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This thesis surveys and creates methods to allow for a mathematically consistent treat-

ment of non-uniform data sources in machine learning and data compression. These methods

are fundamentally rooted in numerical methods for quadrature and interpolation, but are

leveraged with appropriate computational tools and techniques to adapt to their respective

domains and problem types.
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Chapter 1

Introduction

Non-uniform data sources are found throughout climate modeling, advanced partial dif-

ferential equation simulation and remote sensing. These sources can generate large volumes

of data, and hold important scientific insights about our world. However, non-uniformity

can destroy some of the regular structure that standard numerical techniques in machine

learning and other fields rely upon. This thesis covers advances in numerical methods for

non-uniform data sources. We call a data source non-uniform when it lacks the regular spac-

ing in it’s coordinate directions. We will work with data sources that have a non-uniform

spatial discretization but have a tensor product structure, which we call a non-uniform grid,

and also with those without a tensor product structure, which we call a non-uniform mesh.

Much of this thesis will focus on data compression, although in some cases there are other

applications as well, which we will address when appropriate.

Non-uniformly discretized data arise in many scientific applications. These discretiza-

tions can be chosen to better approximate functions of certain classes, to minimize compu-

tational cost or may arise naturally due to experimental sampling. Important examples of

numerical methods that exhibit non-uniform structure are sparse grids [120], finite element

methods [88], radial basis function interpolation [114], Gaussian quadrature [16] and Cheby-

shev interpolation [44]. These methods can be the origin of non-uniform data, if used in the

setting of a partial differential equation (PDE) simulation, or be used to manipulate non-

uniform data. Our data may live in 2D, 3D or in even higher dimensional spaces, depending
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on the nature of the problem. We will focus on the application of data compression for these

non-uniform data sources.

Data Compression Data compression began as a field concerned with the communi-

cation of information. Band-limited channels corrupted by noise [79] limited the information

rate of transmitted messages. In 1948, this motivated Shannon to consider the structure of

a message itself [95], and whether a message could be conveyed in fewer symbols with data

efficient representations.

The famous Shannon Source Coding Theorem [95] its concerned with a random source,

X, from which we can produce a sequence of i.i.d. variables X1, X2, . . . , Xn. These variables

take discrete values in a finite set of symbols X . This random source can then be evaluated

for Shannon entropy, H(X), which takes the value,

H(X) = −
∑
x∈X

p(x) log2(p(x)) (1.1)

here p(x) is the probability mass function and X is the set of possible values of X. We

can assign each symbol a bit string of fixed length, which allows for a naive encoding into

n⌈log2(|X |)⌉ bits, or ⌈log2(|X |)⌉ bits on average. Furthermore, H(X) ≤ log2(|X |), with

equality achieved when the distribution over the symbols is uniform. This hints at the

connection between encoding and entropy. The precise connection is in the Shannon Source

Coding Theorem [95]:

Theorem 1. Given a random source X with entropy H(X), it is possible to encode the i.i.d.

sequence X1, X2, . . . , Xn with n(H(X) + ϵ) bits for ϵ > 0. This original sequence is then

recoverable from the encoding with probability 1− ϵ.

A year later, Fano [26] devised a code which aimed to minimize the number of sym-

bols required to transmit a message with low entropy but was only asymptotically optimal.

Huffman perfected this code structure in 1952 [45]1 , and demonstrated that it is optimal for

1 As a term paper for Fano’s class, so the story goes.
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a message set with given frequencies. Since then there have been a couple different entropy

encoding schemes which can match or (marginally) exceed the efficiency Huffman’s optimal

code, in particular Arithmetic Range Coding [57] and Asymmetric Numeral Systems [23].

These entropy encoding techniques all deal directly with the compression of messages

encoded as symbols, but the data we are interested in is not always so neatly packaged.

Take the example of a PDE simulation, which may consist of petabytes of highly correlated

spatio-temporal patterns, all governed by a small system of equations.These simulations—if

directly interpreted as messages (with no regard for their spatio-temporal information)—

would not have their low entropy readily exploited by entropy encoders shown above. In

the remainder of this thesis we will explore the usage of linear and non-linear maps that

aim to make spatio-temporal patterns more compressible, and in particular we will focus on

non-uniform data sources, whose spatio-temporal patterns are harder to exploit than their

counterparts on uniform grids.

Content Guide The second chapter of this thesis covers a neural network layer

called “QuadConv” and was published in the Journal of Computational Physics [21]. The

third chapter outlines improvements to “QuadConv” that make it a more competitive and

efficient neural network layer. The fourth chapter introduces a more traditional data com-

pression framework called Mesh-Float-Zip which competes with state of the art scientific

data compression tools.



Chapter 2

Quadrature Convolutions

Kevin Doherty

Cooper Simpson

Stephen Becker

Alireza Doostan

2.1 Abstract

We present a new convolution layer for deep learning architectures which we call Quad-

Conv — an approximation to continuous convolution via quadrature. Our operator is devel-

oped explicitly for use on non-uniform, mesh-based data, and accomplishes this by learning

a continuous kernel that can be sampled at arbitrary locations. Moreover, the construction

of our operator admits an efficient implementation which we detail and construct. As an

experimental validation of our operator, we consider the task of compressing partial differ-

ential equation (PDE) simulation data from fixed meshes. We show that QuadConv can

match the performance of standard discrete convolutions on uniform grid data by comparing

a QuadConv autoencoder (QCAE) to a standard convolutional autoencoder (CAE). Fur-

ther, we show that the QCAE can maintain this accuracy even on non-uniform data. In

both cases, QuadConv also outperforms alternative unstructured convolution methods such

as graph convolution.
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(a) 3D point cloud [100]. (b) Surface mesh [11]. (c) NACA 0012 mesh [98].

Figure 2.1: Examples of non-uniform data.

2.2 Introduction

Discrete convolutions are one of the canonical operations used in numerous deep learn-

ing applications such as image classification, object detection, semantic segmentation, etc.

They have been proven to be effective in extracting important features from data, and they

possess a number of desirable properties such as translation equivariance. In particular,

when used with compactly supported kernels of fixed size, this facilitates the extraction of

local features from the data and provides a significant boost to computational efficiency

compared to a (square) fully-connected layer, reducing time complexity from quadratic in

the input size to linear and memory from quadratic to a constant [37]. The effects of this are

significant: each training epoch is faster, less overall training is required, and often results in

better generalization with fewer parameters. However, these standard discrete convolutions

rely on the assumption that the data is defined on a uniform grid. This limitation is unfor-

tunate, as there are a host of settings where convolutions may be effective, but the relevant

data is non-uniform; Fig. 2.1 shows a few representative examples.

In this paper we introduce a quadrature-based discrete convolution operator suitable

for arbitrary meshes, which we call QuadConv. Our construction is based on the continuous

definition of convolution, which, for two functions f, g : RD → R, is given by

(f ∗ g)(y) =
∫
RD

f(x) · g(y − x) dx. (2.1)
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A variety of conditions on f and g can guarantee this integral is well defined, e.g., Young’s

Inequality, or, of particular relevance here, if f and g are compactly supported. Note that

we use the term quadrature to refer to a weighted sum approximation of an integral. Some

authors make a distinction between one dimensional quadrature and higher dimensional

cubature which we will not employ. In general, our method is applicable to data on a mesh,

which is a set of nodes with arbitrary non-intersecting connections. Within this setting, we

will consider two particular sub-types of data: uniform grids and non-uniform meshes. The

latter explicitly requires the nodes to be non-uniformly distributed in space. Our proposed

method is mathematically quite simple, but, as we will see, is non-trivial to implement

efficiently.

We will denote vectors using lowercase bold font (e.g., x), and matrices or operators

using uppercase bold font (e.g., X). We will often refer to g as the kernel and f as the data.

This distinction is important in this context, as the data, f , is given (and hence known only

on the mesh nodes) and the kernel, g, is a learned map. Where appropriate, continuous

functions will be referred to with an argument from their domain in parenthesis, f(·) or

f(x), and its discrete counterpart will be referred to as f(xi), or, if the arguments are clear

from context, with an index fi.

To summarize our contributions, we propose a novel convolution operator for deep

learning applications that is suitable for data on a non-uniform mesh. In addition to this, we

discuss the practical implementation of our operator, showing that it is a computationally

feasible approach. Lastly, we present the application of our work to autoencoder based data

compression. We show that it matches the effectiveness of standard convolutions on uniform

grid data, and performs equally well on non-uniform data.

In the remainder of this section we focus on motivating our approach and discussing

the related literature. Section 2.3 will then introduce our mathematical formulation, with

Section 2.3.1 describing the practical implementation. In Section 2.4 we apply our method

to a number of datasets on uniform grids and non-uniform meshes. Section 2.5 summarizes
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our work and presents possible directions for future research.

2.2.1 Motivation

The standard convolution operator used in deep learning is a particular discretization

of Eq. (2.1) operating on D-dimensional tensors. For example, for a single output and input

channel, the one dimensional form is given as follows:

(f ∗ g)j =
∑
i

fi · gj−i (2.2)

along with appropriate boundary conditions. This discretization is mathematically justified

as long as the points are equally spaced, and is drawn from the definition of convolution

for functions defined on Z, which is the same as Eq. (2.2) up to notation. The following

example will demonstrate how using Eq. (2.2) in the mathematically justified setting can

yield accurate results, how this accuracy breaks down on non-uniformly spaced points, and

how our proposed method fixes these issues. To that end, consider the following 1D functions:

f(x) = sin(πx) + sin(14πx) and g(x) =
8 sin(8πx)

πx
,

where f is a signal composed of low and high frequency sine waves, and g is the ideal low-pass

filter whose action under convolution will remove the higher frequency from f . In Fig. 2.2a

we can see the result of this convolution computed analytically according to Eq. (2.1).
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(a) Analytic convolution of continuous kernel and signal.
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(b) Discrete convolution of uniformly sampled signal and kernel.

Figure 2.2: Comparison of continuous and discrete convolution.



9

1.0 0.5 0.0 0.5 1.0
2

1

0

1

2
Non-Uniformly Sampled Signal

1.0 0.5 0.0 0.5 1.0
2

0

2

4

6

8
Uniformly Sampled Kernel

1.0 0.5 0.0 0.5 1.0
40

20

0

20

40
Discrete Convolution

(a) Discrete convolution with uniformly sampled kernel.
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(b) Discrete convolution with continuous kernel.
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(c) Quadrature-based convolution with continuous kernel.

Figure 2.3: Comparison of discrete convolution and quadrature-based convolution on a non-

uniformly sampled signal.

