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Abstract

Symmetric cone programming encompasses a vast majority of tractable convex opti-

mization problems, including linear programming, semidefinite programming, and second-

order cone programming. It turns out that we can generalize many results from semidefinite

matrices to symmetric cones under the abstract framework of Euclidean Jordan algebra. In

particular, S-divergence was previously proposed as a numerical alternative to Riemannian

distance for the Hermitian positive definite cone. The goal of this thesis is to generalize

S-divergence to symmetric cones and prove that its nice properties in the matrix case are

preserved. Specifically, we wish to show that S-divergence induces a metric on the cone and is

geodesically-convex. After an extensive exposition of necessary background, we successfully

proved most of our claims, with only one conjecture remaining to be proven.
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Chapter 1

Introduction

Symmetric cone programming (SCP) is a central topic in the study of optimization and

has plethora of real-world applications. It encompasses a vast majority of the most important

classes of optimization problems including linear programming (LP), semidefinite program-

ming (SDP), and second-order cone programming (SOCP). In the 90’s, a breakthrough in

SCP emerged from the discovery of a highly efficient method called the primal-dual interior-

point method (IPM), which was mostly refined by Nesterov and Todd [NT97, NT98]. The

method exploits self-concordant barrier functions extensively studied by Nesterov and Ne-

mirovskii [NN94] and remains the state-of-art for SCP as of today.

However, although Nesterov and Todd provided a way to understand primal-dual IPM

through self-concordant barrier functions, this perspective is largely attributed to the brilliant

numerical insights of Nesterov and Todd. It is not easy to motivate self-concordant barrier

functions from an abstract framework. Specifically, the definitions of self-concordance and

the specific barrier functions used for common SCP problems such as semidefinite or second-

order programming appear to be somewhat ad hoc. Although self-concordance is sufficient

for the convergence analysis of primal-dual IPM, the abstract reason for its effectiveness

remained elusive until another paper by Nesterov and Todd [NT02]. It is known that the

Hessian of the barrier function induces a Riemannian metric tensor on the symmetric cone,

and this metric tensor endows the cone with a Riemannian manifold structure. This is called

a Hessian manifold. In this paper, Nesterov and Todd showed that the path tracked by the
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primal-dual IPM, namely the central path, is close to following a geodesic on the cone as a

Hessian manifold. However, understanding SCP through Riemannian geometry alone is also

unsatisfying. In order to see why, we first review three of the most common cones in SCP:

• Nonnegative Orthant Rn
+. This cone is associated with the conic constraints in linear

programming (LP) and is defined as

Rn
+ := {(x1, . . . , xn)

T ∈ Rn : xi ≥ 0 ∀ 1 ≤ i ≤ n}.

The barrier function is B(x) = −
∑n

i=1 log(xi). This barrier function induces a

Riemannian manifold. The geodesic between x and y is

c(t) = x1−t ◦ yt,

where ◦ denotes the element-wise (Hadamard) multiplication.

• Positive semidefinite matrix cone Sn
+. This cone is associated with the conic con-

straints in semidefinite programming (SDP) and is defined exactly as the name sug-

gests. The barrier function is B(X) = − log detX, where log is the usual logarithmic

function on the real numbers. The geodesic between X and Y is

c(t) = X
1
2

(
X− 1

2Y X− 1
2

)t
X

1
2 .

We see that for n = 1, S1
+ coincides with R+ and so do their barrier functions and

geodesics.

• Second-order cone Ln+1. This cone is associated with the conic constraints in second-

order cone programming (SOCP) and is defined as

Ln+1 := {(x0, x1, . . . , xn)
T ∈ Rn+1 : x2

1 + · · ·+ x2
n ≤ x2

0}.

Denote x := (x1. . . . , xn)
T ∈ Rn and let ∥·∥ represent the Euclidean norm. The

barrier function is B(x) = − log(x2
0 − ∥x∥2). The square root of elements in Ln+1 is
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well-defined. So given x, y ∈ Ln+1, let w := x1/2, and define

M :=

∥w∥2 2w0w
T

2w0w (w2
0 − ∥w∥2)In + 2wwT

 .

This matrix is in fact invertible so we can define z := M−1y. The geodesic between

x and y is

c(t) =
1

2
M

(z0 + ∥z∥)t

 1

z
∥z∥

+ (z0 − ∥z∥)t

 1

− z
∥z∥


 .

It is not hard to see how agonizing it would be to prove results on these cones indi-

vidually. Despite the increasingly unfriendly geodesics, we see that the barrier functions for

these three cones look very similar. This raises the question: is there a way to systematically

derive all the results (e.g., the geodesics) for these cones using a unifying theory without

dealing with the messy details?

It turns out the answer is yes for any cone belonging to the family of symmetric cones,

and the unifying theory involves Euclidean Jordan algebra (EJA). In particular, EJA com-

pletely describes the family of symmetric cones, including the three canonical examples

above. This connection was first discovered by Güler [Gül96]. Since then, EJA has experi-

enced a small renaissance in the conic optimization literature. The advantage of studying

symmetric cones under the EJA framework is apparent: working with specific instance of

symmetric cones is cumbersome and often does not offer deep insight into the structural

properties. Adopting an EJA framework allows us to study the structure of all symmet-

ric cones at once. The disadvantage is that despite its increasing popularity, EJA has a

higher barrier of entry for many optimizers as it was previously a niche topic in algebra.

The existing limited expositions on EJA tend to be fairly theoretical and not written with

a non-algebraist audience in mind. Moreover, some tools readily available in linear algebra

and operator theory have not been generalized to EJA, so a straightforward result in linear

algebra or operator theory might be quite tricky to prove in EJA. This is presumably why
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Nesterov and Todd were well-aware of EJA but understandably decided not to adopt this

framework for their analysis, as they discussed in the introduction of [NT98] and [NT02].

Some progress on the accessibility of EJA has been made since then, and hopefully this

thesis can also contribute to making EJA accessible to a wider audience.

Combining both insights that primal-dual IPM is close to following the geodesics and

that EJA can describe the geodesics of all symmetric cones elegantly, Permenter proposed

two SCP algorithms that follow the Riemannian geodesics directly, exploiting the Hessian

manifold structure [Per20]. The geodesic IPM has comparable convergence results with the

primal-dual IPM. In particular, Permenter suggested that the Nesterov–Todd direction from

the primal-dual IPM in the best case is a linear approximation of the geodesic update. Thus,

it would not be surprising if geodesic IPM has superior performance. However, Permenter did

not compare the two methods numerically in the paper. Moreover, the Riemannian distance

used in the geodesic IPM can be expensive to compute as discussed in [CSBP11]. In the same

paper, a numerical alternative to the Riemannian distance, the S-divergence, was proposed.

Sra further investigated the properties of S-divergence in [Sra15] and showed that the metric

derived from S-divergence enjoys similar desirable properties as the Riemannian distance,

including being geodesically-convex (g-convex). We conjecture that the results in this paper

generalize to any symmetric cone. If this conjecture holds, then this metric induced by the

S-divergence might be a more efficient metric choice for algorithms that rely on Riemannian

distance and further improve their performance.

This thesis is organized as follows: In Chapter 2, we introduce key concepts from

conic programming and EJA. All results and examples in this chapter already exist in the

literature, so only the exposition is original. In Chapter 3, we prove that S-divergence induces

a valid metric in Theorem 3.1.15 and prove that S-divergence is g-convex on any symmetric

cone with certain caveats Theorem 3.2.10, providing a partial generalization of major results

from Sra’s paper. As far as we know, these are novel generalizations. In Chapter 4, we

discuss the implications of our results and propose some interesting future directions.



Chapter 2

Background

We shall take the liberty to assume that the reader is familiar with the basics of

convexity, ring theory, and vector space theory. Due to the limited time constraint, we cannot

cover all background needed so we encourage the reader to look up unfamiliar convexity

concepts from Boyd and Vandenberghe [BV04] and algebra concepts from Dummit and

Foote [DF91]. The geometric concepts presented in this thesis are meant to be intuitive but

loose on the rigor.

2.1 Conic programming

The importance of optimization is self-evident. Who does not want to find the optimal

solutions to their quantifiable problems? We especially care about convex optimization

because convexity offers lots of desirable properties. In particular, all local minima of a

convex function are global minima, enabling us to find global solutions using local information

such as the derivatives.

Definition 2.1.1. A function f : S ⊆ Rn → R is convex if S is a convex set and if for all

x, y ∈ S, and t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

This definition can be simplified if f is continuous:
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Lemma 2.1.2. A continuous function f : S ⊆ Rn → R is convex if and only if f is

mid-point convex:

f

(
x+ y

2

)
≤ 1

2
f(x) +

1

2
f(y).

With possibly additional assumptions such as continuity, differentiability, or the Lip-

schitz continuity of the derivative of some order, we can employ a variety of algorithms and

tools to find a global minimum of a convex function efficiently, often with convergence guar-

antees. For example, first-order Taylor approximation of a differentiable function leads us

to the method of gradient descent. Similarly, second-order Taylor approximation of twice-

differentiable functions leads to Newton’s method.

In a convex optimization problem, we often have convex constraints on the feasible

solutions. The standard form of a convex optimization problem looks like

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

where fi : Rn → R are convex functions and f0 is called the objective function. A quick

intuition for this formulation is that a company has the objective to maximize its profits

(represented by −f0) but has various budget constraints (represented by the inequalities).

We can convert this real world problem into the standard form by a change of variable

through the affine constraint. Since the composition of an affine function with a convex

function is still convex, the nice behaviors of convex functions are preserved.

Moreover, we can replace the inequality constraints with generalized inequality con-

straints. In particular, some nice cones that occur in many real world optimization problems

induce a partial order on Rn.

Definition 2.1.3. A subset K of a real vector space is a cone if for every x ∈ K and t ≥ 0,

we have tx ∈ K. A cone K is a proper cone if
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(i) K is convex, i.e. sx+ ty ∈ K for any x, y ∈ K and s, t ≥ 0;

(ii) K is closed, i.e. K = K;

(iii) K is solid, i.e. K̊ ̸= ∅;

(iv) K is pointed, i.e. if both x and −x are in K, then x = 0.

A proper cone is defined this way so that it induces a partial order on Rn defined as

x ⪯K y ⇐⇒ y − x ∈ K.

We can check that this is indeed a partial order: x− x = 0 ∈ K so x ⪯K x. If y− x ∈ K and

x − y = −(y − x) ∈ K, then since K is pointed, y − x = 0 so x = y. Finally, if y − x ∈ K

and z − y ∈ K, then z − y + y − x = z − x ∈ K by convexity, so x ⪯K z. Strict inequality is

defined similarly:

x ≺K y ⇐⇒ y − x ∈ K̊.

It is also straightforward to check that the direct product of proper cones is still a proper

cone.

Given a proper cone K, a variable x ∈ Rn, fixed c ∈ Rn and b ∈ Rm, and A ∈ Rm×n, a

conic program has the following standard form:

min ⟨c, x⟩

subject to x ⪰K 0

Ax = b,

where ⟨·, ·⟩ denotes the usual dot product.

From this formulation, we see that in classical conic programming, we solve a linear

objective function together with an affine constraint and a proper cone constraint. That is,

the feasible set must intersect with K. This inspired the interior-point methods (IPM) where
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solutions are forced to stay inside K by a barrier function. The intuition is that if we can

find a function with the proper cone as the domain and the function value goes to infinity as

the input approaches the boundary, we can simply add this barrier function to the objective

function to ensure that the solution stays inside the proper cone. Then for each iteration,

we can solve the system of equations given by the modified KKT conditions using Newton’s

method. By gradually reducing the weight of the barrier, we can eventually reach a solution

while staying inside the cone. For a thorough treatment of IPM, see the book by Nesterov

and Nemirovskii [NN94] and the book by Renegar [Ren01].

However, the original IPM using Newton’s method relied on the assumption that the

Hessian of the objective is Lipschitz continuous. Not only is this a strong assumption, it also

suffers from the fact that an affine change of variables might alter the Lipschitz constant,

making convergence analysis challenging. Moreover, this is an unnatural assumption for

Newton’s method because Newton’s method itself is affine-invariant. That is, an affine

change of variables does not affect the solution of Newton’s method at each update step.

