrasound imaging systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 54(4):782–792, 2007.

[139] Ronald A. Remmerswaal and Arthur E.P. Veldman. Parabolic interface reconstruction for 2d
volume of fluid methods. Journal of Computational Physics, 469:111473, 2022.

[140] A. Reshetov. Cool patches: A geometric approach to ray/bilinear patch intersections, pages
95–109. Apress, Berkeley, CA, 2019.

[141] William J. Rider and Douglas B. Kothe. Reconstructing volume tracking. Journal of
Computational Physics, 141(2):112–152, 1998.

[142] Alfonso Rodriguez-Molares, Ole Marius, Hoel Rindal, and D Jan. The Generalized Contrast-
to-Noise ratio : a formal definition for lesion detectability. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, pages 1–12, 2019.

[143] Anet Sanchez, Isaac Martinez, Jacob Spainhour, and Nick Bottenus. An optically tracked
platform for swept synthetic aperture ultrasound imaging. In 2024 IEEE Conference on
Computational Imaging Using Synthetic Apertures (CISA), pages 01–05, 2024.

[144] R. Sawhney and K. Crane. Monte Carlo geometry processing: A grid-free approach to PDE-
based methods on volumetric domains. ACM Transactions on Graphics, 39(4), 2020.

[145] Ruben Scardovelli and Stephane Zaleski. Interface reconstruction with least-square fit and
split eulerian–lagrangian advection. International Journal for Numerical Methods in Fluids,
41(3):251–274, 2003.

[146] A. Schollmeyer and B. Froehlich. Efficient and anti-aliased trimming for rendering large
NURBS models. IEEE Transactions on Visualization and Computer Graphics, 25(3):1489–
1498, 2019.

[147] A. Schollmeyer and B. Fröhlich. Direct trimming of NURBS surfaces on the GPU. ACM
Transactions on Graphics, 28(3), July 2009.

221

[148] T. W. Sederberg, G. T. Finnigan, X. Li, H. Lin, and H. Ipson. Watertight trimmed NURBS.
ACM Transactions on Graphics, 27(3):1–8, August 2008.

[149] T. W. Sederberg, G. T. Finnigan, X. Li, H. Lin, and H. Ipson. Watertight trimmed NURBS.
In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, New York, NY, USA, 2008. Association
for Computing Machinery.

[150] T. W. Sederberg and T. Nishita. Curve intersection using Bézier clipping. Computer-Aided
Design, 22(9):538–549, 1990.

[151] S. Sellán and A. Jacobson. Stochastic poisson surface reconstruction. ACM Transactions on
Graphics, 41(6), November 2022.

[152] Akshay Seshadri, Martin Ringbauer, Rainer Blatt, Thomas Monz, and Stephen Becker. Ver-
satile fidelity estimation with confidence, 2021.

[153] Akshay Seshadri, Martin Ringbauer, Thomas Monz, and Stephen Becker. Theory of versatile
fidelity estimation with confidence, 2021.

[154] R. Sevilla, S. Fernández-Méndez, and A. Huerta. NURBS-enhanced finite element method
for Euler equations. International Journal for Numerical Methods in Fluids, 57(9):1051–1069,
2008.

[155] R. Sevilla, S. Fernández-Méndez, and A. Huerta. 3d NURBS-enhanced finite element method
(NEFEM). International Journal for Numerical Methods in Engineering, 88(2):103–125, 2011.

[156] R. Sevilla and A. Huerta. HDG-NEFEM with degree adaptivity for Stokes flows. Journal of
Scientific Computing, 77(3):1953–1980, February 2018.

[157] Mikhail Shashkov. An adaptive moments-based interface reconstruction using intersection of
the cell with one half-plane, two half-planes and a circle. Journal of Computational Physics,
494:112504, 2023.

[158] Mikhail Shashkov and Eugene Kikinzon. Moments-based interface reconstruction, remap and
advection. Journal of Computational Physics, 479:111998, 2023.

[159] J. Shen, L. Busé, P. Alliez, and N. Dodgson. A line/trimmed NURBS surface intersection
algorithm using matrix representations. Computer Aided Geometric Design, 48:1–16, 2016.

[160] M. Shimrat. Algorithm 112: Position of point relative to polygon. Commun. ACM, 5(8):434,
August 1962.

[161] B. M. Smith, T. J. Tautges, and P. P. H. Wilson. Sealing faceted surfaces to achieve watertight
CAD models. In S. Shontz, editor, Proceedings of the 19th International Meshing Roundtable,
pages 177–194, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[162] A. Sommariva and M. Vianello. inRS: Implementing the indicator function of NURBS-shaped
planar domains. Applied Mathematics Letters, 130:108026, 2022.