In Fig. 2.2b, one can observe the normal usage of the discrete convolution, Eq. (2.2),

with uniformly spaced grid points, and note that its result closely matches the continuous

baseline. Figure 2.3, on the other hand, considers the results of a number of convolution

type operations when the input signal is sampled in a non-uniform manner. Figure 2.3a
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visualizes the results of discrete convolution if we sample the data at non-uniform locations,

but continue to use the uniformly sampled kernel. This result only vaguely resembles the

analytic output, in part because the kernel isn’t sampled at the correct locations. The

discrete convolution of Fig. 2.3b employs a continuous kernel that can be sampled wherever

necessary and performs markedly better. That is to say, the continuous kernel can be

evaluated at any point y − xi, where we have chosen the output points y to be uniform

for visualization purposes. However, the use of a continuous kernel alone is not sufficient to

accurately approximate the analytic convolution. Instead, in this work, we propose modeling

the kernel, g, as a continuous function and performing the calculation of discrete convolution

as a quadrature approximation of Eq. (2.1). This yields the results we see in Fig. 2.3c. As

we detail in Section 2.3, the method we propose includes quadrature weights ρi in Eq. (2.2)

along with a continuous kernel g(·), so that our 1D equivalent would be the following:

(f ∗ g)(y) ≈
∑
i

ρi · f(xi) · g(y − xi). (2.3)

The combination of the continuous kernel and the reduction of integration error gives us the

best approximation of the operation we wish to perform. Although this example presumes

a fixed continuous kernel, as opposed to a learned kernel, it demonstrates the fundamental

problem of naively applying convolutional kernels to discrete data on non-uniform points.

2.2.2 Related Work

Graph convolutions Graph convolutions are perhaps the most widely used con-

volution method for non-uniform data, applicable when the data has a readily available

adjacency structure. For a full review of the relevant methods we refer the interested reader

to [117]. In general, these methods are either spectral or spatial. Spectral graph convolu-

tions perform convolution in the Fourier domain, computing the convolution as a point-wise

product of two signals, whereas spatial graph convolutions work in the spatial domain di-

rectly. Graph convolutions do not always have clear connections to standard convolution;
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in particular, one cannot down-sample the input directly. Thus, graph convolutional neural

networks (GCNNs) rely on pooling methods for down-sampling the number of nodes in an

arbitrary graph. Significant effort has been put into graph pooling operators from a variety

of perspectives [66], but note that not all of these have an associated unpooling operator.

Many methods remove edges [41] or nodes [86, 32] via a (possibly trainable) score function

based on graph features. Other methods create a new down-sampled graph by clustering

groups of nodes [103], where the cluster assignment can be accomplished in numerous ways.

Fundamentally, since graph convolutions use only adjacency structure, they do not

exploit the full knowledge of non-uniform data. For example, recall the 1D example of the

previous section. In 1D, all grids (uniform or not) of the same number of nodes will have

the same adjacency structure, so graph based methods could not distinguish uniform from

non-uniform samples. This makes them less suitable for spatially embedded data, where the

coordinates of the points can be used in addition to the graph structure. In Section 2.4 we will

compare against graph convolutions using standard max-pooling by leveraging information

outside of the adjacency structure. Effectively, this provides a best case scenario for GCN,

and avoids employing more complicated pooling methods.

Point cloud convolutions There are numerous approaches to convolution for spa-

tially embedded data, owing to the availability of point cloud data from LiDAR measure-

ments [39]. Some of these methods voxelize the input data and perform convolution on the

resulting voxels [116]. This often results in significant sparsity which can be taken advantage

of for reasonable computational complexity. However, it eliminates the application to many

non-uniform problems, if, for example, maintaining variable point density is desirable, as is

commonly done to resolve boundary layer effects in fluid problems. The PointNet architec-

ture [84] pioneered the use of shared Multi-Layer Perceptrons (MLPs) operating directly on

the points themselves. Hybrid methods, such as [104], have shown great success by combin-

ing a voxelized convolution branch with a point-based branch. Other methods may perform

convolution directly on the points by various methods such as utilizing MLPs to define the
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convolutional kernels over all the necessary locations [10] or changing the definition of con-

volution to adapt to the irregular domain [118, 56]. We believe the most similar of these

approaches to our work is PointConv [115], which attempts to approximate the integral via

Monte Carlo integration. However, we approximate the integral via quadrature and since

typical meshes are in three dimensions or less, quadrature is typically superior to Monte

Carlo. In general, point cloud methods allow for spatial locations to change from sample to

sample; in contrast, our method explicitly takes advantage of a static mesh.

Continuous convolutions Continuous convolution operators have been investi-

gated for some time, motivated by a variety of use cases including non-uniform input data,

arbitrary kernel sizes, and multi-resolution learning. These methods vary widely in their

choice of continuous domain, how their kernel is parameterized, and how the operator is

constructed. The 2017 work of [96] generates kernels for graph convolution via continuous

edge labels. The use of an MLP that maps from coordinates of spatially embedded data to

parameterize the kernel was introduced in [112]. This approach is also used in [89, 90, 91]

to construct arbitrarily sized kernels for efficiently modeling long range dependencies. Other

parameterization approaches for the kernel have also been considered. SplineCNN [28] uses

a set of B-Spline basis functions. S4ND [78] constructs a global kernel via a Kronecker

product of sampled one-dimensional convolution kernels created as a linear combination of

hand-picked basis functions (e.g., sine and cosine). The work of [53] learns both the locations

and values of a discretely sampled kernel. The kernel value at an arbitrary query point is

then constructed based its local samples. During the preparation of this paper, the work of

[15] was made available, which also represents the kernel as an MLP and learns it from data.

The authors seek to develop an operation which resembles standard convolutions as much

as possible, while still being applicable to non-uniform data. The key difference between the

continuous convolution operators discussed so far and our own is the addition of quadrature

to weight our finite sum.

General applications There are many applications where the density of points is
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directly related to the underlying data and can be used to achieve more accurate convolution

integrals than the standard convolution discretization. Non-uniform meshes are prevalent in

PDE simulations, where nodes may be concentrated in areas where the PDE solution has a

large gradient, such as near the boundary.

Compression of scientific data The simulation of PDEs can create immense

amounts of data, which then requires compression in order to store on disk for later sci-

entific usage. While more classical methods exist for both lossless [65] and lossy compression

[64, 17] for these types of datasets, they are largely limited to uniform grids or lose efficiency

when applied to non-uniform data. Compression of PDE simulation data with convolutional

autoencoders, has proven to be effective on uniform grids achieving high compression ratios

(in excess of 100×) with low reconstruction errors [33, 74].

Other scientific applications In addition to data compression, convolutional neu-

ral networks have been utilized in PDE super-resolution methods [101] and reduced-order

modeling [75, 59]. All of these techniques could benefit from a generalization of standard

convolution to the non-uniform meshes commonly found in PDE simulation data.

2.3 Methods

We will begin by discussing the construction of our discrete convolution operator,

and then describe the details associated with a practical implementation. Our approach,

QuadConv, will be to approximate Eq. (2.1) via quadrature, so denote the nodes as xi and

the weights as ρi, for i = 1, . . . , N , and then consider the following approximation:

(f ∗ g)(y) ≈
N∑
i=1

ρi · f(xi) · g(y − xi). (2.4)

We employ the following form for our kernel function g:

g(z) = bump(z) · h(z;θ), (2.5)
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where θ are learnable parameters for some function h : RD → R. The definition of the bump

function is then given below for some α > 0:

bump(z) =


exp

(
1− 1

1−(∥z∥/α)4

)
∥z∥ < α

0 else

. (2.6)

We observe that α, which is set manually, allows us to control the support of g, and therefore

the effective size of the kernel. As discussed earlier, this compact support is desirable because

we seek to extract local features from the input data. It also has the important consequence

of significantly reducing the computational overhead, which we will see in more detail in

Section 2.3.1. When setting α in practice, we can take the same approach as standard

discrete convolutional layers where 3 × 3 kernels are often preferred in 2-dimensions since

multiple layers with smaller kernels can replicate the effect of a larger kernel size. Similarly,

we prefer smaller compact supports to larger ones which saves computation and allows us

the same flexibility when layers are composed. When the domain is non-uniform we set α

based on the average number of points inside the compact support.

We have written equation Eq. (2.4) as a single sum based on the direct quadrature

approximation of Eq. (2.1), but this can also be viewed as an iterated integral and a cor-

responding iterated sum. For example, in two dimensions we could let x = (x1, x2) and

y = (y1, y2) to rewrite Eq. (2.4) as:

(f ∗ g)(y1, y2) ≈
N1∑
i=1

N2∑
j=1

ρij · f(x1i , x2j) · g(y1 − x1i , y2 − x2j), (2.7)

where we have quadrature weights ρij for i = 1, . . . , N1 and j = 1, . . . , N2. In fact, if the

points lie on a uniform grid, then using the two-point composite Newton-Cotes quadrature

recovers standard convolution. Such a choice of quadrature yields weights ρij = 1/4, and

equates to using the trapezoidal rule along each dimension. This constant weight can then

be absorbed into the learned kernel, producing the simple finite sum we see with standard

convolutions.
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The specifics of the quadrature (i.e., the nodes and weights) is a question so far un-

addressed. In general, we consider the nodes to be given as part of the input data. In

other words, the quadrature nodes are fixed by the locations at which the input signal f is

evaluated. In many scenarios the weights can be readily computed on the fly. For example,

if the input points are on a uniform grid, then the operator may use Newton-Cotes weights.

For data from FEM based simulations it is possible to construct node based quadrature

weights from individual element quadrature evaluations, but this is a somewhat complicated

procedure that could incur significant computational overhead and furthermore the usual

quadrature construction depends on the kernel. Because we already expect to learn the

kernel (i.e., θ) from data, perhaps the easiest option is to learn the quadrature weights as

well. When we learn the quadrature weights we ensure they are strictly positive in order to

avoid catastrophic cancellation and resulting loss of precision [76].

Figure 2.4 visualizes, in two dimensions, the difference between the standard discrete

convolution and our quadrature convolution. The standard method uses a grid based kernel

(3 × 3 in this case) that slides across the spatial dimensions of the domain to compute the

output values. However, when one moves to a non-uniform mesh, this operation no longer

applies. On the other hand, the quadrature method computes the output values using mesh

nodes that lie within the compact support (translucent red circle) of the kernel, and so it is

agnostic to the underlying mesh structure.

Analytic convolutions (Eq. (2.1)) are equivariant to continuous translations, and their

standard discretization (Eq. (2.2)) inherits this property in a discrete sense. In mathematical

terms, if T is some translation operator (Tf)(x) = f(x− t), then the following holds:

T (f ∗ g) = (Tf) ∗ g = f ∗ (Tg),

or, more plainly, the output of the convolution is translated equivalently to the translation

of its input. In image classification, for example, this property is desirable because features

should be invariant to placement in the image. Because QuadConv approximates contin-
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(a) Discrete convolution with 3x3 kernel on uni-
form grid.