We should therefore expect our assumption to be affine-invariant as well. A condition called

self-concordance was discovered by Nesterov and Nemirovskii [NN94] that exactly fits our

need.

Definition 2.1.4. A thrice differentiable convex function f : R → R is self-concordant if

|f ′′′
(x)| ≤ 2f ′′(x)3/2.

A function g : Rn → R is self-concordant if it is self-concordant along every line in its

domain.

Combining the self-concordant assumption with Newton’s method, Nesterov and Todd

introduced the primal-dual IPM [NT97, NT98], an affine-invariant and highly practical al-

gorithm whose convergence does not depend on the condition number of the Hessians.

Even more surprisingly, Theorem 2.5.1 from [NN94] shows that every closed convex

domain of Rn admits a self-concordant barrier function referred as the universal barrier.
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Although the proof is not constructive, so we might not be able to find such barrier explicitly

for arbitrary closed convex sets, this existence result still implies that theoretically the primal-

dual IPM can be used to solve an arbitrary convex optimization problem that satisfies certain

assumptions (see Theorem 3.2.1 of [NN94]).

Hence as long as we can assume the objective function to be compatible with the

notion of self-concordance (Proposition 3.2.1 in [NN94]) and can find a self-concordant barrier

function, we can expect the primal-dual IPM to work very well. Due to this reason and the

fact that self-concordant barrier functions of many important cones are known, the primal-

dual IPM proposed by Nesterov and Todd soon became a gold-standard method for solving

conic programs.

However, some important questions remained. First, why does the primal-dual IPM

work so well? Second, is the primal-dual IPM the best we can achieve? Nesterov and Todd

addressed both of these questions in another paper [NT02]. In particular, by treating the

cone as a Hessian manifold, they found that the update steps of the primal-dual IPM follow

a path close to the geodesic on the cone. A natural follow-up question is, why don’t we

design an algorithm that tracks the geodesics directly? In the same paper, Nesterov and

Todd indeed presented the geodesics of some common cones to facilitate such pursuit, but

the derivation was computation-heavy and intuition-driven on a case-by-case basis. This

would make studying the theoretical properties of any such algorithm highly challenging.

Luckily, Euclidean Jordan algebra (EJA) comes to the rescue.

2.2 Euclidean Jordan algebra

Now we present the EJA results necessary to generalize S-divergence to symmetric

cones. Therefore, the content of this chapter is not meant to be exhaustive or completely

self-contained, but to help the reader acquire just enough understanding of EJA to follow the

next chapter. Some important EJA topics such as the Peirce decomposition and the canon-

ical trace product are skipped due to their limited relevance for our goal. Similarly, many
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highly technical proofs whose techniques do not immediately help us in the generalization are

omitted, so we leave references for the reader. Throughout this chapter, we illustrate various

definitions with three canonical examples of symmetric cones or their ambient EJAs: the

nonnegative orthant, the positive semidefinite matrices, and the Lorentz/second-order cone.

They respectively are the cones used by linear programming (LP), semidefinite programming

(SDP), and second-order cone programming (SOCP).

We note that most of the concepts and examples in the rest of this chapter can be

found in the following resources: the canonical textbook on symmetric cones by Faraut

and Koranyi for advanced users [FK94], a new EJA textbook draft by Michael Orlitzsky

for optimization researchers [Orl21], Michel Baes’s PhD thesis [Bae06], and Manuel Vieira’s

PhD thesis [Vie07]. In particular, we recommend Michael Orlitzky’s book to fill in any gap

in the prerequisite knowledge.

The EJAs are a special case of a more general family named Jordan algebras. Note

that the terminology algebra here is different than the canonical definition, since we do not

require multiplication to be associative. Our precise definition is:

Definition 2.2.1. An algebra (M,R, ◦) consists of

(i) An R-module (M,+) where R is a commutative ring;

(ii) A binary operation ◦ : M ×M → M which we call “multiplication”.

Moreover, multiplication is bilinear with respect to addition and scalar multiplication in M .

That is, ∀ x, y, z ∈ M,α ∈ R, we have

(x+ y) ◦ z = x ◦ z + y ◦ z,

x ◦ (y + z) = x ◦ y + x ◦ z,

(αx) ◦ y = x ◦ (αy) = α(x ◦ y).

Notice that an algebra does not have to contain the multiplicative identity 1M . An
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algebra with 1M is called a unital algebra. The subalgebra generated by x, denoted

R(x), in a unital algebra is the smallest unital subalgebra that contains x.

Definition 2.2.2. An algebra (V, F, ◦) is a Jordan algebra if F is a field not of character-

istic 2 and if multiplication ◦ satisfies the following two conditions:

(i) Commutativity: ∀ x, y ∈ V : x ◦ y = y ◦ x.

(ii) The Jordan identity: ∀ x, y ∈ V : x ◦ ((x ◦ x) ◦ y) = (x ◦ x) ◦ (x ◦ y).

We shall write x2 = x ◦ x for convenience. Since V is an algebra, multiplication is

bilinear. Hence left multiplication by any x ∈ V is linear and therefore a vector space endo-

morphism of V . We use Lx to denote the endomorphism that represents left multiplication

by x. Then the Jordan identity is equivalent to LxLx2 = Lx2Lx. In such case, we say that x

and x2 operator-commute because their left multiplication operators commute.

Moreover, Lx is also linear in the subscript. That is, Lx+αy(z) = (x + αy) ◦ z =

x ◦ z + αy ◦ z = Lx(z) + αLy(z) so Lx+αy = Lx + αLy.

The reader might be appalled by the lack of associativity of multiplication. After

all, the notation x3 would not even well-defined if we don’t have x ◦ (x ◦ x) = (x ◦ x) ◦ x.

Thankfully, the Jordan identity is designed this way so that we can at least have well-defined

powers:

Theorem 2.2.3. If V is a Jordan algebra, then V is a power-associative algebra. That is,

for any x ∈ V ,

xm ◦ xn = xm+n.

Moreover, xm and xn operator-commute. That is,

LxmLxn = LxnLxm .

The proof of this theorem relies on induction and some polarization identities for Jordan

algebras derived from the Jordan identity. The proof is not particularly enlightening and
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we will not use these polarization identities in our proofs, so we refer the reader to [Orl21].

The theorem itself is however very important. It is not hard to see that power-associativity

is the bare minimum we need to define minimal and characteristic polynomials on V , which

in turn allow us to generalize the almighty spectral theorem from linear algebra.

Note that power-associativity does not apply to the subscripts of multiplication oper-

ators. That is, in general LxmLxn ̸= Lxm+n . This fact makes working directly with these

multiplication operators in EJA challenging. Thus, many straightforward results from linear

algebra do not generalize trivially.

Definition 2.2.4. A Euclidean Jordan algebra is a triple (V, ◦, ⟨·, ·⟩) consisting of a

finite-dimensional Jordan algebra (V,R, ◦) and an inner product that satisfies

∀ x, y, z ∈ V : ⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩,

and a multiplicative identity 1V such that

∀ x ∈ V : 1V ◦ x = x = x ◦ 1V .

The condition on the inner product is equivalent to the condition that for any x ∈ V ,

the linear operator Lx is self-adjoint, i.e. L∗
x = Lx.

Being finite dimensional and a Hilbert space, EJAs behave a lot more nicely than

generic Jordan algebras. Many of the definitions and theorems we present below apply to

general Jordan algebras, so we will specify in the assumptions. Thankfully, all examples we

care about in optimization are EJAs, and we introduce some common examples:

Example 2.2.5 (Hadamard EJA). We can endow the vector space Rn over R with a EJA

structure. Given x, y ∈ Rn, define multiplication ◦ as entrywise (Hadamard) multiplication:

x ◦ y :=


x1

...

xn

 ◦


y1
...

yn

 =


x1y1
...

xnyn

 .
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Let ⟨·, ·⟩ be the usual inner product on Rn :

⟨x, y⟩ :=
n∑

i=1

xiyi.

We can easily check that this yields a EJA structure with the identity 1V = (1, 1, . . . , 1)T .

Example 2.2.6 (real symmetric EJA). Since matrix multiplication is not commutative, we

cannot obtain a EJA structure on the symmetric matrices Sn through it. Instead we shall

use the symmetrized multiplication:

X ◦ Y :=
XY + Y X

2
.

This way, ◦ is clearly commutative and the product is always in Sn, unlike matrix multipli-

cation. The inner product is the usual trace inner product:

⟨X, Y ⟩ := tr(XTY ) = tr(XY ).

The identity is still the identity matrix In.

Notice that since X ◦ X = X2 which coincides with matrix multiplication, familiar

results from linear algebra still apply to powers of X.

Example 2.2.7 (Jordan spin EJA). We can endow Rn+1 over R with a very different EJA

structure. If we write x = (x0, x)
T ∈ Rn+1 where x := (x1. . . . , xn)

T ∈ Rn, define

x ◦ y :=

x0

x

 ◦

y0

y

 =

 ⟨x, y⟩

y0x+ x0y

 ,

where ⟨·, ·⟩ is the usual dot product. The identity 1V = (1, 0, . . . , 0)T . Checking that this

indeed defines an EJA is a tedious computational exercise.

Example 2.2.8 (direct product EJA). For any two EJAs (V, ◦V , ⟨·, ·⟩V ) and (W, ◦W , ⟨·, ·⟩W ),

we can define multiplication of any (v1, w1), (v2, w2) in the direct product V ×W the natural

way:

(v1, w1) ◦ (v2, w2) = (v1 ◦V v2, w1 ◦W w2).
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Similarly,

⟨(v1, w1), (v2, w2)⟩ = ⟨v1, v2⟩V + ⟨w1, w2⟩W .

The identity 1V×W is given by (1V , 1W ).

From this point we will refer to a EJA by its vector space when the multiplication and

the inner product is clear from context.

Since ◦ is not associative, it is often clumsy to work with multiplication directly. The

next definition allows us to work with a special operator instead that often simplifies the

computation.

Definition 2.2.9. Let V be a Jordan algebra. The quadratic representation Px : V → V

of x ∈ V is defined as

Px = 2L2
x − Lx2 .

We know that Px ∈ End(V ) since it is a linear combination of compositions of two

endomorphisms. However, unlike Lx, Px is not linear in the subscript. That is, in general

Px+y is different from Px + Py.

Example 2.2.10 (Hadamard EJA). This is a special case when the quadratic representation

coincides with the multiplication operator:

Px(y) = 2x ◦ (x ◦ y)− x2 ◦ y

=


2x1(x1y1)− x2

1y1
...

2xn(xnyn)− x2
nyn


= Lx(y).
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Example 2.2.11 (real symmetric EJA). Given X, Y ∈ V , we have

PX(Y ) = 2L2
X(Y )− LX2(Y )

= 2X ◦ (X ◦ Y )−X2 ◦ Y

= 2X ◦ XY + Y X

2
− X2Y + Y X2

2

=
X2Y +XYX +XYX + Y X2 −X2Y − Y X2

2

= XYX = XYXT .

Hence we see that the quadratic representation plays the role of matrix congruence operator

in the real symmetric EJA. This operator has the representation X ⊗X, where ⊗ denotes

the Kronecker product.

Example 2.2.12 (Jordan spin EJA). Given x, y ∈ V , we unapologetically skip the compu-

tation and directly present

Px = 2xxT − (x2
0 − ∥x∥2)

1 0

0 −In

 .

It is not immediately obvious why the quadratic representation Px is in some sense the

more natural operator to work with than the multiplication operator Lx. The advantage of

the quadratic representation will be much more evident when we discuss symmetric cones.

Below we present some basic properties of the quadratic representation that we use

all the time in Chapter 3. An element x is said to be invertible if there exists an element

y ∈ F (x) s.t. x ◦ y = 1V .

Proposition 2.2.13. Let V be a EJA, α ∈ R, and x, y ∈ V . Then we have

(1) Pαx = α2Px.

(2) Px(1V ) = x2.

(3) More generally, Px(x
t) = xt+2 for t ∈ N. If x is invertible, then this holds for t ∈ Q.
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For a differentiable function f : V → R, we can define the gradient ∇f the usual way

since we have an inner product. Below we present some results about inversion and a proof

can be found in Section 2.3 of [Vie07].