[163] J. Spainhour, D. Gunderman, and K. Weiss. Robust containment queries over collections of
rational parametric curves via generalized winding numbers. ACM Transactions on Graphics,
43(4), July 2024.

222

[164] Jacob Spainhour. Quadratic moment-of-fluid interface reconstruction. Florida State Univer-
sity Undergraduate Honors Thesis, Apr 2020.

[165] Jacob Spainhour, Stephen Becker, and Nick Bottenus. A strategy for synthetic aperture
sequence design using numerical optimization. In 2022 IEEE International Ultrasonics
Symposium (IUS), pages 1–4, 2022.

[166] Jacob Spainhour and Mikhail Shashkov. Multi-plane moment-of-fluid interface reconstruction
in 3d, 09 2024.

[167] Jacob Spainhour, Korben Smart, Stephen Becker, and Nick Bottenus. Optimization of array
encoding for ultrasound imaging. Physics in Medicine & Biology, 69(12):125024, jun 2024.

[168] Jacob Spainhour, Korben Smart, Stephen Becker, and Nick Bottenus. Source code and data
repository for ”optimization of array encoding for ultrasound imaging”, 2024.

[169] Jacob Spainhour and Kenneth Weiss. Robust containment queries over collections of trimmed
nurbs surfaces via generalized winding numbers, 2025.

[170] Severin Strobl, Arno Formella, and Thorsten Pöschel. Exact calculation of the overlap volume
of spheres and mesh elements. Journal of Computational Physics, 311:158–172, 2016.

[171] D.L. Sun andW.Q. Tao. A coupled volume-of-fluid and level set (voset) method for computing
incompressible two-phase flows. International Journal of Heat and Mass Transfer, 53(4):645–
655, 2010.

[172] T. Sun, P. Thamjaroenporn, and C. Zheng. Fast multipole representation of diffusion curves
and points. ACM Transactions on Graphics, 33(4), July 2014.

[173] D. C. Thomas, M. A. Scott, J. A. Evans, K. Tew, and E. J. Evans. Bézier projection: A unified
approach for local projection and quadrature-free refinement and coarsening of NURBS and
T-splines with particular application to isogeometric design and analysis. Computer Methods
in Applied Mechanics and Engineering, 284:55–105, 2015. Isogeometric Analysis Special Issue.

[174] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical grid generation: Foundations
and applications. Elsevier North-Holland, Inc., 1985.

[175] P. Trettner, J. Nehring-Wirxel, and L. Kobbelt. EMBER: Exact mesh booleans via efficient
& robust local arrangements. ACM Trans. Graph., 41(4), July 2022.

[176] P. G. Tucker and Z. Pan. A Cartesian cut cell method for incompressible viscous flow. Applied
Mathematical Modelling, 24(8):591–606, 2000.

[177] Ruud J. G. van Sloun, Regev Cohen, and Yonina C. Eldar. Deep learning in ultrasound
imaging. Proceedings of the IEEE, 108(1):11–29, 2020.

[178] C. Wang, F. Xu, M.-C. Hsu, and A. Krishnamurthy. Rapid B-rep model preprocessing for
immersogeometric analysis using analytic surfaces. Computer Aided Geometric Design, 52-
53:190–204, 2017. Geometric Modeling and Processing 2017.

[179] Qisheng Wang, Zhicheng Zhang, Kean Chen, Ji Guan, Wang Fang, Junyi Liu, and Mingsheng
Ying. Quantum algorithm for fidelity estimation. IEEE Transactions on Information Theory,
69(1):273–282, 2023.

223

[180] K. Weiss, G. Zagaris, R. Rieben, and A. Cook. Spatially accelerated shape embedding in
multimaterial simulations. In S. Canann, editor, Proceedings 25th International Meshing
Roundtable, IMR ’16, Washington, D.C., September 27–30 2016.

[181] Hans Wolters and Hewlett Laboratories. Extensions: Extrapolation methods for cad. 04
2000.

[182] C. Wyman and A. Marrs. Introduction to DirectX raytracing, pages 21–47. Apress, Berkeley,
CA, 2019.

[183] R. Xiong, Y. Lu, C. Chen, J. Zhu, Y. Zeng, and L. Liu. ETER: Elastic tessellation for real-
time pixel-accurate rendering of large-scale NURBS models. ACM Transactions on Graphics,
42(4), July 2023.