(b) QuadConv with α compact support on non-
uniform mesh.

Figure 2.4: Comparison of discrete convolution and QuadConv.

uous convolution, it is approximately equivariant, up to the accuracy of the quadrature.

As features move through the domain, the output of the QuadConv layers will vary by

approximately the same amount as the original data.

So far, we have only considered scalar valued inputs to the convolution operator, but it

is necessary to extend this to a multi-channel (i.e., vector) setting. Standard deep learning

convolutions accomplish this by stacking multiple kernels into a filter, and then applying

multiple filters to the input data. We will adopt a similar approach. Define G : RD → RC̃×C

as a map from a point to a matrix, which we interpret as a stack of filters. Despite the

incongruence in vocabulary, we will refer to G as a filter. Now, we consider f : RD → RC

as our vector valued input, and the quadrature convolution is given as:

(f ∗G)(y) =
N∑
i=1

ρi ·G(y − xi) · f(xi), (2.8)

where we can easily observe that the output lies in RC̃ . The filter G is parameterized by θ

according to the multi-channel extension of Eq. (2.5):

G(z) = bump(z) ·H(z;θ), (2.9)

where H(·;θ) : RD → RC̃×C . The form of the bump function remains unchanged, and thus

we see that G may be close to 0 depending on the location it is evaluated at. We may also
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note that the dimension, D, of the data was arbitrary, so our operator can easily be applied

to data in any dimension.

2.3.1 Practical Computation

The methodology we have developed so far is the foundation of our proposed convo-

lution operator, but certain aspects of the implementation are as of yet unclear. Further,

specific elements of the computation must be leveraged to achieve any reasonable level of

efficiency. We will discuss the practical implementation of the quadrature-based convolution

operator, and consider its asymptotic computational complexity.

In general, we consider input in the form of a tuple (X,F ), whereX ∈ RD×N represents

the mesh consisting of N points in D-dimensional space, and F ∈ RC×N are the associated

features with C channels. For example, a 3D flow field would have three channels; one each

for the velocity along each dimension. For a training dataset with T training samples, the

input will be ((X,F t))
T
t=1, meaning that all samples share the same mesh. For a practical

implementation of the current version of QuadConv we require a single fixed input mesh.

If we were to allow the mesh to vary, it would significantly increase the cost of learning

quadrature weights for each node, and negate the speedups obtained via caching, which is

discussed later in this section.

The QuadConv operator, which we will denote as Q, acts in the following manner:

(X,F )
Q−→ (Y , F̃ ),

where Y ∈ RD×Ñ are Ñ output points, and F̃ ∈ RC̃×Ñ are the recovered features with

C̃ channels. As with standard convolutions, there are a number of architectural decisions

that must be made manually by the user, and each comes with a variety of trade-offs.

Similar to standard convolutions, the practitioner is left to specify the number of output

channels. Unlike standard convolutions, where the number of output points is determined as

a combination of various hyperparameters such as stride and padding, the number of output
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points and their coordinates are directly specified when using QuadConv. Due to this, our

method easily facilitates up-sampling or down-sampling, i.e., increasing or decreasing the

number of points in the domain, and can maintain non-uniform point density. This is due

to the continuous kernel being defined at all points inside the domain which maximizes our

re-sampling flexibility — this means there are no inherent constraints on the output points of

a QuadConv layer. Thus the process by which the output point coordinates are computed is

an important decision factor. In the simplest case, assuming the geometry is Cartesian, they

can be placed on a uniform grid. A more sophisticated strategy would involve coarsening the

underlying mesh via agglomeration, e.g., [13], to construct the output points directly from

the input points. The actual computation by Q via Eq. (2.8) is given below:

Q[X,F ]j = (Y , F̃ )j =
(
yj,

N∑
i=1

ρi ·G(yj − xi) · fi

)
, (2.10)

for j = 1, . . . , Ñ . Note that yj and fi are the jth and ith columns of Y and F , respectively.

Recall from Eq. (2.9) that H provides us with the learnable map from a point to a matrix.

Our method, in general, is agnostic to the form of this map, but for the sake of efficiency we

opt for a single MLP, G : RD → RC̃×C. There are many other possible choices, such as using

multiple MLPs which are shared among input/output channels or are entirely independent.

As noted earlier, depending on their evaluation location, the approximationG ≈ 0may

hold for many of the filters, allowing the implementation to take advantage of the sparsity of

the sum in Eq. (2.8) in order to avoid undue computation. The set of index pairs i and j for

which the function bump(yj−xi) is nonzero generates a map of the form j 7→ {ik}, meaning

that for each output location index j, there is a set of input indices {ik} that contribute to

its value. Figure 2.5 visualizes how this map can be used to implement Eq. (2.10).

This entire process can be executed efficiently in a vectorized manner as the individual

operations are independent, and for any given output index j the sum that determines its

features is over far fewer indices i than would otherwise be the case, just as in the standard

discrete case. Assuming that the input and output locations are static, then the maps
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Figure 2.5: QuadConv computation. The output value at index j = 2 depends only sparsely on
the input values, e.g., there is no dependence on the input value at index i = 2.

j 7→ {ik} can be computed once as a pre-processing step and cached for future use. Doing

so avoids the costly construction of the maps themselves, which significantly improves the

execution time of the convolution operator.

Table 2.1 shows the computational complexity for the forward pass of QuadConv com-

pared to standard discrete convolutions. For QuadConv, we split the complexity into the

construction step for the index map, which needs only be computed once for the entire

dataset and hence is amortized, and the actual quadrature convolution computation. This

helps to highlight the impact of caching on the overall performance. During training, there

is also cost due to the backward pass in automatic differentiation, which we assume is on

the same scale as the cost of forward pass.

The variables {C,N}in and {C,N}out are the input and output channels and points,

respectively. We consider a standard convolution with kernel size K, and for QuadConv, we

consider a sparsity factor S, the average number of nodes inside the support of the kernel

G, which is dependent on the radius α of the bump function and the local point density.

The variables Mt and Mm denote the time and memory complexity for the chosen filter

operation (i.e., MLP). Note that Mm has an implicit weak dependence on Cin and Cout, as
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the output of the filter operation is some Cin × Cout matrix. When considering the peak

Standard QuadConv

Convolution Index Map

Time KNoutCinCout SNoutCinCout +MtSNout NinNout

KNC2 SNC2 +MtSN N2

Peak Memory KCinCout Mm + CinCout SNout

KC2 Mm + C2 SN

Table 2.1: Big-O comparison of standard discrete convolutions and QuadConv. The second
row of the time and memory blocks takes Nin = Nout = O(N), and Cin = Cout = O(C) in
order to facilitate comparisons. The index map only needs to be computed once for a given
mesh.

memory consumption, we do not include the requirements for the input or output data, as

that is common to all three methods.

One may observe a number of important details from Table 2.1. With respect to Quad-

Conv, we see that sparsity is extremely important. Just as in standard discrete convolution

the local support, or sparsity, of the operator reduces the complexity to SNout for a sin-

gle input/output channel, where typically S ≲ 10, down from NinNout without exploiting

sparsity. From the last column, we can see that because the index map construction must

look at all input-output point pairs, it is an O(N2) operation — producing the SNout in-

dices needed for the forward pass of QuadConv. This is the fundamental trade-off: caching

as a pre-processing step saves significant computation time in return for a larger memory

footprint.

2.4 Numerical Experiments

We have implemented QuadConv using PyTorch [82] and Lightning [25], available as

an open source Github repository [19]. The code and datasets directly associated with this

paper, and capable of recreating our results, can be found in [20]. This section shows a
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number of experiments that validate our method of convolution as an effective tool in deep

learning. In particular, we perform data compression of PDE simulation data using an

autoencoding neural network. First, we start with data on a uniform grid (Section 2.4.1)

so that we can establish a baseline of performance by comparing our method to standard

discrete convolution. We then interpolate this dataset onto a non-uniform mesh and show

that QuadConv still performs just as accurately as with the uniform mesh (Section 2.4.2).

Finally, we consider a different dataset which was simulated on a non-uniform mesh, and

show that our operator continues to facilitate high reconstruction accuracy at large levels of

compression (Section 2.4.3).

Figure 2.6 provides a high-level visualization of our neural network architecture. The

raw input data is passed through the encoder, which is comprised of a (Quadrature) Convo-

lutional Neural Network ((Q)CNN) that progressively down-samples the number of points

and increases the number of channels, and an MLP which outputs the latent representation

z. This latent vector is the compressed state of the data. To reconstruct, one simply per-

forms the reverse operation using the decoder. An MLP is applied to the latent state z, and

then a (Q)CNN up-samples the data.

We use a randomized non-contiguous 80/20 split of our data into a training and testing

sets. For data compression where all of the data is available at the time of compression, all

of the data is available for training and generalization is not important. In more typical

machine learning applications the generalization of the model is the most important metric.

We evaluate our metrics over the entire dataset (both testing and training), and we also

include the maximum error over the entire dataset to capture the generalization of the

operators.

Our autoencoder aims to minimize the empirical risk of a regularized mean-squared

error loss between F t and F̃ t,

L(F t, F̃ t) = ∥F t − F̃ t∥2HS + λR(F t, F̃ t), (2.11)
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MLPQCNN

Encoder
Latent
Rep.

MLP QCNN

DecoderInput Reconstruction

Figure 2.6: Autoencoder structure.

where t = 1, . . . , T indexes the time dimension of the (time-dependent) PDE simulation and

∥F t∥HS =
(∑

ij |F t
ij|2
)1/2

is the Hilbert-Schmidt (aka Frobenius) norm. Our regularization

term R(F t, F̃ t) in the uniform grid case is the mean-squared error between finite difference

derivatives of F t and F̃ t (i.e., the Sobolev norm). In our non-uniform examples the deriva-

tives are more difficult to define so we do not use any regularization. The final error we

report is the time-averaged relative Frobenius-norm,

1

T

T∑
t=1

∥F̃ t − F t∥HS

∥F t∥HS

. (2.12)

Our data is represented with 32-bit floating point numbers (single precision) [47], and all

training and evaluation was performed with single precision numbers. For the purposes

of this discussion, we define the compression ratio as the ratio between the dimension of

the raw and compressed data. Since we only compress the data in spatial dimensions, this

corresponds to the size reduction of any individual spatial sample. For example, raw data on

a 10× 10 grid compressed to a latent space in R10 would correspond to a compression ratio

of 10. We do not consider the storage of the decoder itself, as this has negligible contribution

to the compression ratio as T → ∞; as we’ll show in Table 2.3, storage of the encoder and

decoder together is just a few megabytes.