Proposition 2.2.14. Let V be a EJA and x ∈ V . Then x is invertible if and only if Px is

invertible. For an invertible x, we have the following results:

(1) (Px)
−1 = Px−1;

(2) ∇x−1 = −P−1
x ;

(3) (Px(y))
−1 = P−1

x (y−1);

(4) the fundamental identity: PPxy = PxPyPx.

The reason (4) is given such an impressive name is that we can define a Jordan algebra

using this identity in lieu of the Jordan identity.

We now present a classification result to conclude this section.

Definition 2.2.15. An EJA is simple if its only algebra ideals are itself and the trivial

algebra ideal {0}.

Theorem 2.2.16 (complete classification of EJAs). Every finite-dimensional EJA can be

decomposed into a direct sum of a finite number of simple EJAs in a unique way up to

indexing. Every simple EJA is isomorphic to one of the following EJAs:

(1) a bilinear form EJA on Rn+1 over R (generalized spin algebra EJA where we can

change the dot product to any valid inner product),

(2) a real symmetric EJA on Rn×n over R,

(3) a complex Hermitian EJA on Cn×n over R,

(4) a quaternion Hermitian EJA on Hn×n over R,
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(5) an octonion Hermitian EJA on O3×3 over R (the Albert algbera).

A proof can be found in Proposition III 4.4 and Chapter V of [FK94].

Example 2.2.17 (Hadamard EJA). It might be surprising that the Hadamard EJA isn’t

a simple EJA even though it looks “simple”. It is in fact a direct product of 1 × 1 real

symmetric EJAs, which are just R with the usual algebraic structure.

Remark 2.2.18. EJAs were originally developed by Pascual Jordan, not to be mistaken

with Camille Jordan of the Jordan canonical form and the Jordan curve theorem fame, to

model quantum mechanics so that operations on Hermitian matrices representing observables

always return an observable. It was the complete classification of EJAs proved by Jordan,

Wigner, and von Neumann that doomed its chance to fulfill its purpose, since the largest

dimension of any potential quantum model candidate from simple EJAs is 27 (the Albert

algebra), too small for what it was designed to do. This classification is however very helpful

for optimization researchers to know exactly what types of problems EJA can help to solve.

That is, it is the theoretical framework to use for studying symmetric cones. Before we diving

into that topic, let us understand the concept of determinant on EJA first. This requires

the spectral theorem.

2.3 Spectral decomposition

For this section, we shall assume that F is an infinite field. This allows us to obtain

an isomorphism between polynomial functions and polynomials:

Lemma 2.3.1. If (V,R, ◦) is a nontrivial, power-associative, and unital algebra over an

infinite integral domain R and if the polynomial functions p = q on V , then p(Λ) = q(Λ) in

R[Λ]. Hence p(Λ) 7→ p is a ring isomorphism.

This is Corollary 6 from [Orl21] and implies that we can switch back and forth between

a polynomial function and a polynomial.
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Throughout this thesis, we shall use Det to denote the usual matrix determinant, and

det to denote the determinant of EJA. We reserve captial greek letters Λ and Ξ to denote

indeterminates of a polynomial, and capital English letters to denote matrices. Given a

polynomial p(Λ), we use the notational shortcut p(x) to denote ϕx(p(Λ)) where ϕx is the

evaluation homomorphism at x. When we treat x as a variable, we refer to p(x) as a

polynomial function of x. To make it even more confusing, we shall call elements of the field

of fractions of a polynomial integral domain rational functions per convention even though

they are not functions. Finally, for an element x in V and a basis B of V , we denote the

vector of coefficients of x under the basis B as (x)B = (x1, . . . , xn) ∈ F n.

One of the most celebrated triumphs in the studying of EJA is the successful generaliza-

tion of the spectral theorem from linear algebra. The finite dimension and power-associativity

of EJA are the key ingredients that make it work.

Consider the polynomial algebra F [Λ] over a field F with indeterminate Λ. Define

Ix := {p(Λ) ∈ F [Λ] : p(x) = 0}. Recall that an algebra ideal is a ring ideal that is

closed under scalar multiplication. Since Ix = kerϕx where ϕx is the evaluation algebra

homomorphism at x, Ix is an algebra ideal. Since F is a field, F [Λ] is a principal ideal

domain (PID), and Ix is generated by some polynomial mx(Λ) ∈ F [Λ] and we can assume

this generator to be monic. It is unique because if there is another monic generator m′
x(Λ),

then mx(Λ)−m′
x(Λ) ∈ Ix. But since mx(Λ) and m′

x(Λ) have the same degree and are monic,

their difference must have degree strictly less than degmx(Λ), contradicting the minimality

of the degree of mx(Λ) in Ix. Thus we call mx(Λ) the minimal polynomial of x.

By the first isomorphism theorem we obtain imϕx
∼= F [Λ]/⟨mx(Λ)⟩. Notice that imϕx

is just the set of all possible linear combinations of powers of x, which is exactly F (x), the

unital subalgebra generated by x. By power-associativity of V , we conclude that F (x) is an

associative algebra.

Definition 2.3.2. Let V be a finite-dimensional power-associative unital F -algebra and
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x ∈ V . Let F (x) denote the unital subalgebra generated by x. Then the degree of x is:

deg(x) := dim(F (x)) = degmx(Λ).

The rank of V is defined as

rankV = max{deg(x) : x ∈ V }.

An element x is regular if deg(x) = rankV .

We note that this definition of the minimal polynomial mirrors the minimal polynomial

of a vector space endomorphism. However, we cannot easily generalizes the definition of the

characteristic polynomial from vector spaces since we have yet to define the determinant on

EJA. Without the a priori determinant, we would need to work a little harder. The roadmap

is that we first define the characteristic polynomial of a regular element to be its minimal

polynomial. Then we use the fact that regular elements are dense in EJA and continuity

of polynomial functions to extend the characteristic polynomial of regular elements to all

elements. This is a sophisticated proof that invokes techniques from algebraic geometry.

Since for the purpose of this thesis we only need the characteristic polynomials of the regular

elements, we shall only cover the proof for regular elements and refer the reader to [Orl21]

for a complete proof.

Lemma 2.3.3 (Gauss). Let R be a unique factorization domain (UFD) with field of fractions

F and let p(Ξ) ∈ R[Ξ]. If p(Ξ) is reducible in F [Ξ] then p(Ξ) is reducible in R[Ξ].

Proposition 2.3.4. Let V be an n-dimensional power-associative unital F -algebra with rank

r. Then for any basis B, there exists unique polynomials a1(Ξ1, . . . ,Ξn), a2(Ξ1, . . . ,Ξn), . . . ,

ar(Ξ1, . . . ,Ξn) ∈ F [Ξ1, . . . ,Ξn] such that each ai(x) := ai((x)B) = ai(x1, . . . , xn) ∈ F and

the minimal polynomial of every regular element x ∈ V is given by

mx(Λ) = Λr − a1(x)Λ
r−1 + a2(x)Λ

r−2 + · · ·+ (−1)rar(x)Λ
0.
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Proof. Note that this proof frequently uses Lemma 2.3.1: since F [Ξ1, . . . ,Ξn] is an infinite

unique factorization domain (UFD), there exists a natural isomorphism between polynomials

in F [Ξ1, . . . ,Ξn] and polynomial functions with variables x1, . . . , xn ∈ F .

Fix a regular element y ∈ V . Then {1V , y, y2, . . . , yr−1} is a basis of the subalgebra

F (y) and therefore linearly independent. Since V is finite-dimensional, by the Building-Up

Lemma there exists a basis B = {1V , y, y2, . . . , yr−1, b1, . . . , bn−r} of V .

For any x ∈ V (treating as a variable), define

q(x) := Det((1V )B, (x)B, · · · , (xr−1)B, (b1)B, . . . , (bn−r)B).

Denote this matrix inside Det as M . Since we can express the coefficents of (xk)B as a linear

combination of x1, . . . , xn, q(x) is in fact a polynomial function with variables x1, . . . , xn.

Hence q(Ξ1, . . . ,Ξn) is a polynomial in F [Ξ1, . . . ,Ξn]. Notice q(y) = 1F since it is just the

determinant of the identity matrix, so q(Ξ1, . . . ,Ξn) must not be the zero polynomial. This

means that we can put it in the denominator of rational functions. If q(x) ̸= 0 ∈ F , then M

has full rank so 1V , x, . . . , x
r−1 must be linearly independent, implying that x has degree r

and is a regular element. So by definition of the degree of x, the minimal polynomial of x

has degree r. That is, we have

mx(Λ) = Λr − a1(x)Λ
r−1 + · · ·+ (−1)rar(x)Λ

0.

Since mx(x) = 0, we have

xr = a1(x)x
r−1 + · · ·+ (−1)r−1ar(x)1V .

Now, by expressing xk in the basis B and treating aj(x) as unknowns in F , we obtain a

system of equations:

(
(1V )B (x)B · · · (xr−1)B

)


a1(x)

a2(x)

...

ar(x)


= (xr)B.
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We can solve each aj(x) using Cramer’s rule:

aj(x) = (−1)j−1Det((1V )B, . . . , (x
j−1)B, (x

r)B, (x
j+1)B, . . . , (x

r−1)B, (b1)B, . . . , (bn−r)B)

q(x)
.

Since q(Ξ1, . . . ,Ξn) ̸= 0, each aj(Ξ1, . . . ,Ξn) associated with the coefficients aj(x) of mx(Λ)

is a rational function in the field of fractions of F [Ξ1, . . . ,Ξn]. Let cLx(Λ) = Det(ΛI − Lx)

be the characteristic polynomial of the vector space endomorphism Lx. By the Cayley–

Hamilton Theorem, cLx(Lx) = 0. Recall that Lx1V = x. Hence by linearity of ◦, we can

obtain a polynomial function of x via a polynomial function of Lx acting on 1V as left

multiplication. Thus, cLx(x) = cLx(Lx)1V = 0 · 1V = 0. So cLx(Λ) ∈ Ix and mx(Λ) divides

cLx(Λ). Since Lx has entries in F , cLx(Λ) has coefficients in F ⊂ F [Λ]. Since F [Ξ1, . . . ,Ξn] is

a UFD, by Gauss’s Lemma mx(Λ) as a factor of cLx(Λ) also has coefficients in F [Ξ1, . . . ,Ξn]

as well. That is, we can choose aj(Ξ1, . . . ,Ξn) to be polynomials. The uniqueness of each

aj(Ξ1, . . . ,Ξn) follows from the uniqueness of mx(Λ).

For regular elements, we simply define characteristic polynomials to be their minimal

polynomials. Finally, by the believable magic of density of regular elements and continuity

of polynomial functions, we can extend characteristic polynomials of regular elements to all

elements of V , completing the construction of characteristic polynomials in EJA.

Definition 2.3.5. Let V be a finite-dimensional power-associative unital F -algebra with

rank r. Suppose the characteristic polynomial of x ∈ V is

cx(Λ) = Λr − a1(x)Λ
r−1 + a2(x)Λ

r−2 + · · ·+ (−1)rar(x)Λ
0.

The determinant and the trace of x are defined respectively as

det(x) := ar(x), tr(x) := a1(x).

Let L̃x denote Lx with domain restricted to the subalgebra F (x). If x is regular, we

know that under the canonical basis {1V , x, x2, . . . , xr−1} of F (x), multiplication by x can
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be represented by the following matrix:

L̃x =



0 0 · · · 0 (−1)r−1ar(x)

1 0 · · · 0 (−1)r−2ar−1(x)

0 1 · · · 0 (−1)r−3ar−2(x)

...
...

. . .
...

...

0 0 · · · 1 a1(x)


.

This is the companion matrix of cx(Λ), so the characteristic polynomial of L̃x is just cx(Λ).

It is easy to see that due to the abundance of zeros, Det(L̃x) = ar(x) =: detx. Together

with the identity that L̃(Λ1V −x) = ΛI − L̃x by linearity of multiplication, we obtain

cx(Λ) = cL̃x
(Λ) := Det(ΛI − L̃x) = Det(L̃(Λ1V −x)) = det(Λ1V − x).

So we recover the definition of characteristic polynomial for matrices in EJA:

Proposition 2.3.6. Let V be a finite-dimensional power-associative unital F -algebra with

rank r. Then the characteristic polynomial of any element x ∈ V can be expressed as:

cx(Λ) = det(Λ1V − x).