[184] Qi You, Zhijie Dong, Matthew R. Lowerison, and Pengfei Song. Pixel-oriented Adaptive
Apodization for Planewave Imaging Based on Recovery of the Complete Data Set. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pages 1–1, 2021.

[185] S. Zellmann, D. Seifried, N. Morrical, I. Wald, W. Usher, J. P. Law-Smith, S. Walch-Gassner,
and A. Hinkenjann. Point containment queries on ray-tracing cores for amr flow visualization.
Computing in Science & Engineering, 24(02):40–51, March 2022.

[186] Jingke Zhang, Jing Liu, Wei Fan, Weibao Qiu, and Jianwen Luo. Partial hadamard encoded
synthetic transmit aperture for high frame rate imaging with minimal l 2-norm least squares
method. Physics in Medicine & Biology, 67(10):1–18, 2022.

[187] Xiaoqian Zhang, Maolin Luo, Zhaodi Wen, Qin Feng, Shengshi Pang, Weiqi Luo, and Xiaoqi
Zhou. Direct fidelity estimation of quantum states using machine learning. Phys. Rev. Lett.,
127:130503, Sep 2021.

[188] K. Zhou, E. Zhang, J. Bittner, and P. Wonka. Visibility-driven mesh analysis and visualization
through graph cuts. IEEE transactions on visualization and computer graphics, 14:1667–74,
11 2008.

[189] X. Zou, S. B. Lo, R. Sevilla, O. Hassan, and K. Morgan. The generation of 3D surface meshes
for NURBS-enhanced FEM. Computer-Aided Design, 168:103653, 2024.

	Introduction
	Part I: Numerical Optimization for Scientific Experiments
	Introduction to Part I
	Optimization of Array Encoding for Ultrasound Imaging
	Abstract
	Introduction
	Related Work

	Methods
	Transmit Encoding Theory
	Beamforming and Imaging Procedure
	Implementation of the Proposed Machine Learning Model
	Acquisition of Training and Testing Data

	Results
	Optimization of Both Time Delays and Apodization Weights
	Restricted Optimization to Either Time Delays or Apodization Weights
	Optimization in the Presence of Noise
	Experimental Verification

	Discussion
	Significance of the Initial Condition
	Significance of the Training Data
	Significance of the Imaging Target
	Significance of the Loss Function

	Conclusions

	Optimal Experiment Design for Quantum Minimax Fidelity Estimation
	Abstract
	Introduction
	Background and Related Work
	Methods
	Results
	Comparison to Uniform and DFE-derived Allocations
	Comparison Across Noisy States

	Discussion
	Construction of DFE-Adversarial Quantum State
	Optimal Experimental Protocol as an Importance Weighting
	Comparison to Maximum-Likelihood Estimation

	Conclusion

	Part II: Geometry Processing for Physics Simulations
	Introduction to Part II
	Generalized Winding Numbers for Rational Parametric Curves
	Abstract
	Introduction
	Background and Related Work
	Generalized Winding Numbers
	Generalized Winding Numbers for Curved Geometry
	Winding Number Algorithms
	Generalized Winding Numbers for Coincident Points
	Numerical Experiments and Results
	Robustness of Containment Queries on Curved Geometry
	Algorithm Performance

	Concluding remarks

	Generalized Winding Numbers for Trimmed NURBS Surfaces
	Abstract
	Introduction
	Background and Related Work
	Containment Queries in 3D CAD Applications
	Generalized Winding Numbers in 3D
	Evaluating the GWN for Curved 3D Geometry

	Methods
	Reformulation with Stokes' Theorem
	GWN for Coincident Points

	Analytic discontinuity fix for Near-Field GWN
	Numerical Experiments and Results
	Generalized Winding Numbers on Open CAD Models
	Accuracy Evaluation
	Performance Evaluation

	Discussion
	Conclusions

	3D Multi-plane Moment-of-Fluid Interface Reconstruction
	Abstract
	Introduction
	Background and Rationale
	Motivation

	Moments Primer
	Translation, Scaling, and Rotation of Volume Moments
	Reference Ellipsoid and Normalization

	MOF Algorithms Details
	Non-linear Optimization
	Enforcing the Volume Constraint
	Nonconvex Reconstruction

	Summary of the MOF Algorithm
	Results
	Single Cell Tests
	Mesh Tests

	Discussion
	Reconstruction of Nonconvex Material
	Geometric Artifacts
	Shapes with Identical Moments
	Sensitivity to Noise in Reference Moment Data

	Conclusions and Future Work
	Acknowledgement

	 Bibliography