All experiments were conducted on 4 V100 GPUs and 1 IBM Power9 CPU with the

Adam [54] optimizer. Nearly all experiments used a batch size of 8 under a distributed data

parallel training strategy, except for the SplineCNN networks which use a batch size of 1.
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The SplineCNN steps are noted with an asterisk in each of the tables that follow but the

other experiments each correspond to the same amount of data processed per step.

2.4.1 Uniform Grid Ignition Data

This dataset consists of 450 uniformly sampled time steps of a jet ignition simulation

that lie on a uniform spatial grid of size 50×50. The wavefront is fully resolved in time. This

dataset is transport dominated for the initial portion of the simulation until the jet flame

reaches steady state. Figure 2.7, with a latent state z ∈ R50, describes the model architecture

used on the dataset in question — resulting in a compression ratio of 50. Because the input

points are already on a uniform grid, we can use the two-point composite Newton-Cotes

quadrature [3] weights for the QuadConv layers. This matches the quadrature interpretation

of the CNN which gives a very direct comparison of the QuadConv layer to the standard

convolution layer. We refer to that QuadConv experiment as “Static Weights” in Table 2.2.

We also perform the same experiment with quadrature weights as parameters of the neural

network, with the hope that the training process can learn a quadrature which is more

tailored to the dataset (the “Learned Weights” experiment). In our neural network, the max

pooling layer handles the downsampling, so the input and output points for the QuadConv

layers are identical.

In addition we compare to a few alternatives: a Proper Orthogonal Decomposition

(POD) over 50 basis vectors [8], a graph convolutional network (GCN), and a SplineCNN

[28] network. We choose to use the particular graph convolution operation presented in [55],

(Quad)
Conv Flatten Linear(Quad)

Conv
Max
Pool

(Quad)
Conv LinearCELU CELU CELU CELU

Figure 2.7: Max-pooling based encoder structure. The linear layers comprise the MLP. The
decoder is similarly structured, but mirrored to up-sample.
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which is an approximation of the full spectral graph convolution operator. In practice, many

implementations of graph neural networks exhibit instabilities and large maximum errors,

the latter of which we observe in the Table 2.2. SplineCNN utilizes a continuous kernel

which operates on the attributes of the edges given in pseudo-coordinates as well as the

adjacency structure of the data. In both examples we circumvent the complexity of graph

pooling operators and make the comparison more direct by using the max pooling operator

as defined on a grid as the pooling operator. Both the GCN and SplineCNN share the same

structure as Figures 2.6 and 2.7, also with z ∈ R50.

Model Type Average Error Max Error Training Time (h) # of Steps # of Trainable Parameters

POD (50 Basis Vectors) 1.37% 17.3% N/A N/A N/A

Conv 0.42% 10.7% 1.46 186,000 1,024,718

GraphConv 0.52% 9.1% 2.64 315,360 1,016,206

SplineCNN 0.65% 10.7% 13.85 2,728,080* 1,025,710

QuadConv (Static Weights) 0.63% 2.3% 3.91 186,000 1,035,310

QuadConv (Learned Weights) 0.49% 1.2% 9.25 290,243 1,040,310

Table 2.2: Autoencoder results for uniform grid ignition data compression at 50× compression.

Conv GraphConv SplineCNN QuadConv (Static) QuadConv (Learned Weights)

Model Size (MB) 3.98 3.95 4.88 4.08 — 13.73 (Cached) 4.08 — 13.73 (Cached)

Inference Time (ms) 2.83 8.98 4.86 8.63 8.55

Table 2.3: Inference time and model size for all autoencoders on a uniform grid.

We can see in Table 2.2 that the CNN and QCNN indeed have very similar average

performance, although the QCNNs take longer to train. Learning the quadrature weights

provides a slight advantage for the average reconstruction error and a large improvement in

the maximum error, though it comes at the cost of a longer training time to converge relative

to the static quadrature. We see that the GCN has competitive average reconstruction

error but the worst maximum error. While increased training time when using QuadConv

is to be expected, at roughly 2.7× for the static quadrature, it is not prohibitively more

costly. Furthermore, the implementation of standard discrete convolution in PyTorch [82]
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is exceptionally well optimized, while QuadConv has room for improvement. Even at these

relatively high compression ratios, we see few readily visible errors in the data in Fig. 2.8 at

selected time points. The error visualization at the bottom compresses the color scale by an

order of magnitude in order to better expose the error that is present.
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(a) CNN compression.
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(b) QCNN compression.

Figure 2.8: Comparison of CNN and QCNN ignition data reconstruction. Note that the bottom

row has a rescaled color bar.
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Figure 2.9: Error analysis of CNN for the uniform grid ignition data.
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Figure 2.10: Error analysis of QCNN with learned quadrature weights for the uniform grid ignition

data.

We conduct a further error analysis to understand relative performance in Figs. 2.9

and 2.10, which more clearly shows the similarity of performance between the CNN and the

QCNN. This shows the distribution of the absolute errors are similar, as well as the relative
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error histogram, which helps to identify at what absolute pixel values large relative errors

occur. The GCN Fig. A.1 and SplineCNN Fig. A.2 have a similar mean absolute error to the

CNN and the QCNN but the relative error histograms reveals the larger maximum errors,

which can be found in the appendix.

2.4.2 Non-Uniform Mesh Ignition Data

To maintain a benchmark of performance we interpolated the ignition data with 2D

splines and evaluated the interpolant on the non-uniform mesh shown in Fig. 2.11a. This

mesh contains 2189 points, more concentrated in the middle and the right-side of the domain,

and was generated with dmsh [94]. In order to evaluate the error introduced during the

interpolation and subsequent re-sampling on the non-uniform mesh, we re-interpolated the

data from the non-uniform mesh and compared it to the original data from the uniform

grid. Using the same relative Frobenius-error averaged over all data samples, we found the

interpolation process introduced 0.122% error into the data.

For this experiment, we continue to use a latent state z ∈ R50, but our model varies

slightly from Section 2.4.1 in the first and last QuadConv layers, although Fig. 2.7 still

describes the general structure. Because the input data is on a non-uniform mesh, the first

QuadConv layer learns the quadrature weights and re-samples to a uniform grid. Doing

this also allows us to use the max pooling operation and its adjoint to up-sample and down-

sample, respectively. It should be noted that after re-sampling the data to a uniform grid and

before sampling back to a non-uniform mesh, one could employ standard 2D convolutions.

This is certainly a valid approach, but in this work we are seeking to validate the QuadConv

operator itself, and not necessarily trying to optimize the architecture. The rest of the model

remains unchanged until the last QuadConv layer in the decoder, where the data is sampled

from the uniform grid back to the original non-uniform mesh.

The GCN and SplineCNN in this experiment must similarly adapt their pooling layer

to be well-defined on the non-uniform data. We use the KNN pooling operator found in [27]
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to interpolate the data from the mesh (after a graph convolution operation) back to a grid.

This allows us to use the max pooling operator as defined on a grid just as in the QCNN.

We use the KNN unpooling operator in [27] to then move back to the mesh in the second to

last layer in the network. While there are other graph pooling operations, this is what we

believe to be the most direct comparison possible with readily available software.

We will also compare against two other methods for dealing with the non-uniformity

of the mesh data. First, we consider a voxel model, which is identical to the standard

convolutional model used in Section 2.4.1 except that the input data is voxelized. That is

to say, before the input data is passed through the network, it is aggregated onto a uniform

grid. The inverse of this process, de-voxelization, is then applied after processing and before

computing evaluation metrics. The second model we consider is a point-voxel model. This

pairs the voxel model with a point-based branch where shared MLPs are applied directly

to the point features themselves. See [84] and [104] for more details. As we can see in

Model Type Average Error Max Error Training Time (h) # of Steps # of Trainable Parameters

Voxel 2.789% 5.18% 0.66 120,000 1,015,222

Point-Voxel 0.956% 13.41% 1.17 120,000 1,021,163

GraphConv 0.730% 21.14% 2.98 450,000 1,016,206

SplineCNN 0.597% 8.54% 19.34 3,600,000* 1,025,710

QuadConv 0.596% 2.05% 13.50 450,000 1,037,499

Table 2.4: Results for non-uniform ignition data compression.

Table 2.4 and Fig. 2.11b, the QCNN produces similar accuracy as on the uniform grid.

This suggests that our approximation is performing well over the non-uniform data found

in the center of the domain, since we do not see an increase in error due to the change in

the underlying structure of the data. Error histograms are similar to those in the uniform

grid case and can be found in A. While the voxel model trains quite quickly, we can see

that it is by far the worst performing method. This should not be altogether surprising, as

the de-voxelization process introduces a hard lower bound on the reconstruction accuracy
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because mesh points within the same grid cell will necessarily have the same features. On the

other hand, the point-voxel model is able to achieve comparable average error to QuadConv,

but its maximum error is quite high to due its poor generalization to the test data. This

speaks to QuadConv’s ability to match and even exceed other state-of-the-art methods for

operating on non-uniform data. Importantly, we note that the shared MLPs of the point

branch place a limit on how small a point-voxel network can be. Thus, such a method may

not be suitable for data compression in a general setting. Finally, the GCN exhibits the

same high maximum error as in the previous test case on the grid while performing well on

average. While the SplineCNN is the best of all previous methods, its maximum error is still

6% higher than QuadConv.

2.4.3 Non-Uniform Mesh Flow Data

While the ignition examples are informative for verifying the performance of the Quad-

Conv layer in comparison to standard convolution, the non-uniform mesh is not native to

the data. We consider here an example of fluid flow around a cylinder at Reynolds number

Re = 100 in a channel. This PDE simulation was conducted on the non-uniform mesh shown

in Fig. 2.12. This dataset has 300 time points and the streamwise velocity at 7613 nodes in

the domain.

This data is not as transport dominated as the jet ignition data, and, as a result, it

is less challenging to compress. Our model is also substantially changed from the previous

experiments. While we have thus far performed a 50× reduction in the data, this example

has a latent state z ∈ R15, which equates to a 500× reduction. This increase in data

reduction is due to a different linear layer preceding the latent space, but it still requires

effective feature extraction inside the QuadConv layers. Because of the non-Cartesian nature

of the data, we no longer use the approach of sampling to a grid and applying max pooling

layers. Instead, we use the QuadConv layers to down-sample, where a specified a number

of the output points are sampled from the input points by sampling uniformly at random.
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The encoder structure is described in Fig. 2.13. The random sampling technique is feasible

in this scenario because the point density is fairly constant, but mostly we use it as a tool

to show that other agglomeration procedures can be used for selecting non-uniform output

points.