Example 2.3.7 (Hadamard EJA). Given x = (x1, . . . , xn)
T ∈ V , we have

detx =
n∏

i=1

xi,

cx(Λ) =
n∏

i=1

(Λ− xi).

Hence the rank of V is n.

Example 2.3.8 (real symmetric EJA). We have

detX = DetX,

cX(Λ) = det(ΛI −X) = Det(ΛI −X).

This coincides with the usual determinant definition for matrices, as we would expect from

power-associativity and uniqueness of minimal polynomials.
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Example 2.3.9 (Jordan spin EJA). We have

detx = x2
0 − ∥x∥2,

cx(Λ) = det(Λ1V − x)

= Λ2 − 2x0Λ + x2
0 − ∥x∥2.

This reveals that rankV = 2.

Example 2.3.10 (direct product EJA). Let V = V1 × V2 be the direct product EJA. Then

given (x1, x2) ∈ V , we have

det(x1, x2) = det x1 detx2.

Proposition 2.3.11. For all v ∈ V , and x, y ∈ F (v), we have

det(x ◦ y) = det x det y.

Moreover, det(1V ) equals 1.

Note that this is only true in the subalgebra F (v) and not true for elements in V in

general!

We again have the familiar result from linear algebra:

Proposition 2.3.12. Let V be a power-associative unital F -algebra with rank r. An element

x ∈ V is invertible if and only if detx ̸= 0. An invertible x has inverse

x−1 =
Q(x)

detx
,

where Q[Λ] is a polynomial in F [Λ] of degree r − 1.

Proof. ( =⇒ ) : Suppose x is invertible, then x−1 ∈ F (x) and detx det(x−1) = det(x◦x−1) =

det(1V ) = 1. So detx is not 0.
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( ⇐= ) : suppose det x ̸= 0, then since cx(x) = 0, we have

0 = xr − a1(x)x
r−1 + a2(x)x

r−2 + · · ·+ (−1)r det(x)1V

1V = (−1)r−1x
r − a1(x)x

r−1 + · · ·+ (−1)r−1ar−1(x)x

detx

1V = x ◦
(
(−1)r−1x

r−1 − a1(x)x
r−2 + · · ·+ (−1)r−1ar−1(x)

detx

)
=: x ◦ x−1.

The last calculation also proves the second statement of the proposition.

The next proposition is perhaps the most useful identity for this thesis.

Proposition 2.3.13. Let V be a simple EJA with dimension n and rank r, and let x, y ∈ V .

We have

det(Px(y)) = det(x)2 det(y).

Proof. By the fundamental identity, we have

DetPPxy = Det(PxPyPx) = Det(Px)
2Det(Py).

Then by Proposition III 4.2 of [FK94], we have DetPx = (detx)
2n
r , so

(det(Px(y)))
2n
r = (det(x)2 det(y))

2n
r

det(Px(y)) = det(x)2 det(y).

With the characteristic polynomial defined, we can proceed to define another familiar

concept:

Definition 2.3.14. The eigenvalues of x are the roots of its characteristic polynomial

cx(Λ).
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The next proposition easily follows from this definition by writing cx(Λ) as a product

of roots:

Proposition 2.3.15. Let V be a power-associative unital F -algebra with rank r and x ∈ V .

Then

det(x) =
r∏

i=1

λi and tr(x) =
r∑

i=1

λi,

where λi are the eigenvalues of x.

This result allows us to mostly forget about the characteristic polynomials and greatly

simplifies working with the determinant. Linearity of trace is self-evident.

Definition 2.3.16. Let V be a EJA. An idempotent c ∈ V is an element satisfying c2 = c.

A primitive idempotent c ∈ V is a non-zero idempotent such that there exist no nonzero

idempotents c1, c2 ∈ V satisfying c = c1 + c2.

Definition 2.3.17. A set {c1, . . . , ck} ⊆ V is a complete system of orthogonal idem-

potents if

(i) Each ci is an idempotent.

(ii) If i ̸= j, then ci ◦ cj = 0.

(iii)
∑k

i=1 ci = 1V .

A complete system of orthogonal primitive idempotents is called a Jordan frame.

As the name suggests, ci ◦ cj = 0 is in fact equivalent to ⟨ci, cj⟩ = 0. One direction

is straightforward: suppose c ◦ d = 0, then by the property of the EJA inner proudct,

⟨c, d⟩ = ⟨c2, d⟩ = ⟨c, c ◦ d⟩ = ⟨c, 0⟩ = 0. The other direction requires the canonical trace

product, so we leave the details to [Orl21].

Here we have more operator-commuting results.
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Proposition 2.3.18. Let V be an EJA. If c and d are idempotents, then they operator-

commute.

Corollary 2.3.19. Let V be an EJA. If x and y are linear combinations of a set of orthogonal

idempotents, then x and y operator-commute.

We are ready to present the spectral theorem. There are in fact two versions of it.

The first one is referred as the unique EJA spectral theorem by Orlitzsky and only concerns

with the spectral decomposition of x within the unital subalgebra generated by x. We shall

only present the second version because it is much more general and therefore useful, at the

expense of losing a bit of uniqueness:

Theorem 2.3.20 (full EJA spectral theorem). Suppose that V is an EJA with rank r. Then

for any x ∈ V , there exists a Jordan frame {c1, . . . , cr} and unique real numbers λ1 ≥ . . . ≥ λr

such that

x =
r∑

i=1

λici.

The λi are the eigenvalues of x. The decomposition is unique in the sense that if there exists

another Jordan frame {d1, . . . , dr} such that x =
∑r

i=1 λidi, then for every eigenvalue t of x,

we have

∑
λi=t

ci =
∑
λi=t

di.

Notice that if the eigenvalues of x are all distinct, then the Jordan frame of x is unique.

Usually we do not need a unique Jordan frame. Existence is often enough, as is in the case

of the next lemma:

Lemma 2.3.21. Let V be a EJA of rank r. They x, y ∈ V operator-commute if and only if

x and y have full spectral decompositions with respect to a common Jordan frame. That is,

LxLy = LyLx if and only if there exists a Jordan frame {c1, . . . , cr} and sets of real numbers
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{λ1, . . . , λr} and {µ1, . . . , µr} such that

x =
r∑

i=1

λici and y =
r∑

i=1

µici.

The backward direction follows from Corollary 2.3.19. The forward direction is highly

technical so we delegate the proof to [Orl21].

Example 2.3.22 (Hadamard EJA). We can check that the standard basis coincides with

the Jordan frame of any element x ∈ V . The eigenvalues are just {x1, . . . , xn}, the entries

of x.

Example 2.3.23 (real symmetric EJA). Perhaps not surprisingly, the EJA spectral decom-

position of the symmetric matrices is equivalent to the linear algebra spectral decomposition,

although they might be presented differently. Recall that for any symmetric matrix X ∈ V ,

the linear algebra spectral decomposition yields a diagonal matrix Λ with eigenvalues on the

diagonal and an orthogonal matrix Q with normalized eigenvectors as columns such that

X = QΛQ−1. We can rewrite this as a sum:

X =
n∑

i=1

λiqiq
T
i ,

which is in the form of EJA spectral decomposition. Notice that qiq
T
i is projection onto

the invariant subspace spanned by the eigenvector qi. Hence qiq
T
i is an idempotent. It is

straightforward to check that {q1qT1 , . . . , qnqTn } forms a Jordan frame. So we see that the

concept of eigenvectors from linear algebra and Jordan frame are not equivalent but still

highly connected through invariant subspaces. In fact, in operator theory, the EJA version

of the spectral theorem is used all the time on matrices.

Example 2.3.24 (Jordan spin EJA). Given x ∈ V , since we observe earlier that rankV =

2, then whenever x ̸= 0, x has the following spectral decomposition: x = λ1(x)c1(x) +

λ2(x)c2(x), where

λ1(x) = x0 + ∥x∥ and λ2(x) = x0 − ∥x∥
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are the solutions to the characteristic polynomial cx(Λ) = Λ2 − 2x0Λ + (x2
0 − ∥x∥), and

c1(x) =
1

2

 1

x
∥x∥

 and c2(x) =
1

2

 1

− x
∥x∥

 .

If x = 0, then the spectral decomposition of x is just x itself.

In the Lorentz cone L3 ⊆ R3, we can visualize c1(x) and c2(x) as two opposing vectors

in the cone with height 1 whose projections to the xy plane coincide with ±x (see page 19

of [AG03]).

Given S ⊆ R, denote VS as the set of all elements in V with eigenvalues completely

in S. Thanks to the spectral decomposition, we can now extend any function f : S → R

to a spectral function F : VS → V by applying f to the eigenvalues of any element: if

x = λ1c1 + · · ·+ λrcr, then

F (x) =
r∑

i=1

f(λi)ci.

This allows us to define the power function on all elements in V with nonnegative eigenvalues:

xt :=
r∑

i=1

λt
icr

for any t ∈ R. When t = −1, we see that x−1 from this definition indeed coincides with the

inverse of x.

2.4 Symmetric cones

With the determinant of EJA defined, we are now ready to understand symmetric

cones and their natural barrier functions.

Definition 2.4.1. LetK be a cone in an ambient vector space V . Define the automorphism

group of K to be

Aut(K) := {g ∈ GL(V ) : gK = K},

where GL(V ) is the general linear group on V .
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Although [FK94] only define the automorphism group on the interior, we choose this

equivalent definition (see Page 4 of [FK94]) to align with the common definition in the

literature. Under either definition, the automorphism group is a closed subset of GL(V ) and

therefore a Lie group , but this fact is not important for our purpose.

Recall that a group action of G on a nonempty set A is transitive if for any a, b ∈ A,

there exists g ∈ G such that g.b = a. We are ready to define the protagonist of this thesis:

Definition 2.4.2. A cone K in a finite-dimensional real inner product space is a symmetric

cone if it is self-dual and homogeneous. That is, K = K∗ := {y ∈ V : ⟨y, x⟩ ≥ 0 ∀ x ∈ K}

and Aut(K) acts transitively on K̊.

Note that since the dual cone is always closed and convex, a symmetric cone must be

closed and convex as well. It turns out that a symmetric cone is in fact proper. Moreover,

self-scaled cones described in [NT97] coincide with symmetric cones. But we shall soon see

that symmetric cones have more than one alter ego.

Definition 2.4.3. Let V be a EJA. Define the cone of squares of V as

K(V ) = {x2 : x ∈ V }.

We simply refer to K(V ) as K when the ambient EJA V is clear from context.

Note that the three examples Rn
+,Sn

+ and Ln+1 from Chapter 1 are respectively the

cone of squares of Hadamard EJA, real symmetric EJA, and Jordan spin EJA. We have

finally unified them using EJA!

Denote the set of invertible elements of an EJA V by I. It turns out that the interior

of the cone of squares coincides with

K̊ = {x2 : x ∈ I}.

Proposition III 2.2 of [FK94] states an important result:

Proposition 2.4.4. If x ∈ I, then Px ∈ Aut(K).
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It follows that Px acts transitively on K̊. This proposition has an even more important

consequence that we will use frequently:

Corollary 2.4.5. For any a ∈ I, Pa is an order-isomorphism on K.

Proof. Let x, y ∈ K satisfy x ⪯K y. Since y − x ∈ K and Pa ∈ Aut(K), Pa(y − x) =

Pa(y)− Pb(y) ∈ K. That is, Pa(x) ⪯K Pa(y). Strict inequality follows similarly.

We now present a marvelous bridge between geometry and algebra.

Theorem 2.4.6. A cone is symmetric if and only if it is the cone of squares of some EJA.

We refer the reader to Chapter III of [FK94] for a proof. It is much easier to see that

any symmetric cone is pointed and solid by showing that any cone of squares is. Combining

this theorem with the complete classification theorem, it is not hard to see that if we define

an irreducible symmetric cone to be the cone of squares arise from a simple EJA, then we

only have five classes of irreducible symmetric cones corresponding to five classes of simple

EJAs, and

Proposition 2.4.7. Any symmetric cone can be decomposed into a direct sum of a finite

number of irreducible symmetric cones in a unique way up to indexing.

The converse is also true: any finite direct product of symmetric cones is a symmetric

cone, since we can write every element as a tuple of squares so it is a cone of squares under

elementwise multiplication.

Definition 2.4.8. Let V be an EJA and K be its symmetric cone. Then an endomorphism

A : V → V is positive definite, denoted A > 0, if for all nonzero x ∈ V , we have

⟨Ax, x⟩ > 0.

Proposition 2.4.9. Let K be a symmetric cone and x ∈ K. Then the following statements

hold:
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(i) The quadratic representation Px is positive semidefinite and is positive definite if

x ∈ K̊.

(ii) P
1/2
x = Px1/2. More generally, P t

x = Pxt whenever xt is defined.

See Section 2.5 of [Vie07] and Lemma 2.5 of [TWK21] for proofs.

Definition 2.4.10. Let V be an EJA and K be its symmetric cone. The natural barrier

function B : K̊ → R is defined as

B(x) = − log det(x),

where log : R++ → R is the usual natural logarithmic function.

Since any element x ∈ K̊ has strictly positive eigenvalues, det(x) > 0 so the composition

is well-defined. As x approaches ∂K, we see that at least one eigenvalue approaches 0 so

det(x) → 0 and B(x) → ∞. This is exactly the behavior we expect from a barrier function.

Moreover, B(x) is self-concordant. We shall not prove it here but the sketch is that log

is self-concordant and we can show that B(x) is self-concordant on every geodesic in V by

replacing the determinant with the eigenvalues. See Example 9.5 of [BV04] for the special

case of Sn
+.

This is how we obtain the barrier functions of Rn
+,Sn

+, and Ln+1 in Chapter 1. Now

we see that instead of working with the barrier functions individually, we can simply prove

results and design algorithms using this simple expression for all symmetric cones at once.

Example 2.4.11 (product cone). SupposeK1 andK2 are symmetric cones. Then the natural

barrier function of the product cone K1 × K2 is simply the sum of their individual barrier

functions:

B(x, y) = −(log detx+ log det y) = − log(detx det y).

See Theorem 2.1 of [NT97] for details.
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Proposition 2.4.12. Let V be an EJA and K be its symmetric cone. Let B be the natural

barrier function of K. Then in the usual sense of the gradient and the Hessian in the Hilbert

space V , for all x ∈ K̊, we have

(i) ∇B(x) = −x−1,

(ii) ∇2B(x) = P−1
x .

See Section 2.6 of [Vie07] for a proof.

Corollary 2.4.13. The natural barrier function B(x) is strictly convex.

Proof. For any nonzero x ∈ K̊, we have x−1 ≻K 0 so Px−1 = P−1
x > 0 by Proposition 2.4.9

(ii). Since K̊ is convex, by the second-order conditions of convexity B is a strictly convex

function.

Finally, we introduce some definitions that will be useful in the next chapter.

Definition 2.4.14. Let V be a simple EJA of rank r and K be its symmetric cone. For any

given f : S ⊆ R → R, f induces a spectral function F : VS → V , where VS is the set of

elements of V with eigenvalues completely contained in S. Then we say

(a) f is SC-monotone of order r if for any x, y ∈ VS,

x ⪯K y =⇒ F (x) ⪯K F (y);

(b) f is SC-concave of order r if for any x, y ∈ VS,

∀ s ∈ [0, 1], F (sx+ (1− s)y) ⪯K sF (x) + (1− s)F (y).

We say f is SC-monotone or SC-concave if it is respectively SC-monotone or SC-concave

of all orders.

These definitions generalize the concepts of operator monotone and operator concave

from operator theory.
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2.5 Geodesic convexity

So far we have introduced some of the most powerful Jordan algebraic tools to study

symmetric cones. Recall that we are interested in understanding the geometry (e.g., the

geodesics) of symmetric cones, but it is still unclear how the Jordan algebraic tools we

presented above help us achieve that. Below we illustrate the connection between symmetric

cones as Riemannian manifolds and as cone of squares of EJAs. Since Riemannian geometry

is out of the scope of this thesis, we only aim to provide the big picture and delegate the

complete geometric details to [Vis18] and Chapter 10 of [Bou20]. For symmetric cones, it

suffices to understand their geodesic segments intuitively as the “shortest path between two

points” or “generalized line segments on the cone”.

First, we briefly justify why the interior of a symmetric cone K̊ is a smooth manifold.

Since we have a finite-dimensional vector space, V ∼= Rn for some n and this linear isomor-

phism yields a global chart. Hence V is a smooth manifold. Since K̊ is the preimage of the

open set R++ under the continuous function det, it is open in V and therefore is a smooth

open submanifold.

The following theorem allow us to unify the geometric and algebraic structures of

symmetric cones:

Theorem 2.5.1. Let K be a symmetric cone with ambient EJA V . Then the Hessian P−1
x of

the natural barrier function B(x) = − log det(x) of K induces a Riemannian metric tensor

g, where gx(u, v) = ⟨P−1
x u, P−1

x v⟩. Furthermore, (K̊, g) is a complete, connected Riemannian

manifold.

Proof. Since ⟨·, ·⟩ is defined to be symmetric bilinear and P−1
x is positive definite by Propo-

sition 2.4.9 (i), gx is a valid metric tensor. Since P−1
x is a composition of smooth functions

in x, gx varies smoothly with x ∈ K̊. So (K̊, g) is a Riemannian manifold. Since K̊ endowed

with the Riemannian distance is a complete metric space [NT02], by Hopf–Rinow Theorem

in Chapter 10 of [Bou20], K̊ is geodesically-complete. Finally, K̊ is convex and therefore
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connected.

Then by Theorem 10.8 of [Bou20], every two points in K̊ have a minimizing geodesic

segment connecting them. This geodesic segment is in fact unique:

Proposition 2.5.2. Let K be a symmetric cone. The unique geodesic segment c : [0, 1] → K̊

connecting x, y ∈ K̊ can be expressed as:

c(t) = Px1/2 (Px−1/2(y))
t ∀ t ∈ [0, 1].

We also use the notation x#ty := c(t) to make the end points more explicit.

See Proposition 2.6 of [Lim01] for a proof. In addition, for an abstract treatment of

geodesic midpoint in the C∗-algebra setting, see [LL07a, LL07b].

This is exactly how we find the geodesics of Rn
+,Sn

+ and Ln+1 in Chapter 1. Compared

to the geodesic of the second-order cone, this abstract formula is a godsend.

Corollary 2.5.3. If x ∈ K̊, then we have

xt = 1#tx.

Definition 2.5.4. The geometric mean of x and y, denoted by x#y, is defined as the

geodesic midpoint of x and y. That is, x#y := c
(
1
2

)
= y#x.

Finally, we define g-convexity.

Definition 2.5.5. A subset S of a Riemannian manifold M is geodesically convex (g-

convex) if, for every x, y ∈ S, there exists a geodesic segment c : [0, 1] → M such that

c(0) = x, c(1) = y and c([0, 1]) ⊆ S.

Definition 2.5.6. Let M be a Riemannian manifold and S ⊆ M. Then a function f : S →

R is geodesically convex (g-convex) if S is g-convex and f ◦ c : [0, 1] → R is convex for

each geodesic segment c : [0, 1] → M whose image is in S (with c(0) ̸= c(1)). That is, f is

g-convex if for all x, y ∈ S and all geodesics c connecting x to y,

f(c(t)) ≤ (1− t)f(x) + tf(y) ∀ t ∈ [0, 1].



35

It is not hard to see that g-convexity is a natural generalization of convexity and

therefore inherits many benefits of convexity, including the fact that all local minima are

global minima. Algorithms designed for optimizing convex problems can also be generalized

to g-convex problems.

Corollary 2.5.7. The interior of any symmetric cone, K̊, is g-convex.

Proof. By Theorem 10.8 of [Bou20], any complete and connected Riemannian manifold is

g-convex.

Now we have the background knowledge we need in order to generalize Sra’s re-

sults.



Chapter 3

S-divergence

Throughout this chapter, we shall assume that V is a simple EJA with rank r and K

is the corresponding irreducible symmetric cone. This allows us to use Proposition 2.3.13.

We discuss the non-simple case in the next chapter.

Let f be a continuously differentiable, strictly convex function with domain in a Hilbert

space. The Bregman divergence of f is defined as:

Df (x, y) := f(x)− f(y)− ⟨∇f(y), (x− y)⟩.

Intuitively, the Bregman divergence measures how far the convex function deviates from a

local linear approximation at y between an initial point y and a final point x. This is not

a metric as it satisfies neither symmetry nor the triangle inequality. It is positive definite

because any local linear approximation of a strictly convex function lies strictly below the

function except at x = y. So the positive definiteness still provide some “distance-like”

information.

The Jenson–Shannon divergence of f is the symmetrized version of Bregman di-

vergence:

Sf (x, y) :=
1

2

(
Df

(
x,

x+ y

2

)
+Df

(
y,

x+ y

2

))
.

We define S-divergence on the symmetric cone as the Jenson-Shannon divergence of
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f = − log det, its natural barrier function. We provide the derivation below:

δ2S(x, y) :=
1

2

(
− log detx+ log det

(
x+ y

2

)
+

〈(
x+ y

2

)−1

,

(
x− x+ y

2

)〉

− log det y + log det

(
x+ y

2

)
+

〈(
x+ y

2

)−1

,

(
y − x+ y

2

)〉)

= log det

(
x+ y

2

)
− 1

2
log detx− 1

2
log det y +

〈(
x+ y

2

)−1

,

(
x+ y

2
− x+ y

2

)〉

= log det

(
x+ y

2

)
− 1

2
(log detx+ log det y).

We rewrite δ2S in a more revealing form:

Definition 3.0.1. The S-divergence δ2S : K̊ × K̊ → R of the natural barrier function

f = − log det is defined as

δ2S(x, y) := log
det
(
x+y
2

)
√
detx det y

.

That is, δ2S is the log of the determinant of the arithmetic mean of x and y over the

geometric mean of their determinants. In fact, the denominator equals the determinant of

their geometric mean, which we shall prove next. For the rest of this thesis, we shall drop

the subscript S for convenience.

3.1 δ is a metric

The goal of this section is to prove that δ : K̊ × K̊ → R is a valid metric. This

generalization is novel, and the proof ideas largely mirror that of Sra in the case of Hermitian

positive definite matrices [Sra15].

The following notation will appear frequently in this section: let V be a simple EJA

with rank r and let x ∈ V . Then λ(x) = λ↓(x) denotes the vector of unique eigenvalues of

x in descending order, i.e., λ1 ≥ . . . ≥ λr, which is the default order given by the spectral

decomposition. Let λi(x) denote the ith entry of λ(x). Let λ↑(x) denote the vector of

eigenvalues in ascending order. Let C = {c1, . . . , cr} be any Jordan frame in V . Define
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λC(x) := λ1c1 + · · ·+ λrcr. Here we simply replace the Jordan frame of x from its full EJA

spectral decomposition with C. We see that detx = det(λC(x)) = det(λ↑
C(x)) =

∏r
i=1 λi.

First, we show that δ is non-negative. This requires a few steps.

Proposition 3.1.1. For any a, b ∈ K̊, we have

det(a#b) =
√
det a det b.

Proof. Notice that for any x ∈ K̊ and t ∈ R, since xt :=
∑r

i=1 λ
t
ici, we have det (xt) =∏r

i=1 λi(x)
t = (

∏r
i=1 λi(x))

t
= (detx)t. Let t = 1

2
, and the rest is straightforward computa-

tion using Proposition 2.3.13:

det(a#b) = det
(
Pa1/2 (Pa−1/2(b))

1/2
)

= det a det
(
(Pa−1/2(b))

1/2
)

= det a (det (Pa−1/2(b)))
1/2

= det a
√
det (a−1) det b

=
√
det a det b.

This shows that the geometric mean of the determinants of a, b is indeed the determi-

nant of the geometric means of a, b. Hence the S-divergence encodes information about how

much the arithmetic mean of two elements deviates from their geometric mean.

Proposition 3.1.2. The determinant det : K̊ → R is monotone with respect to the partial

order induced by K.