Model Type Average Error Max Error Training Time (h) # of Steps # of Trainable Parameters

QuadConv 0.762% 2.24% 7.76 80,679 807,304

Table 2.5: Results for non-uniform flow data compression.

As shown in Table 2.5 and Fig. 2.14, the flow data compresses well, with low error

and converges considerably faster than the ignition data. This example shows that practical

meshes are easily used, and high accuracy can be achieved with a QuadConv based network.

The error histograms can be found in A.
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Figure 2.14: QCNN non-uniform flow compression.

From Fig. 2.14, we observe very little degradation in the quality of the solution and no

visible changes in the error. In fact, since the linear layers in the network dominate the total

number of trainable parameters, our embedding of the data into a smaller space reduces the

overall number of parameters in the network and slightly reduces training time.
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2.5 Discussion

In this work we have presented a new convolution operator for deep learning applica-

tions involving non-uniform data. Our operator approximates a continuous convolution via

quadrature, and employs a learned continuous kernel to allow for arbitrary discretizations

of the input data. In addition, we discussed an implementation of this operator that yields

sufficiently reasonable time complexity for use in modern deep learning settings. Our exper-

iments on both uniform and non-uniform PDE simulation data compression showed that, in

practice, this quadrature convolution can match the performance of standard convolutions

on uniform grid based data, and performs equally as well on non-uniform mesh data.

2.5.1 Future Work

The results we have presented here demonstrate the promising performance of the

QuadConv layer and QCNN in application, but there are still a number of interesting ques-

tions to address as to its performance and sensitivity to hyper-parameters. As discussed in

Section 2.3.1, there are a number of ways to parameterize the map from point to filter, and

we have only considered one such method here. A more thorough investigation into the alter-

native approaches is warranted. Also discussed in Section 2.3, and put to use in Section 2.4,

is the learning of the quadrature weights for a given set of input points. The accuracy of this

learned quadrature itself can be measured separately using known data and kernel function.

Understanding this may inspire regularization of the quadrature weights that could enable

learning higher accuracy approximations. Mentioned briefly in Section 2.3.1 was the idea of

constructing the output points of a QuadConv layer via an agglomeration of the input mesh.

This would allow one to maintain properties of the original mesh while still down-sampling.

Such a method is more extensible than the random down-sampling used in Section 2.4.3, and

would likely lead to better performance for QuadConv on meshes with more complex non-

Cartesian geometries. Moreover, our continuous kernel allows us to learn representations of
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data on a continuous space which enables one to perform multi-level training. This would

involve training on different resolutions of data using the same network but with variable

quadrature weights in order to continue to approximate the convolution operator well while

using the same kernels. Last but not least, developing online, parallel learning schemes to

enable pass-efficient, ideally in situ, data compression, as in [24, 81], is an important future

research direction.
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(a) Non-uniform ignition mesh.
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(b) QCNN compression.

Figure 2.11: QCNN non-uniform ignition data compression.

Figure 2.12: Non-uniform flow mesh.
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Figure 2.13: Encoder with four QuadConv based blocks. The linear layers comprise the MLP. The
decoder is similarly structured, but mirrored to up-sample.



Chapter 3

Refining Quadrature Convolutions

3.1 Introduction

In Section 2.2 we introduced a new neural network layer called QuadConv that aims

to generalize convolutional layers to non-uniform meshes by using continuous convolution

as a template. QuadConv exhibits low error in comparison to both standard convolution

on uniform grids and extends this performance to non-uniform meshes in our example data

compression tasks. However there are many aspects of of QuadConv that are either not

explored in Chapter 1, or do not compete well with standard convolutions and graph con-

volutions. This chapter examines some of these shortcomings and makes improvements to

QuadConv that make it a more usable and performant neural network layer.

We divide our improvements into a few sections: stability, speed, scaling and ecosystem.

The stability of a neural network layer is concerned with its initialization and convergence

rate (as measured in number of epochs until convergence). Smart initialization helps with

training deep neural networks that have similar operating conditions in each layer. The

speed of a neural network layer is its wall clock time for forward and backward propagation.

Improvements to speed and convergence rate can make a neural network substantially faster

to train. Scaling is the ability to vary the parameter count of a neural network and as a

consequence vary the accuracy of a neural network. In a standard convolutional network,

this takes the form of varying the number of channels in each layer. Finally, there is the

ecosystem of the neural network layer, which consists of the software tools and mathematical
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tools that make neural networks easier to construct and test. For a neural network layer to

be adopted, these components must all be sufficiently addressed to make application to real

world problems practical. We draw upon similar work for standard convolution and graph

convolution for motivation and context.

3.1.1 Notation

The notation surrounding neural networks can be dense, and our work focuses on how

differences in the data domain effects standard practices, which further complicates notation.

Here we establish some common terms to make the following sections easier. The layers in

a neural network are each functions which map the layer input to the layer output, we refer

to these as the domain and range of the layer. When concerned with spatial data, the

dimensions of the points in the domain and range are frequently either d = 2 or d = 3. The

domain (X ) and range (Y) are collections of points in Rd. We consider the data to be given

by a function f i
k(·) : X → R.
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Notation

Spatial Dimension d

Domain element xn ∈ Rd

Domain X = {xn : n ∈ {1, . . . , N}}

Range element ym ∈ Rd

Range Y = {ym : m ∈ {1, . . . ,M}}

Input Channels k ∈ {1, . . . , K}

Output Channels j ∈ {1, . . . , J}

Data fk(xn) ∈ R

Data at Layer i f i
k(xn) ∈ R

QuadConv layer Q(·;θ)

3.1.2 Motivation and Related Work

We address related work and motivation together, since the improvements we hope

to make to QuadConv are the things that have made standard convolutions and graph

convolutions successful.

Stability The first standard convolutional neural networks (CNNs) to use back-

propagation in 1986 [92] did not differ in many ways from their more successful counterparts

in the early 2000’s. Glorot and Bengio spectulate in their 2010 paper [34] that initialization

played a big role in this advancement, and they explored what is now termed Glorot (or

Xaviar) initialization. They observed the output of different layers of a network had different

distributions, and that as a result the training could become slow when the distributions

of the output of the networks became extreme. The initialization strategy that Glorot and

Bengio pioneered generalizes to a simple goal that we attempt to replicate for QuadConv.
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Given an input fk(X ) ∈ RN , whose entries are i.i.d. drawn from a normal distribution,

fk(xn) ∼ N (0, 1), and a neural network layer parameterized by θ whose action on fk(X )

is given by Q(fk(X );θ), we will aim to initialize θ such that Q(fk(xn);θ) ∼ N (0, 1). This

creates a cycle under the action of Q(·;θ), such that successive application of different layers

that have this same property maintain the stability of the output distribution.

Speed The ability to train CNNs at scale has been a fundamental driver of their

adoption and impact. In 2009, Raina et al. [85] first proposed and demonstrated training

CNNs on graphical processing units (GPUs). Since then large scale software projects Tensor-

flow [1] and PyTorch [82] have made accelerated CNN training accessible to researchers and

practitioners. As we saw in Table 2.2, while QuadConv exhibits better errors than a CNN,

it takes nearly 8 hours of more wall time to converge, which equates to 4× more time per

epoch. The graph convolutional network that we compare to is 3.8× faster per epoch, owing

to the significant software development focused on accelerating them [27]. In fact, despite

graph convolutional networks being introduced in 2016 in a paper by Kipf and Welling [55],

they did not gain significant adoption until 2018 [108], when PyTorch-Geometric made graph

convolution faster and more accessible [27]. For many applications this large difference in

execution time makes QuadConv infeasible. In order to spur adoption, we address the road

blocks that prevent QuadConv from having competitive execution time.

Performance Scaling In Chapter 1, we compared QuadConv to many different

convolutional architectures and to facilitate a fair comparison each of the networks we com-

pared to had similar numbers of parameters. Yet missing from this analysis is a study of

how QuadConv’s performance scales when the number of parameters is increased. CNNs

have two standard methods to increase the parameter count: number of filters and depth.

For a one-dimensional standard convolutional layer over data X ∈ Rn×K and kernel weights

W ∈ Rs×K×J with the following form for the j-th output channel (j ∈ {1, . . . , J}):

Conv1D(X,W )j =
K∑
k=1

Xk ∗Wkj (3.1)
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where ∗ denotes one-dimensional discrete convolution, K is the number of input channels and

J is the number of output channels. We refer to J as the number of filters, whereas depth

increases the number of layers in a network. Increasing the number of filters in convolutional

neural networks has long been known to decrease error [80], allowing practitioners to choose

parameter counts that fit their memory, computation and error budget. The 2016 paper by

He et al. exploring the impact of residual connections on CNNs [43] established techniques

to allow depth scaling to decrease errors as well. We explore why QuadConv’s architecture

changes how it scales when compared to typical CNNs, and improve its design to allow it to

scale in a more predictable fashion.

Ecosystem In order to allow practitioners to more easily use QuadConv to build

standard architectures we create additional layers and user interface changes. There are a

number of other layers which are not convolutional, but are key to implementing a typical

CNN architecture. These layers include: linear layers, pooling layers, and 1×1 convolutional

layers. Both linear layers and 1 × 1 convolutional layers do not explicitly use geometric in-

formation, and so require no generalization. However pooling layers are important operators

used to downsample data in neural networks and are frequently reliant on the underlying

grid structure of the data. The most common pooling layer is max pooling [77] and takes

the following form for data f i
k(X ) ∈ RN :

f i+1
k (h(xn)) = max

l∈D(xn)
f i
k(xl) (3.2)

here we use D(xn) to denote a neighborhood of xn and h(xn) : X → Y is a surjective

function between sets. We generalize these operators using mesh downsampling techniques.

Lastly, we update the interface to QuadConv using new objects that represent the mesh and

important operations over this mesh. We will show how this reduces the number of lines of

code required to implement standard architectures and makes working with meshes in neural

networks an overall smoother experience.
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3.2 Methods

First we will re-state the original QuadConv formulation, making it easier for the reader

to reference. Whenever possible we will only use a single channel in order to simplify the

notation and omit the subscript from f(xi). The output of the layer is given by

(f ∗G)(y) =
N∑

n=1

ρn ·G(y − xn) · f(xn) , (3.3)

where the filter G is parameterized by θ and its compact support is limited by a bump

function:

G(z) = bump(z) ·H(z;θ) . (3.4)

We will replace the above formulation with the following,

(f ∗G)(y) =
N∑

n=1

ρn · 1N (y) ·H(y − xn;θ) · f(xn) (3.5)

where 1N (y) is the indicator function over the neighborhood of y.

3.2.1 Stability

The parameters in QuadConv (aside from any bias terms added to the convolution)

are inside of the Multi-Layer Perceptron (MLP) G, and so improving the initialization and

the distributional stability will focus on the construction of the MLP and its integration into

the convolutional operator. First, we adopt a new MLP architecture by Sitzmann et al. [97]

called a SIREN MLP. This architecture uses a sin(·) activation function, with linear layers

that take the form

xi+1 = sin(Wxi + b) , (3.6)

for xi, b ∈ Rd and W ∈ Rd×d. The key result from Sitzmann et al. [97] is that if we begin

with our input to a SIREN as x0
n ∼ U(−1, 1) then we can obtain a cycle of distributions

as we move through the operations of a given layer, seen in Fig. 3.1. A specially initialized

first layer maps x0
n ∼ U(−1, 1) to x1

n ∼ Arcsine(−1, 1). Here Arcsine(−1, 1) is a distribution
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over the interval [−1, 1] that is equivalent to a shifted Beta distribution. The first operation

applied to x1
n is the linear mapW in Eq. (3.6) which gives us [Wx1]n ∼ N (0, 1) and Sitzmann

et al. shows that after the second layer of the SIREN we have x2
n ∼ Arcsine(−1, 1). We

terminate this cycle such that the output of our SIREN MLP is N (0, 1).

U(−1, 1)

Arcsine(−1, 1) N (0, 1)

Figure 3.1: The distribution cycle induced by a SIREN MLP

We are hoping to develop an analogous cycle after QuadConv is applied to f(xn).

If we assume that f(xn) ∼ N (0, 1), we want Q(f(x);θ)n ∼ N (0, 1). In order to achieve

this we want to further control ρn and G(z)n. Let Φ(·) be the cumulative distribution

function of a standard normal random variable. We use the following convenient property:

for X ∼ N (0, 1) and Y = Φ(X) and any v ∈ [0, 1],

FY (v) = P (Y ≤ v) = P (Φ(X) ≤ v) = (X ≤ Φ−1(v)) = Φ(Φ−1(v)) = v , (3.7)

thus Y ∼ U(0, 1). We use this fact by passing the output of the SIREN MLP through a pair

of transformations. Let the action of our SIREN be denoted by the map S(·) : U(−1, 1) →

N (0, 1). If x0
n ∼ U(−1, 1), then we have

2× Φ(S(x0
n))− 1 ∼ U(−1, 1) . (3.8)

Similarly, we generate the quadrature weights ρn via a small SIREN MLP, such that ρn ∼

U(0, 1) and we then normalize the quadrature weights according to the following equation,

N∑
n=1

ρn = 1 . (3.9)

This ensures that our data driven quadrature is still exact for constant functions, and gives us

the same distribution properties for our convolutional layer as found in standard convolution.
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We will see the effects of these improvements in the results section when we compare to the

original formulation of QuadConv.

3.2.2 Speed

In order to improve the speed of the layer, we addressed a handful of different issues

that amount to over a 2× improvement in overall performance (Fig. 3.2). First, we eliminate

the bump(·) function in the parameterization of the compactly supported kernel. Instead we

replace the compact support with a k-nearest neighbor search that determines the compact

support according to the kernel size hyperparameter. This saves the operations that would

otherwise be associated with the forward and backward passes through the bump(·) function

itself. Second, we replace the scatter operation (described in detail in Section 2.3.1) with an

in-place scatter that eliminates a copy operation into the final array output. See He et al. for

more information on scatter operations [42]. While these are minor changes, they result in

hours of training time saved.

Original QuadConv Updated QuadConv

Forward Pass 9.47 ms 5.17 ms

Backward Pass 27.30 ms 11.40 ms

Cumulative 36.77 ms 16.57 ms

Figure 3.2: Speed improvements in our new QuadConv formulation: N = 2189 with a batch size

of 1

3.2.3 Performance Scaling

As we discussed in Section 3.1.2, the scaling associated with standard convolutional

neural networks is achieved through number of filters and depth. Depth can be added to any
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neural network, regardless of layer structure. Adding filters to a QuadConv layer is more

difficult, and so we address that here. For an MLP H(z;θ), parameterized by θ, the total

number of parameters is determined by the number of hidden layers and the width of those

hidden layers. Suppose that d = 2 so our input is in R2, and we have 2 hidden layers of

width 8, with an output of dimension C. This yields the following parameters:

Layer Weights Bias Parameter Count

Layer 0 W0 ∈ R8×2 b0 ∈ R8 16 + 8

Layer 1 W1 ∈ R8×8 b1 ∈ R8 64 + 8

Layer 2 W2 ∈ R8×8 b2 ∈ R8 64 + 8

Layer 3 W3 ∈ RC×8 b3 ∈ RC 8× C + C

Figure 3.3: Example of parameter counts in an MLP: 168 + (8× C + C) total parameters

If we scale the number of channels in a QuadConv layer, we only scale the constant C,

increasing the number of parameters but not in a useful way. There are two issues with this

approach. H(z;θ) is now approximating a higher dimensional function but its hidden layers

are remaining of fixed size. MLPs are able to fit increasingly complex functions as their

hidden layers increase in width, as noted in [83, 109], but keeping hidden layers a constant

size does not allow for the increased complexity that more channels demands. The second

issue is that H(z;θ) is a continuous function, which then creates a relationship between

the kernels for each channel, an atypical property for a convolutional layer. We amend both

these issues by instead using many MLPs to represent H(z;θ), one for each output channel.

Thus instead of scaling the number of parameters in H(z;θ), we scale the number of MLPs

in H(z;θ).
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3.2.4 Ecosystem

Without the operators that surround the convolutional layer in popular architectures

QuadConv is a much less useful layer. Thus we extend max pooling using mesh down-

sampling, in particular using a technique called Moving Front Non-Uniform Subsampling

(MFNUS) recently developed by Lawrence et al. [58]. This subsampling technique creates a

set of points X̃ ⊂ X which maintains the non-uniform density of the domain X and contains

fewer points. This allows us to create an entirely grid free neural network, which never relies

on implicit geometric information embedded in array shapes. If we examine the general form

of max pooling

f i+1
k (h(xn)) = max

l∈N (xn)
f i
k(xl) (3.10)

then MFNUS is creating both the neighborhood map N (·) : X → X and generating the

correspondence between the original space and the range of the pooling operator h(·) : X →

X̃ . We can see a visual representation of this in Fig. 3.4.

Max

Figure 3.4: A mesh max pooling example, where red values are larger while blue values are smaller.

Beyond the creation of new operators, we have also simplified the interface to Quad-

Conv. Previously, complex behaviors involving mesh downsampling involved a Handler

object which monitored the mesh currently under usage. This object was globally responsi-

ble for the control of the data, which made coding with QuadConv difficult in large networks.

Instead we have replaced this with a Domain object that allows users to directly control mesh
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behavior, and downsample or upsample according to their algorithm of choice. The inter-

face to QuadConv now mirrors convolutional layers in PyTorch and makes coding common

architectures simple. We leave an example of building a ResNetBlock [43] in Appendix B

for the interested reader.

3.3 Results

In order to demonstrate some of QuadConv’s improvement after theses changes, we

perform the same compression test found in Chapter 1 on the ignition mesh dataset. This

test uses the new mesh downsampling with MFNUS, the stability improvements, and our

new interface. The number of channels and batch size is also kept the same, however the

changes in downsampling results in there being fewer parameters in the new network. Where

the original QuadConv network first upsampled the data to a grid, before using standard

Max Pooling, this new network can directly downsample the data on a mesh.

Model Type Average Error Max Error Training Time (h) # of Steps # of Trainable Parameters

Improved QuadConv 0.621% 4.17% 2.38 100,000 844,000

QuadConv 0.596% 2.05% 13.50 450,000 1,037,499

Table 3.1: Results for non-uniform ignition data compression.

As seen in table Table 3.1, the errors are similar between both networks and the

improved version of QuadConv is converging much more quickly both in terms of runtime

and in terms of number of steps. Runtime improvements are due to the changes in the

code’s speed, the number of steps to converge is decreased due to improvements in stability.

The new network is running at roughly 42,000 steps per hour of wall time, versus about

33,000 steps per hour for the original version, which is not quite the 2× improvement seen

in the layer, since there are other operations taking place in the network. While a reduction

of 350,000 steps until convergence is a substantial improvement in the convergence of our

network to a low error stationary point.
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3.4 Conclusion

In this chapter, we present a number of improvements to the neural network layer that

we built in Chapter 1. These improve computational speed, convergence rate (measured in

epochs), accuracy and usability. We also present an extension of max pooling that allows

us to create entirely grid free neural networks. When evaluated on the same problem as in

Chapter 1, we see that the improvements make QuadConv improve its ability to compress

data when used in an autoencoder. We hope to use QuadConv in other problems where

convolutions are state of the art and non-uniform meshes or point clouds are commonplace

in data. We believe that these networks give significant advantages in performance over

these data sources, while also opening up exciting research into data dependent quadrature

rules, continuous kernels and multi-resolution applications.



Chapter 4

Manifold Harmonic Bases for Compression
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4.1 Introduction

While in the previous chapters we discuss data compression using neural networks,

these are not typical techniques used for data compression. The most common setting for

the usage of data compression does not permit extended amounts of training time, and may

require extremely high levels of accuracy that neural networks cannot currently provide,

cf. Fig. 4.1. More typical methods are those like JPEG [111] or scientifically oriented succes-

sors e.g., ZFP [64] and SPERR [61]. Methods in this low error and low compression regime

prioritize the speed of compression and decompression, possibly sacrificing compression rate

in the process. The methods like JPEG, ZFP and SPERR are commonly referred to as “block

coder” style compressors, due to breaking the dataset into blocks before being encoded in

a spectral representation [9, 107]. Block sizes can vary widely, depending on the method,

ranging from 4× · · · × 4 in ZFP to 256× · · · × 256 SPERR. These methods frequently use

discrete cosine transforms [2] or wavelet transforms [12] in order to accomplish their spectral

encoding. In the case of ZFP, this means using a special integer coefficient discrete cosine

transform approximation so that multiplication can be accomplished exclusively through bit

shifts. In both of these steps, the data to be compressed is implicitly interpreted to be de-
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fined over a uniform grid. In the case of JPEG [111], this presents no issue, but when aiming

to compress scientific data it is not uncommon to define complex non-Cartesian domains

with varying levels of resolution in each section of the domain.

In this chapter we will present a novel block coder called Mesh-Float-Zip (MFZ) which

performs spatial compression over spatially non-uniform data. This block coder is similar to

ZFP and JPEG in that it uses a linear transformation of the data before entropy encoding.

This makes it rigorous, interpretable and error bounded as opposed to the neural methods

seen in previous chapters.

Figure 4.1: A rough comparison of compression techniques seen in this thesis.