Proof. Given x ⪯K y ∈ K̊, suppose x, y operator-commute, then they share a common

Jordan frame C so we have λ(x) ≤ λ(y) entrywise. Therefore, we have det x ≤ det y. If

x, y are arbitrary, then there exists a d ∈ K̊ such that Pd(x) = a and Pd(y) = b ∈ K̊ where
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a, b operator-commute. Since Pd is an order-isomorphism, we have a ⪯K b and therefore

det(a) ≤ det(b). Thus we have

det(Pd(x)) ≤ det(Pd(y))

det(d)2 det(x) ≤ det(d)2 det(y)

detx ≤ det y,

since det d ̸= 0. Hence det is monotone.

Corollary 3.1.3. The function log det : K̊ → R is monotone.

Proof. We know log is monotone increasing so the composition is also monotone.

Corollary 3.1.4. For any x, y ∈ K̊, we have δ(x, y) ≥ 0.

Proof. By of Theorem 2.8 of [Lim00], x#y ⪯K
x+y
2
. Then monotonicity of det yields

det
(
x+y
2

)
√
detx det y

=
det
(
x+y
2

)
det(x#y)

≥ 1.

Thus δ2 as the composition with the logarithmic function is always non-negative, and so is

δ.

This allows us to treat squaring as a monotone function and prove results about δ using

δ2. Next, we tackle the most difficult part the proof, the triangle inequality. It requires a

series of technical results:

Lemma 3.1.5. Let a ∈ K̊ and C be any Jordan frame of V . Then we have

δ(1V , a) = δ(1V , λC(a)).

Proof. There is nothing mysterious here because δ only depends on the eigenvalues so it is

invariant under replacing the Jordan frame. Recall that all elements operator-commute with
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1V and share a Jordan frame. Given a ∈ K̊ so its eigenvalues are all strictly positive, we

have the spectral decompositions 1V =
∑r

i=1 ei and a =
∑r

i=1 λiei with respect to a common

Jordan frame {e1, . . . , er}. Then we have

δ2(1V , a) = log
det
(
1V +a

2

)√
det(1V ) det(a)

= log
det
(∑r

i=1(1+λi)ei
2

)
√

det(1V ) det(a)

= log

∏r
i=1

(
1+λi

2

)√
det(1V ) det(a)

= log
det
(∑r

i=1(1+λi)ci
2

)
√

det(1V ) det(λC(a))

= δ2(1V , λC(a)).

Proposition 3.1.6. Let x, y, d ∈ K̊, then we have

δ(Pd(x), Pd(y)) = δ(x, y).

Proof. We compute

δ2(Pd(x), Pd(y)) = log
det
(

Pd(x)+Pd(y)
2

)
√

det(Pd(x)) det(Pd(y))

= log
det
(
Pd

(
x+y
2

))√
det(Pd(x)) det(Pd(y))

linearity of quadratic rep

= log
det2(d) det

(
x+y
2

)√
det2(d) det(x) det2(d) det(y)

Proposition 2.3.13

= log
det
(
x+y
2

)√
det(x) det(y)

= δ2(x, y).

We also need some inequality results. The next lemma is Corollary 3.5 of [Sra15].
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Lemma 3.1.7. Define δs to be the scalar version of δS. That is, δs(x, y) :=
√

log((x+ y)/(2
√
xy)).

Let x, y, z ∈ Rn
++ and let p ≥ 1 be an integer. Then we have(

n∑
i=1

δps(xi, yi)

)1/p

≤

(
n∑

i=1

δps(xi, zi)

)1/p

+

(
n∑

i=1

δps(yi, zi)

)1/p

.

Proposition 3.1.8. Suppose x, y, z ∈ K̊ share the same Jordan frame {c1, . . . , cr}. Then we

have

δ(x, y) ≤ δ(x, z) + δ(y, z).

Proof. By the full EJA spectral theorem, since x, y, z share the same Jordan frame, we have

the following decompositions:

x = λ1c1 + · · ·+ λrcr,

y = µ1c1 + · · ·+ µrcr,

and z = ν1c1 + · · ·+ νrcr.

It follows that

δ2(x, y) = log

(
λ1+µ1

2

)
· · ·
(
λn+µn

2

)
√
λ1 · · ·λnµ1 · · ·µn

=
n∑

i=1

log
λi + µi

2
√
λiµi

=
n∑

i=1

δ2s(λi, µi),

and likewise for the other two terms. Setting p = 2, the desired inequality follows from the

previous lemma.

The next theorem is Corollary 3.6.1 from Baes’s PhD thesis [Bae06]. It is a general-

ization of Lidskii’s inequalities from operator theory:

Theorem 3.1.9 (Generalized Lidskii’s inequalities). Fix a positive integer k ≤ r and let

1 ≤ i1 ≤ . . . ≤ ik ≤ r. Then for every u, v ∈ V , we have

k∑
j=1

λij(u) +
k∑

j=1

λj(v − u) ≥
k∑

j=1

λij(v) ≥
k∑

j=1

λij(u) +
k∑

j=1

λr−j+1(v − u).
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This allows us to generalize Fiedler’s inequalities for positive definite matrices to sym-

metric cones:

Theorem 3.1.10 (Generalized Fiedler’s inequalities). Let V be an EJA with rank r and let

x, y ∈ K̊. Then we have

r∏
i=1

(λi(x) + λi(y)) ≤ det(x+ y) ≤
r∏

i=1

(
λi(x) + λ↑

i (y)
)
.

We need to introduce some technical definitions from [Bha13] for the proof:

Definition 3.1.11. Let x, y ∈ Rn. We say that x is majorized by y, denoted by x ≺ y, if

k∑
j=1

x↓
j ≤

k∑
j=1

y↓j , ∀ 1 ≤ k ≤ n,

and

n∑
j=1

x↓
j =

n∑
j=1

y↓j .

Definition 3.1.12. A function f : Rn → R is called Schur-concave if

x ≻ y =⇒ f(x) ≤ f(y).

Proof of generalized Fiedler’s inequalities. Take x = u, and y = v−u in Lidskii’s inequalities.

Since the inequalities hold for every k ≤ r, letting ij = j for each k yields a majorization

result:

λ(x) + λ(y) ≻ λ(x+ y) ≻ λ(x) + λ↑(y),

where equality when k = r holds because tr(x) + tr(y) = tr(x+ y).

Since all eigenvalues are positive, and the elementary symmetric polynomial function

sr : Rr → R, (x1, . . . , xr) 7→
∏r

i=1 xi is Schur-concave on Rr
+ (Example II 3.16 of [Bha13]),

applying sr to the majorization above yields:

r∏
i=1

(λi(x) + λi(y)) ≤
r∏

i=1

λi(x+ y) = det(x+ y) ≤
r∏

i=1

(
λi(x) + λ↑

i (y)
)
.
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The above generalization of Fiedler’s inequalities is routine but novel as far as we know.

Corollary 3.1.13. Let x, y ∈ K̊ and C = {c1, . . . , cr} be a Jordan frame of x. Then we have

δ (λC(x), λC(y)) ≤ δ(x, y) ≤ δ(λC(x), λ
↑
C(y)).

Proof. Dividing Fiedler’s inequalities by
√
detx det y which must be a positive real number,

we obtain ∏r
i=1

(
λi

(
x
2

)
+ λi

(
y
2

))
√
detx det y

≤
det
(
x+y
2

)
√
detx det y

≤

∏r
i=1

(
λi

(
x
2

)
+ λ↑

i

(
y
2

))
√
detx det y

det
(

λC(x)+λC(y)
2

)
√

detλC(x) detλC(y)
≤ δ2(x, y) ≤

det
(

λC(x)+λ↑
C(y)

2

)
√
detλC(x) detλ

↑
C(y)

δ2 (λC(x), λC(y)) ≤ δ2(x, y) ≤ δ2(λC(x), λ
↑
C(y))

δ (λC(x), λC(y)) ≤ δ(x, y) ≤ δ(λC(x), λ
↑
C(y)).

The next lemma is Lemma 1 from [GT11]. It allows us to generalize statements that

are true for elements that operator-commute to arbitrary elements in K̊. It is a standard trick

in operator theory to prove statements for the easier case of operator-commuting elements

first and apply this lemma to prove the general case. It is instrumental for several proofs

throughout this chapter.

Lemma 3.1.14. If x, y ∈ K, then there exists d ∈ K̊ such that Pd(x) = a and Pd(y) = b

where a, b ∈ K operator-commute. If x ∈ K̊, then we can take a = 1V .

Note that if y ∈ K̊ above, then by the order-isomorphism of Pd, we have b ∈ K̊ as well.

Now we have all the results needed to prove the main theorem of this section:

Theorem 3.1.15. The square root of S-divergence, δ, is a metric on K̊.
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Proof. Symmetry is true by construction of δ. Corollary 3.1.4 shows δ is nonnegative. Since

− log det is strictly convex, the Bregman divergence induced by − log det is positive definite.

It follows that the symmetrized version, δ2, is also positive definite. Hence δ is positive

definite.

It remains to prove the triangle inequality. Given x, y, z ∈ K̊, by Lemma 3.1.14 there

exists d ∈ K̊ such that 1V = Pd(x) and a = Pd(y). Let z′ := Pd(z) and C be the common

Jordan frame shared by 1V and a.

Since 1V , a, and λC(z
′) share a common Jordan frame C, Corollary 3.1.13 holds:

δ(x, y) = δ(Pd(x), Pd(y))

= δ(1V , a)

≤ δ(1V , λC(z
′)) + δ(a, λC(z

′)) Corollary 3.1.13

≤ δ(1V , z
′) + δ(a, z′) left Fiedler inequality

= δ(Pd(x), Pd(z)) + δ(Pd(y), Pd(z))

= δ(x, z) + δ(y, z).

Hence δ is indeed a metric on K̊.

3.2 The geometric mean and g-convexity of δ2

If we wish to use δ as a numerical alternative to the Riemannian distance, then it

would be important for δ to enjoy similar properties. The most important property for the

purpose of optimization is that δ2 needs to be g-convex. That is what we aim to prove in

this section.

However, Sra’s proofs used many operator theory results that are not readily available

for symmetric cones. Below we present a few results that help us overcome this challenge.

Definition 3.2.1. For a Jordan algebra V and x, y ∈ V , the polarization of quadratic
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representation is defined as

P(x,y) :=
1

2
(Px+y − Px − Py) .

As a side note, this polarization plays an important role in the study of quadratic

Jordan algebras.

Proposition 3.2.2. Let x, y ∈ K̊, then the polarization of the quadratic representation P(x,y)

is positive definite.

We are grateful for the help we received from Dr. Muddappa Gowda for this proof.

Proof. Let us first consider the easier case where x, y operator-commute. Then by Lemma 2.3.21

there exists a common Jordan frame {c1, . . . , cr} of x and y such that x =
∑r

i=1 λici and

y =
∑r

i=1 µici, where the eigenvalues are all positive. It follows that x+y =
∑r

i=1(λi+µi)ci.

Then for any nonzero z ∈ V , according to Proposition 1 from [GT11] we have the following

three equations:

⟨Px+y(z), z⟩ =
∑
i≤j

(λi + µi)(λj + µj)⟨zij, zij⟩,

⟨Px(z), z⟩ =
∑
i≤j

λiλj⟨zij, zij⟩,

⟨Py(z), z⟩ =
∑
i≤j

µiµj⟨zij, zij⟩.

By the bilinearity of the inner product, we subtract the first equation by the other two and

obtain

⟨(Px+y − Px − Py)(z), z⟩ =
∑
i≤j

(λiλj + λiµi + λjµi + µiµj − λiλj − µiµj)⟨zij, zij⟩

=
∑
i≤j

(λiµj + λjµi)⟨zij, zij⟩

> 0,
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since each λiµj + λjµi > 0 and there exists a ⟨zij, zij⟩ > 0 because z ̸= 0. That is, we have

P(x,y) > 0.

Now suppose that x, y ∈ K̊ are arbitrary. Then by Lemma 3.1.14, there exists d ∈ K̊

such that Pd(x) = a and Pd(y) = b and a, b ∈ K̊ operator-commute. Thus by the previous

case, P(a,b) > 0 holds. That is, we have

PPd(x+y) − PPd(x) − PPd(y) > 0

PdPx+yPd − PdPxPd − PdPyPd > 0 fundamental identity

Pd(Px+y − Px − Py)Pd > 0

PPd
(P(x,y)) > 0.