Block coder methods begin with two key steps: the partitioning of the data into blocks,

and the projection of these blocks onto a suitable spectrum. The blocking of arbitrary

meshes is already understood [52], but the generalization of spectral transformation for data

compression has not been explored and is the focus of this chapter. We establish a suitable

generalization for the spectral encoding of data on a mesh and create a compression tool

which replicates the success of other methods over these meshed datasets.

One contribution of this work is in using the Manifold Harmonic Basis [105] as spectral
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transformation for data over a mesh, thereby improving data compression for an important

class of scientific data. An additional contribution is the method by which we derive the

Manifold Harmonic Basis, which is an extension of simple collocation techniques explored by

Kansa in 1990 [49], but applied in this case to a Generalized Eigenvalue Problem (GEVP).

This improves the speed of our basis generation, and simplifies its generalization to higher

dimensions.

First, blocking data which is arranged in a d-dimensional grid is a straight-forward

operation accomplished by indexing into the array in which the data is stored. This is

because the memory layout of the data often matches the spatial layout of the data. The

purpose of the blocking in general is to create spatially congruent regions which can be

compressed in parallel, speeding up the compression process and isolating regions of highly

compressible data from regions of incompressible data. This means that any algorithm which

creates spatially congruent regions of blocks of size N on an arbitrary mesh is suitable for

this application. We choose to use METIS [52] in our research as it is a well established and

fast graph partitioning algorithm.

Second, we aim to replicate the effect of the spectral encoding on the blocks of data.

This is where our contribution to this topic is focused. We choose to apply the Manifold

Harmonic Basis (MHB), which was first explored in a paper by Taubin in 1995 [105]. The

MHB is a generalization of the Discrete Cosine (or Sine) Transform (DCT or DST) and

we will use it to spatially de-correlate data before entropy encoding. This basis has seen

extensive usage in graphics processing, frequently being used to perform operations like low-

pass filtering of noisy 2D surfaces [110]. Usage is complicated by its definition, since it does

not possess a closed form solution over most domains. Rather the Manifold Harmonic Basis

consists of eigenfunctions of the following eigenvalue problem

−∆f = λf (4.1)

where ∆f =
∑

i
∂2f
∂x2

i
.
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The continuous eigenproblem in Eq. (4.1) takes on different spectral properties de-

pending on the domain of the function in L2(Ω), where Ω is the domain under consideration.

For a simple domain like R we have a continuous spectrum from [0,∞), where each of the

eigenfunctions is of the form f(x) = sin(λx+ c) for x ∈ R and c ∈ {0, π
2
}. If instead we take

the domain to be R/Z, the spectrum is now {2πk : k ∈ N} where again f(x) = sin(λx + c)

with x ∈ R and c ∈ {0, π
2
}. In general, spectral analysis of the Laplace operator is a very

deep and well researched field, which is outside the scope of this work but a good reference

can be found in [38].

If we take the domain of f to be R/Z with boundary conditions f ′(0) = 0 and f ′(1) = 0,

then discretizing the problem with uniformly spaced points over the interval we recover a

DCT. For the appropriate change of boundary conditions over this domain we can in fact

recover type I, II, III or IV DCT (or DST) [102]. The Manifold Harmonic Basis provides us

with a generalization of these common spectral transformations which can be applied to any

mesh, provided we can find one that is discretized on our domain in an appropriate fashion.

The solution of Eq. (4.1) is typically derived through a GEVP involving a Finite El-

ement (FE) Discretization of the Laplace operator. We propose a computationally cheaper

collocation method based on [49] which satisfies the necessary conditions to create a Mani-

fold Harmonic Basis. Our method also takes the form of a GEVP, and requires no changes

to work in any dimensional space.

In the remainder of this chapter we will further motivate the usage of the Manifold

Harmonic Basis, provide a method for deriving it quickly over our data points, integrate

METIS and the Manifold Harmonic Basis into a compression chain that is modeled after

ZFP [64], and demonstrate effectiveness at recovering and utilizing the spatial correlation

that enables efficient compression.
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4.1.1 Motivation

Recall that the Shannon Source Coding Theorem (Theorem 1) is concerned with a

random source, X, from which we can produce a sequence of i.i.d. variables X1, X2, . . . , Xn.

These variables take discrete values in a finite set of symbols X . While Theorem 1 holds

for i.i.d. random sequences, in practice we are interested in compressing sequences that have

a non-trivial covariance structure. We don’t have optimal encoding schemes for data that

are not i.i.d. and so in order to best utilize things like Huffman encoding, or Asymmetric

Numerical Systems, we attempt to diagonalize the covariance structure of the data to make

the data uncorrelated (as a proxy for independence). The Karhunen-Loève Transform [87]

is the transform that diagonalizes a covariance matrix. In our case the data are a discrete

sequence, and so the Karhunen-Loève transform is given by applying the adjoint of the

eigenvectors of the (empirical) covariance matrix of the elements of the sequence. Specifically,

we use the covariance matrix

Σij = Ê[(Xi − µX)(Xj − µX)] (4.2)

which gives the eigenvalue problem

Σe = λe (4.3)

and after collecting the eigenvectors e as columns of the matrix E, the Karhunen-Loève

transform is

X 7→ E∗(X − µX). (4.4)

In the case of uncorrelated and constant variance Xi, the solution is trivial as Σ = σ2I

and hence the Karhunen-Loève transform is the (possibly shifted) identity map. However

spatial data often has non-trivial covariance structures, so finding a Karhunen-Loève Trans-

form is very important for compression.

The following example of covariance structure is the most important one in data com-

pression, as it is the spatial correlation structure that is assumed for ZFP [64] and JPEG
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[111]. Consider a uniform 1D grid, in which neighboring points have a covariance governed

by the following expression with a scalar ρ,

Σij = σ2ρ|i−j| . (4.5)

This covariance matrix gives rise to a very familiar family of Karhunen-Loève Transforms,

namely the 1D DCT and the DST [87, 93].

This motivation is a heuristic that attempts to explain the effectiveness of the DCT

and DST transformations, which is ubiquitous in data compression. Our work aims to use a

generalization of the DCT and DST in order to provide a de-correlating transform for non-

uniform data. This transform, a projection onto the Manifold Harmonic Basis [110], allows

us to more effectively de-correlate non-uniform data and thus provide better compression for

an important class of scientific data.

4.1.2 Related Work

There are a number of efforts to produce high efficiency error-bounded data compression

tools for scientific data. The two most significant efforts are ZFP [64, 18, 30, 40, 63] and

SZ [17, 119, 62, 67, 68]. Each effort has produced a number of different versions of the

software over the last 5+ years, but we aim to characterize the most significant aspects of

these methods.

ZFP ZFP is a block-coder style compression tool, that is designed for data on a

uniform grid. Operating on 4 × · · · × 4 blocks, this algorithm takes a block of data, and

transforms it using a DCT to decorrelate the data. This is followed by a sequence of bitwise

operations that convert the 4n numbers into a different kind of floating point representation.

The only lossy stage of this process is a zeroing out of a number of low significance bits,

based on a user provided threshold for the resulting error. Finally this is followed by an

entropy encoding of the bit-planes. The development of ZFP has highlighted its zero mean

error distributions [63, 18] and its speed of compression [40]. Due to both the blocking and
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the data transformation in ZFP, when compressing non-uniform meshes only the implicit

spatial correlation that is contained in the memory layout of the data is leveraged.

SZ SZ is a predictor-corrector framework that was originally based on using curve

fitting to interpolate data, and encoding large errors explicitly [17]. Its most recent ver-

sion, which sacrifices a small amount of speed for increased performance, is SZ3 [62]. SZ3

is a framework of compression stages, beginning with preprocessing (like blocking and data

transformations), followed by prediction using neighboring points [46] or deep neural net-

works [68], then quantization, encoding and a lossless compressor that captures any latent

structure after encoding. SZ3 has a number of options for each stage, and adaptively selects

the most performant option. As with ZFP, since SZ does not use explicit geometric infor-

mation, only the implicit spatial correlation that is contained in the memory layout of the

data is leveraged.

Other approaches There are other approaches which we will cover with less depth.

TTHRESH [5] is a recent tensor decomposition based method that is not sufficiently appli-

cable for non-uniform mesh data. There are also other tensor decomposition based methods

that do not apply such as [4] and [50]. MGARD [36] is a multi-grid method, which uses

a multi-resolution decomposition of the data to make the retrieval of lower precision data

much faster. This is clearly applicable to non-uniform mesh data, but MGARD’s primary

contribution is the speed of its compression and decompression of data [14].

Manifold Harmonic Basis Aside from data compression, there is also related work

involving the generation of the Manifold Harmonic Basis (MHB). The MHB is used in mesh

filtering, mesh compression, parametrization, and segmentation [51, 106, 99, 29]. This task

is complicated by a no free lunch theorem [113] for the discretization of Laplace operators.

The no free lunch theorem states that for 2D non-uniform meshes, Laplace discretizations

cannot be symmetric, strictly positive, locally defined, and vanish on linear functions. Each

of these properties may be important for different applications of the discretized operator.

Initial attempts to generate these basis functions used symmetrized discrete Laplacian op-
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erators [72], defined over a graph (G = (V,E)), and Galerkin projection [60]. Later a more

refined approach used the Discrete Exterior Calculus to more correctly consider the symme-

try and discretization of the continuous Laplace operator [110]. Yet other approaches have

been applied to point clouds using Voronoi cells [69] or Delaunay triangulation [7]. In the

context of compression, these approaches can be slow or may not generalize directly beyond

2 dimensions. Our method is instead based in radial basis function (RBF) interpolation and

avoids the discretization of the Laplace operator, which allows for a faster construction of

the MHB that works in all dimensions.

4.1.3 Contributions

Our contributions primarily fall into two categories. First, those contributions we make

to the generation of the MHB, and second, the contributions we make to the compression of

data discretized on a mesh. Aside from these two groups of contributions, this work is also

the first to use the MHB to compress data that lies on a mesh. While Karni et al. [51] used

the MHB in a compression setting, it was to compress the nodes of the mesh.

MHB Generation The collocation method we use to generate the MHB is most

closely related to Kansa’s original RBF collocation method [49]. The equation on which we

are using this collocation method bears resemblance to the Helmholtz equation (∆f = −κ2f),

but we are not concerned with any particular solution for a given κ, and furthermore we

seek real solutions since complex solutions make the resulting basis unusable for data com-

pression.1 Thus the considerations we make to guarantee that the Generalized Eigenvalue

Problem produces a basis of real eigenvectors is unique to our work. This is also the first

MHB generation method which is not dependent on the particular dimension the points are

embedded in, a consequence of the collocation technique.