Since d ∈ K̊, we have Pd > 0, so PPd
is an order-isomorphism and thus P(x,y) > 0, completing

the proof.

The next proposition is Proposition 2.4 of [Lim00].

Proposition 3.2.3. If a, b ∈ K̊, then the Riccati equation

Px(a
−1) = b

has a unique solution x = a#b ∈ K̊.

In Sra’s proof of the upcoming theorem, a parallel sum result (A−1 +B−1)−1 = A(A+

B)−1B for invertible matrices A,B was used. This does not generalize nicely to symmetric

cones due to the lack of associativity of multiplication. The next proposition from Proposition

3.8 of McCrimmon [McC78] offers a workaround for this problem.

Proposition 3.2.4 (Hua’s identity). Let V be a Jordan algebra. If a, b, a − b ∈ V are

invertible, then we have

a−1 = (a− b)−1 + Pa−1(a−1 − b−1)−1.
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The proof idea of the next theorem is heavily inspired by that of Sra, but generalizing

the details to symmetric cones is not trivial and the proof is novel.

Theorem 3.2.5. Let a, b ∈ K̊, then we have

a#b = argmin
x∈K̊

h(x),

where

h(x) = δ2(x, a) + δ2(x, b).

Moreover, a#b is equidistant from a and b. That is,

δ(a#b, a) = δ(a#b, b).

Proof. We need to establish an identity first. Let y := x+ a, then we have x = y − a. Since

x, a, and x + a are elements of K̊ and are therefore invertible, we can apply Hua’s identity

to obtain

(x+ a)−1 = y−1 = (y − a)−1 + Py−1(y−1 − a−1)−1

= x−1 + P(x+a)−1

(
(x+ a)−1 − a−1

)−1
.
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Hence, using the fact that a and a−1 operator-commute, we have(
x−1 − (x+ a)−1

)−1
=
(
x−1 −

(
x−1 + P(x+a)−1

(
(x+ a)−1 − a−1

)−1
))−1

= −
(
P(x+a)−1

(
(x+ a)−1 − a−1

)−1
)−1

= −Px+a

(
(x+ a)−1 − a−1

)
Proposition 2.2.14

= Px+a(a
−1)− (x+ a)

= 2(x+ a) ◦
(
(x+ a) ◦ a−1

)
− (x+ a)2 ◦ a−1 − (x+ a)

= 2(x+ a) ◦ (x ◦ a−1 + 1V )− (x2 + 2a ◦ x+ a2) ◦ a−1 − (x+ a)

= 2x ◦ (x ◦ a−1) + 2a ◦ (a−1 ◦ x) + 2x+ 2a− x2 ◦ a−1

− 2a−1 ◦ (a ◦ x)− a− x− a

= (2L2
x(a

−1)− Lx2(a−1)) + 2(LaLa−1(x)− La−1La(x)) + x

= Px(a
−1) + x.

Now we begin proof proper. To find the minimizer, we can find all the critical points

of h by setting the gradient to zero. Recall that ∇− log det(x) = −x−1, so we obtain

∇h(x) =
1

2

(
x+ a

2

)−1

+
1

2

(
x+ b

2

)−1

− x−1 = 0

x−1 − (x+ a)−1 = (x+ b)−1(
x−1 − (x+ a)−1

)−1
= x+ b

Px(a
−1) + x = x+ b

Px(a
−1) = b.

By Proposition 3.2.3, we know that this is the Riccati equation and has the geometric mean

x0 := a#b as the unique solution. Since x−1
0 = (x0 + a)−1 + (x0 + b)−1 holds, we have

∇2h(x0) = Px−1
0

− (P(x0+a)−1 + P(x0+b)−1)

= P(x0+a)−1+(x0+b)−1 − (P(x0+a)−1 + P(x0+b)−1)

> 0.
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Hence a#b is a local minimum of h. Since it is the unique solution of ∇h(x) = 0, there is no

other local minima. It remains to check the boundary. But as x approaches ∂K, detx → 0.

Thus in the expression of δ2(x, a), the denominator approaches 0 but the numerator is

lower-bounded by the positive constant det
(
a
2

)
by Corollary 2 of [GT11]. This forces h(x)

to approach ∞. Therefore, a#b must be the unique global minimum of h.

Since b#a = a#b is the midpoint of the geodesic, we have Pa#b(a
−1) = b and Pa#b(b

−1) =

Pb#a(b
−1) = a. Then by Proposition 3.1.6, we have

δ(a−1, b−1) = δ
(
Pa#b(a

−1), Pa#b(b
−1)
)

= δ(b, a)

= δ(a, b).

It follows that

δ(a, a#b) = δ
(
a−1, (a#b)−1

)
= δ

(
Pa#b(a

−1), Pa#b(a#b)−1)
)

= δ(b, a#b).

We collect a result from the above proof as a proposition:

Proposition 3.2.6. For a, b ∈ K̊, we have

δ(a−1, b−1) = δ(a, b).

Now we state a conjecture that has already been proven true for four out of five simple

EJA classes [CCP16], with the Albert algebra being the only remaining case to prove. We

shall discuss this conjecture further in the next chapter.

Conjecture 3.2.7. For t ∈ [0, 1], the power map ϕ : [0,∞) → [0,∞), a 7→ at is SC-concave.

That is, for any irreducible symmetric cone K and x, y ∈ K̊, we have

∀ s ∈ [0, 1], (1− s)xt + syt ≤ ((1− s)x+ sy)t .
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We present the proven part of this conjecture as a lemma:

Lemma 3.2.8. Suppose V is a simple EJA not isomorphic to the Albert algebra, then for

t ∈ [0, 1], the power map ϕ : [0,∞) → [0,∞), a 7→ at is SC-concave.

From this point, all EJAs are assumed to be simple EJAs not isomorphic to the Albert

algebra. Suppose the conjecture is true, then the following results immediately generalize to

all simple EJAs.

Proposition 3.2.9. Let V be a simple EJA not isomorphic to the Albert algebra. Let

x, y ∈ K̊, t ∈ [0, 1]. Then δ2(xt, yt) ≤ tδ2(x, y).

Proof. By the lemma above, we have

1

2
(xt + yt) ≤

(
x+ y

2

)t

.

Then by monotonicity of log det, we have

log det

(
1

2
(xt + yt)

)
≤ log det

(
x+ y

2

)t

log det

(
1

2
(xt + yt)

)
− 1

2
log(det(xt) det(yt)) ≤ log det

(
x+ y

2

)t

− 1

2
log(det(x)t det(y)t)

δ2(xt, yt) ≤ tδ2(x, y).

Theorem 3.2.10. Let V be a simple EJA not isomorphic to the Albert algebra. The S-

divergence δ2(x, y) is jointly g-convex for x, y ∈ K̊.

Proof. A function f : K̊ × K̊ → R is jointly g-convex if and only if the composition f ◦ c is

convex for c : [0, 1] → K̊×K̊. It suffices to show midpoint convexity for f ◦c by Lemma 2.1.2.

Suppose (x1, y1), (x2, y2) are two arbitrary points in K̊×K̊, let c be the geodesic of the product

cone such that c(0) = (x1, y1) and c(1) = (x2, y2). Then δ2◦c
(
1
2

)
is equal to δ2(x1#x2, y1#y2).

Thus midpoint convexity requires us to show:

δ2(x1#x2, y1#y2) ≤
1

2
δ2(x1, y1) +

1

2
δ2(x2, y2).
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First, we show that the result holds when the starting point of the geodesic is on the

diagonal. Let u, v1, v2 ∈ K̊ and let c(0) = (u, u). Since u ∈ K̊, define d := u−1/2 so we have

Pd(u) = 1V , Pd(v1) = a1, and Pd(v2) = a2 for some a1, a2 ∈ K̊. Then for any v ∈ K̊, we have

Pd(u#v) = Pu−1/2

(
Pu1/2 (Pu−1/2(v))

1/2
)

=
(
P−1
u1/2Pu1/2

)
(Pu−1/2(v))

1/2

= (Pd(v))
1/2

= 1V#Pd(v). Corollary 2.5.3

Therefore, we obtain

δ2(u#v1, u#v2) = δ2(Pd(u#v1), Pd(u#v2))

= δ2(1V#Pd(v1), 1V#Pd(v2))

= δ2(1V#a1, 1V#a2)

= δ2
(
a
1/2
1 , a

1/2
2

)
≤ 1

2
δ2(a1, a2)

=
1

2
δ2(Pd(v1), Pd(v2))

=
1

2
δ2(v1, v2).

The triangle inequality yields

δ2(x1#x2, y1#y2) ≤ δ2(y1#y2, x1#y2) + δ2(x1#x2, x1#y2)

≤ 1

2
δ2(x1, y1) +

1

2
δ2(x2, y2).
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Discussion

4.1 Conjecture

We believe Conjecture 3.2.7 is likely true and thus worth proving for three reasons.

First, Corollary 3.1 of [CCP16] implies that the fractional power function ϕ is SC-

concave for four out of five cone of squares of simple EJAs, with only the Albert algebra left

out. For optimization purposes, one can argue that this is sufficient since we are likely to

never encounter objects isomorphic to O3×3 in optimization. From a theoretical perspective,

this is unsatisfying.

Second, from an abstract perspective we are able to show that the conjecture is true

for operator-commuting elements.

Lemma 4.1.1. For t ∈ [0, 1], the power map ϕ : [0,∞) → [0,∞), a 7→ at is SC-concave.

That is, for any irreducible symmetric cone K and operator-commuting elements x, y ∈ K̊,

we have

∀ s ∈ [0, 1], (1− s)xt + syt ≤ ((1− s)x+ sy)t .

Proof. Suppose x, y ∈ K̊ operator-commute. Recall from the equivalence of norm inequalities

that for a, b ∈ R, |a|+ |b| ≤
√
2
√
a2 + b2. Since K is the cone of squares of V , every element

in K̊ can be written as a square of an invertible element in V . That is, there exists z, w ∈ V

such that x = z2 and y = w2. Since x, y share the same Jordan frame {c1, . . . , cr}, z, w share



53

the same Jordan frame. We obtain the necessary inequality via the following computation:

δ2(z, w) = log
det
(
z+w
2

)
√
det z detw

= log
det
(∑r

i=1
λi+µi

2
ci
)

√
det z detw

= log

∏r
i=1

λi+µi

2√
det z detw

≤ log

∏r
i=1

√
2/2
√

λ2
i + µ2

i√
det z detw

= log

∏r
i=1

√
λ2
i+µ2

i

2√
det z detw

=
1

2
log

∏r
i=1

(
λ2
i+µ2

i

2

)
√

det(z2) det(w2)

=
1

2
log

det
(∑r

i=1
z2+w2

2
ci

)
√
det(z2) det(w2)

=
1

2
δ2(z2, w2).

A substitution yields δ2(x1/2, y1/2) ≤ 1
2
δ2(x, y). Midpoint concavity and continuity of δ2

implies concavity.

However, we have trouble generalizing this result to non-operator-commuting elements.

Here we describe our failed attempts so others can save some time.

Suppose x, y ∈ K̊ are arbitrary, there exist invertible z, w such that x = z2 and y = w2.

There exists d ∈ K̊ such that Pd(z) = 1V and Pd(w) = a ∈ K̊. Then we have

δ2(z, w) = δ2(Pd(z), Pd(w))

= δ2(1V , a)

≤ 1

2
δ2(12V , a

2)

=
1

2
δ2((Pd(z))

2, (Pd(w))
2).
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Our goal is to get to 1
2
δ2(z2, w2). However, since in general (Pd(z))

2 ̸= Pd(z
2), we do not

have the result immediately. But notice that we do not need equality; we simply need

the determinants of their arithmetic and geometric means to give the same ratio. Since

squaring a positive element does not change its Jordan frame nor its spectral ordering, it

suffices to show that they have the same eigenvalues. That is, we wish to show that they are

similar: (Pd(z))
2 ∼ Pd(z

2). We know from Proposition 3.2.3 of [Vie07] that Pd(z
2) ∼ Pz(d

2).

However, in the matrix case, clearly we have (PD(Z))
2 = DZD2ZD ̸∼ ZD2Z = PZ(D

2) ∼

PD(Z
2), since Z = 1, D = 2 is a one-dimensional counterexample. Therefore, we cannot

proceed to the final step using this approach.

Third, we already know that ϕ is SC-monotone from Corollary 9 of [Lim01]. In operator

theory, knowing that ϕ is operator monotone is enough to prove it is also operator concave.

The argument goes as follows:

Definition 4.1.2. A function f is matrix monotone of order n if it is monotone with

respect to the partial order on n×n Hermitian matrices. We say f is operator monotone

if f is matrix monotone of order n for all n.

Definition 4.1.3. A function f is matrix concave of order n if for all n× n Hermitian

matrices A and B and for all real numbers t ∈ [0, 1],

f((1− t)A+ tB) ≥ (1− t)f(A) + tf(B).

We say f is operator concave if f is matrix concave of order n for all n.

The following three results are from Bhatia [Bha13]. Next is Theorem 2.5:

Theorem 4.1.4. Let f be a continuous function mapping [0,∞) into itself. Then f is

operator monotone if and only if it is operator concave.

Proposition 4.1.5. The function f(X) = X t is operator monotone on [0,∞) for t ∈ [0, 1].

Corollary 4.1.6. The power function f(X) = X t is operator concave for t ∈ [0, 1].



55

It would not be surprising if we can generalize this line of argument to symmetric cones.

Specifically, generalizing Theorem 4.1.4 is sufficient to prove the conjecture. However, this

would be completely out of the scope of this thesis. We encourage operator theory enthusiasts

to look into this generalization.

4.2 Product cones

In Chapter 3, we restricted our analysis to irreducible symmetric cones only. An

immediate question is whether our results apply to arbitrary symmetric cones using Propo-

sition 2.4.7.

First, we consider the possibility of generalizing our results to a metric defined on

a product cone. For simplicity, we present the case when the cone is the product of two

irreducible symmetric cones, i.e.K = K1×K2, and let δ1 and δ2 be their δ metrics respectively.

We see that K̊ = K̊1×K̊2. Using B(x, y) = −(log detx+log det y) from Example 2.4.11 as the

seed function for the Jensen-Shannon divergence, the S-divergence becomes ∆ : K̊× K̊ → R:

∆((x1, x2), (y1, y2)) :=
√

δ21(x1, y1) + δ22(x2, y2).

Theorem 4.2.1. The square root of the S-divergence, ∆, is a metric on K̊.

Proof. By triangle inequality, we have

δ21(x1, y1) ≤ (δ1(x1, z1) + δ1(y1, z1))
2

≤ δ21(x1, z1) + δ21(y1, z1) + 2δ1(x1, z1)δ1(y1, z1).

Similarly, we have

δ22(x2, y2) ≤ δ22(x2, z2) + δ22(y2, z2) + 2δ2(x2, z2)δ2(y2, z2).
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By the Cauchy–Schwarz inequality, we obtain

δ1(x1, z1)δ1(y1, z1) + δ2(x2, z2)δ2(y2, z2) =

δ1(x1, z1)

δ2(x1, z1)


T δ2(y2, z2)

δ2(y2, z2)


≤
√

δ21(x1, z1) + δ22(x2, z2) +
√
δ21(y1, z1) + δ22(y2, z2).

Taken together, this implies that

∆2((x1, x2), (y1, y2)) = δ21(x1, y1) + δ22(x2, y2)

= δ21(x1, z1) + δ21(y1, z1) + 2δ1(x1, z1)δ1(y1, z1)

+ δ22(x2, z2) + δ22(y2, z2) + 2δ2(x2, z2)δ2(y2, z2)

≤ δ21(x1, z1) + δ21(y1, z1) + 2
√

δ21(x1, z1) + δ22(x2, z2)

+ δ22(x2, z2) + δ22(y2, z2) + 2
√

δ21(y1, z1) + δ22(y2, z2)

= δ21(x1, z1) + δ22(x2, z2) + δ21(y1, z1) + δ22(y2, z2)

+ 2
√

δ21(x1, z1) + δ22(x2, z2)
√
δ21(y1, z1) + δ22(y2, z2)

= (∆((x1, x2), (z1, z2)) + ∆((y1, y2), (z1, z2)))
2.

Since non-negativity, positive definiteness, and symmetry are inherited from δ1 and δ2, we

conclude that ∆ is a metric on the product.

Theorem 4.2.2. The S-divergence ∆2 is g-convex.

Proof. This result follows from g-convexity of δ21 and δ22. We compute

∆2((x1, x
′
1)#(x2, x

′
2), (y1, y

′
1)#(y2, y

′
2)) = ∆2((x1#x2, x

′
1#x′

2), (y1#y2, y
′
1#y′2))

= δ2(x1#x2, y1#y2) + δ2(x′
1#x′

2, y
′
1#y′2)

≤ 1

2
δ2(x1, y1) +

1

2
δ2(x2, y2) +

1

2
δ2(x′

1, y
′
1) +

1

2
δ2(x′

2, y
′
2)

=
1

2
(δ2(x1, y1) + δ2(x′

1, y
′
1)) +

1

2
(δ2(x2, y2) + δ2(x′

2, y
′
2))

=
1

2
∆2((x1, x

′
1), (y1, y

′
1)) +

1

2
∆2((x2, x

′
2), (y2, y

′
2)).
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Notice that this proof would not generalize trivially if we have a product of three

or more cones. In that case, we can define a product metric two-at-a-time recursively to

preserve g-convexity. However, the complexity might erase any benefit from using a metric

on the product.

In fact, notice that we do not need a product metric to perform optimization on the

product. Given a symmetric cone, it suffices to decompose it into its irreducible components

and perform optimization on each individually. Since its components do not interact with

each other, this approach is in fact optimal and allows parallelization. Therefore, we conclude

that even though a metric on any symmetric cone can be found, our results in Chapter 3 are

sufficient for optimization on all symmetric cones.

4.3 Embedding EJAs into real symmetric EJA

It is known that we can embed four out of five simple EJAs into the real symmetric EJA.

For example, the Hadamard EJA can be embedded as diagonal matrices, the Jordan spin

EJA can be embedded as arrow-shaped matrices, and the hermitian complex and quaternion

EJAs can be embedded as bigger real symmetric matrices. The results of [CCP16] were

exactly accomplished by embedding these four simple EJAs into symmetric matrices. Since

we are unlikely to encounter the Albert algebra in optimization, it is fair to ask whether it

is worth the trouble to adopt an EJA framework when we can generalize results to common

symmetric cones via embedding.

Our answer is an unequivocal “yes”. First, it is not clear that the embedding preserves

the geometric structure of the cone. For instance, in the second-order cone K ⊂ Rn+1, if we

set

Arw(x) :=

x0 xT

x x0In

 ,

which looks like an arrow when the block matrices are expanded. The multiplication of the
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second-order cone can be rewritten in terms of symmetric matrices multiplication as

x ◦ y = Arw(x)Arw(y)1V .

It turns out that the geodesic between x and y indeed coincides with the geodesic between

Arw(x) and Arw(y) after right multiplying 1V . But this requires proof, and we might have

to prove properties one-by-one just for the second-order cone, and we would need to repeat

for other irreducible symmetric cones. Such proofs using embeddings are typically tedious

and unenlightening because they provide little insight on the structural properties of the

cone itself (see [CCP16] for a taste). If we need to spend lots of effort proving something,

we might as well use the natural abstract framework to prove results for every symmetric

cone at once while gaining insights on their structure. After all, if we are content with

understanding everything by just piggybacking on existing results ill-fitted for the task, we

would be still stuck with the Plotemaic model of the universe, which would obscure most

insights about gravity and the nature of our universe.

Second, theory allows us to connect the dots and generalize. If we wish to study

important cones that are not necessarily symmetric, such as the power cones or the expo-

nential cones, we can potentially study them by investigating how we can relax symmetric

cone theoretical framework to describe these non-symmetric cones. By doing so we could

gain lots of insights that we otherwise would not gain just by studying these messy cones

individually. Embeddings have their limitations (as is in the case of Albert algebra), and it

is unclear whether we can embed all important objects we care about in optimization into

well-understood objects like matrices. If embedding ever fails and we do not have enough

theory to understand the object on its own, then we would be forced to develop the theory

anyway. We do not claim that adopting an abstract framework is essential for applications,

but in the long run it should accelerate research progress in applications and is therefore

time well-spent.

Third, in practice such as the implementation of primal-dual IPM, we never embed
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other cones into matrices because it would be a massive waste of computational resources

by artificially inflating the dimension of the problem; we instead optimize natively on these

cones by using the their idiosyncratic barrier functions. Therefore, embeddings are unnatural

even from a practitioner’s perspective and can make theory more confusing as opposed to

more accessible.

Finally, beyond insights there is also elegance and beauty in this unifying theory. It is

worth pursuing for the aesthetics alone.

4.4 Future directions

We outline some potentially fruitful endeavors that we could not pursue due to time

constraints.

4.4.1 Replacing Riemannian distance in SCP solvers

For optimization purpose, results from Chapter 3 are sufficient for justifying the use

of the metric δ derived from S-divergence as a numerical proxy for the Riemannian distance

ρ. An immediate next step is to replace the Riemannian distance used in any SCP solver

with this metric and compare the performance. We illustrate their computational difference

below.

The Riemannian distance has the following form on a symmetric cone:

ρ(x, y) =
∥∥log(Py−1/2(x))

∥∥,
where log is the spectral function induced by the usual log function, and ∥·∥ is induced by

the inner product from the EJA. In the case of positive definite cone, this requires matrix

multiplication and eigenvalue decomposition. However, to compute the determinant of a

positive definite matrix X, we can cheaply perform Cholesky decomposition X = LLT ,

multiply the diagonal entries of L, and square it since DetX = Det(L)Det(LT ) = Det2(L).

Depending on the dimension of the matrices involved, this could save a substantial amount
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of computation. Similarly in the case of second-order cone, recall from Example 2.2.12

that computing the quadratic representation in the Riemannian distance already involves

computing the determinant detx = x2
0−∥x∥2, so it is clearly more expensive than computing

the determinant alone.

In particular, the geodesic IPM proposed by Permenter [Per20] uses Riemannian dis-

tance to evaluate convergence. Therefore, if Riemannian distance computation happens to

be a bottleneck in Permenter’s algorithms, then replacing it with δ should allow us to see

significant performance gain. However, it may very well be the case that the Newton’s direc-

tion is much more expensive to compute than the Riemannian distance. In that case, δ still

has the theoretical advantage of being much easier to bound in convergence analysis. Indeed,

Permenter used a similar divergence called the Jeffrey divergence to bound the Riemannian

distance for this reason.

It is possible that as more optimization researchers adopt an EJA framenwork to study

SCP in the future, we might have more SCP solvers that substantially rely on the Riemannian

distance. Specifically, Then δ, as a computational and theoretically superior choice over the

Riemannian distance, can make these solvers more competitive against the primal-dual IPM.

4.4.2 Generalizing operator theory to symmetric cones

From a theoretic perspective, given the abundant parallelism among existing results,

we believe that there are a lot more results from operator theory that could be generalize

to symmetric cones but no one has done so due to its relatively niche status. There are

potentially low-hanging fruit suitable for undergraduate or graduate students interested in

operator theory to attempt. The optimization community will be very grateful.

4.4.3 Generalizing linear algebra to EJA

The Gershgorin Circle Theorem and related results have been generalized to EJA by

Moldovan’s PhD thesis [Mol09]. Many applications of the Gershgorin Theorem, such as
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diagonally-dominant-sum-of-squares (DSOS) optimization [AM19], can potentially be gen-

eralized as well.

In addition, the Jordan canonical form is a powerful tool from linear algebra and can

be generalized to EJA or in fact any power-associative algebra. Section VIII.3 of [FK94] has

a concise treatment of it, but there might be a lot more results than what the book offers.

Moreover, who would not want to see both Camille Jordan and Pascual Jordan honored in

the same phrase?

Finally, we are aware that this thesis barely scratches the surface of EJAs and sym-

metric cones. Therefore, in addition to [FK94] for symmetric cones, we highlight a book, A

Taste of Jordan Algebras by Kevin McCrimmon [McC04], for readers who wish to understand

EJAs from a highly abstract treatment of general Jordan algebras.
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