1 Projecting real data onto a complex basis results in a doubling of the number of bits required to represent
the spectrum.
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Compression The DCT has convenient properties that make the resulting com-

pression chain slightly easier than when using the MHB. We have overcome these challenges

with small contributions to the block coder compression chain. The MHB, unlike the DCT,

is not guaranteed to contain the all ones vector, 1 ∈ Rn. To fix this we simply subtract the

mean from the data, and compress this scalar along with the spectra of the mean centered

data. More significantly, the DCT on a grid produces a simple and convenient ordering for

the spectra, via spatial frequencies of the cosines. For an element of the DCT, cos 2πλix,

with frequency λi, we can order the spectrum according to the sorting of λi. However the

basis elements of the MHB are not spatially uniform, and eigenvalues of the GEVP may have

geometric multiplicity. This makes the compression of the data spectrum more complicated,

as we cannot use the method ZFP [64] does to compress trailing zeros of each bit plane.

Instead we apply a range encoder, whose compression performance is only reliant on the

entropy of the data, and not the ordering of the spectrum.

4.2 Methods

The focus of this work is the usage of the MHB as a DCT replacement for entropy

exploitation, and we demonstrate this via a implementation of a data compression scheme.

In order to highlight the impact of the MHB, we implement a similar compression chain to

ZFP. First we will explain our contribution to the derivation of the MHB which is via an RBF

collocation method [31], then we will explain the compression chain, before demonstrating

our results on test data.

4.2.1 Manifold Harmonic Basis via Interpolation

While many methods for deriving the MHB involve a discretization of the Laplace

operator via Finite Elements, we instead consider a function f : Rd → R, whose values we

consider on the set of points {xi}i=1,...,n = X for xi ∈ Rd. We can then form an interpolant

f̃ via an RBF approximation to f
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f̃(x) =
∑
i

αiϕ(∥xi − x∥2), (4.6)

where the function ϕ(·) is a RBF. There are many options for ϕ(·), but we will require that

the resulting interpolation matrix is positive definite and symmetric. In this work we use

the kernel

ϕ(∥xi − x∥2) = e−(ϵ∥xi−x∥2)2 for ϵ ≥ 0,

since it is a common choice and also yields the required properties [73]. There are some other

RBFs that fit this criteria, but we do not explore them here. If we were to fit an interpolant,

we would use the interpolation system with rij = ∥xi − xj∥2,



∆ϕ(r11) ∆ϕ(r21) . . . ∆ϕ(r1n)

∆ϕ(r12) ∆ϕ(r22) . . . ∆ϕ(r2n)

...
...

. . .
...

∆ϕ(r1n) ∆ϕ(r2n) . . . ∆ϕ(rnn)





α1

α2

...

αn


=



f(x1)

f(x2)

...

f(xn)


. (4.7)

In matrix form we write this as,

Φα = f(X ). (4.8)

Consider the eigenproblem for the Manifold Harmonic Basis applied to the continuous in-

terpolant,

∆f̃ = λf̃ . (4.9)

We can then apply the Laplace operator directly to the continuous function,

∆f̃(xj) =
∑
i

αi∆ϕ(∥xi − xj∥2) = λf̃(xj) . (4.10)

Rearranging and letting rij = ∥xi − xj∥2 we can turn this into a discrete eigenvalue

problem over the vector of interpolation coefficients α,
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

∆ϕ(r11) ∆ϕ(r21) . . . ∆ϕ(r1n)

∆ϕ(r12) ∆ϕ(r22) . . . ∆ϕ(r2n)

...
...

. . .
...

∆ϕ(r1n) ∆ϕ(r2n) . . . ∆ϕ(rnn)





α1

α2

...

αn


= λ



ϕ(r11) ϕ(r21) . . . ϕ(r1n)

ϕ(r12) ϕ(r22) . . . ϕ(r2n)

...
...

. . .
...

ϕ(r1n) ϕ(r2n) . . . ϕ(rnn)





α1

α2

...

αn


.

(4.11)

We can write this generalized eigenvalue problem (GEVP) in matrix form as,

∆Φα = λΦα . (4.12)

Effectively we are using the interpolated form as an ansatz for the solution of Eq. (4.12),

which allows us to generate a MHB with less computational burden than a FE method.

We are guaranteed that this generalized eigenproblem has a set of n linearly independent

solutions {vi}i=1...n for vi ∈ Rn with real eigenvalues {λi}i=1...n when ∆Φ and Φ are sym-

metric, and Φ is positive definite [35]. These are important features for the usefulness of the

solution, since without a basis of vectors we risk having data that inhabits the null space

of {vi}i=1...n. This would lead to uncontrolled loss of data into this null space, and increase

compression errors. If those vectors are not also real, then projection onto the vectors leads

to a doubling of the data to store the spectrum.

RBF interpolation using Gaussian RBFs involves the selection of the parameter ϵ ≥

0 and there is a well known trade off, called the uncertainty principle [22], between the

numerical stability of the large ϵ regime and the high interpolation accuracy of the small ϵ

regime. Here we use ϵ = 1 for all our experiments, and 32 bit floating point numbers in the

GEVP.

Now that we have established how we form the MHB using our RBF collocation

method, it is important to distinguish it from the traditional FE method found in the

literature. The FE method has been run at the same resolution as the discretized domain
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(a) Runtime vs size of a 2D mesh. (b) Runtime vs dimension of the points.

Figure 4.2: Runtime of MHB Generation.

in each case. While in 2D the FE method produces a basis of real solutions, in Fig. 4.2a

we can see it is marginally slower. In the small N regime the speed of the RBF method

is dominated by the auto-differentiation framework with which we implemented the GEVP

system. This difference in speed is insignificant to the compression task, since the MHB can

be generated once and used for compression over and over again. Much more importantly,

the FE method has been developed specially for 2D spatial data, and so higher dimensions

of non-uniformity are not compatible with this method. In Fig. 4.2b we can see that the

RBF collocation method works in any dimension.
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In order to illustrate more clearly how these first two stages work, let’s take the example

mesh in Fig. 4.3a and partition it into the blocks in Fig. 4.3b.

(a) An example simulation mesh. (b) The example mesh after using METIS to cre-

ate blocks.

Figure 4.3: An example mesh and its color-coded partition using METIS.

We can now take a particular block and form the MHB over that block using the RBF

interpolation we described above Fig. 4.4. This allows us to form the spectral representation

of the data in the block that we will later compress.

Mesh Block v1 v2 v3 vN

Figure 4.4: An example block and some elements of its MHB.

When the domain of the MHB changes, the functions also change and when we apply the

RBF collocation method to a grid, these basis elements more closely resemble the familiar

DCT/DST.
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v1 v2 v11 v23

Figure 4.5: Elements of a grid’s MHB.

4.2.2 Compression of the MHB Spectrum

After partitioning and projecting the data blocks onto the Manifold Harmonic Basis,

we still must perform compression on the resulting data. In order to accomplish this we use

a pipeline very similar to ZFP, which will facilitate comparison between the two methods

and allow the effect of the basis on the compression to be more obvious.

Let fk ∈ Rn be the k-th block of the partition, and let {vk
i }i=1,...,n be the basis for

the k-th block of the partition. We occasionally add an i superscript to elements of the bit

representations of floating point numbers to denote that they belong to the i-th element of

the data, but in general omit them when we are only working with a single representative

number.

Mean Centering and Projection First we mean center the data: for µk =

1
n

∑
j f

k
j , the centered data f̃k is then

f̃k = fk − µk. (4.13)

The spectrum of the data block is given by

gk = V T
k f̃k. (4.14)

for Vk = [vk
1 , . . . ,v

k
n] .

Block Floating Point First the data block is converted to a block floating point

representation, which uses a single exponent for the entire block. Consider the case where
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our data are IEEE single precision floating point numbers [48], which is a 32 bit floating

point representation. This representation consists of 1 sign bit, 8 exponent bits and 23 bits

to represent the mantissa, taking the form

gki = (−1)b31 × 2(b30b29...b23)2−127 ×

(
1 +

23∑
j=1

b23−j2
−j

)
. (4.15)

Here the notation (0010101)2 denotes an integer base two, which in this case (0010101)2 =

(21)10
2 . We replace the exponents in the block with the maximum exponent found in the

block,

(c7c6 . . . c0)2 = max
i

(b30b29 . . . b23)
i
2. (4.16)

By using a single exponent for the entire block, we save 8× (n− 1) total bits per block. The

new form of this floating point number is then

gki = (−1)b31 × 2(c7c6...c0)2−127 ×

(
22∑
j=0

bj2
j−22

)
. (4.17)

Here (c7c6 . . . c0)2 is the common exponent for the block floating point representation. If the

block has a wide range of values in it, this can create compression error unless extra bits are

added to the floating point representation. In practice, the size of the blocks aims to make

data of a homogeneous scale inside each of the blocks.

Thresholding At runtime, the user specifies an error threshold, in our case in terms

of absolute pointwise error. This is then used to set bits below the threshold to zero. This

is accomplished by first converting the threshold into our block floating point representation

and then by comparing the resulting threshold with the least significant bits of the data in

the block. Setting these bits to zero lowers the entropy of the bits in the block, and makes

them more compressible.

Truncation After thresholding, many of the bits in the least significant bit planes,

see Fig. 4.6, are now zeros. We can encode these bits in a single integer which encodes how

2 The −127 shift allows floating point comparisons between negative and postive numbers to examine
fewer bits.
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many zeros to add to the end of our representation. This is similar to a run length encoding

of the trailing zeros in each of the n numbers in the block, but we use the minimum run length

in order to encode them simultaneously in one integer. This saves a total of (t− 1)× (n− 1)

bits per block. Note the change in the summation index for t− 1 truncated bits,

gki = (−1)b31 × 2(c7c6...c0)2−127 ×

(
22∑
j=t

bj2
j−22

)
. (4.18)

Figure 4.6: A sketch of the bit array after processing into block floating point format.

Nega-Binary We can view our current representation in the following form,

gki = 2(c7c6...c0)2−127 × 2−22 ×
(
(−1)b31 × (b22b21 . . . bt)2

)
(4.19)

where the term on the right of the equation can be interpreted as a (signed) integer. To

facilitate more efficient bit plane encoding later, we convert this term to negative binary

which encodes both the magnitude and the sign of the number in the first nonzero bit of the

representation. This gives us the following,
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gki = 2(c7c6...c0)2−127 × 2−22 × (q23q22 . . . qt)−2. (4.20)

where {qi}i=23,...t are the bits of the negative binary representation up until the truncated

bit plane t− 1.

The chain of steps described above, beginning with the block floating point represen-

tation and ending with the negative binary conversion are all elements found inside of the

ZFP compression chain. This gives us a compact representation of the spectra of our block

and allows us to continue to a lossless encoding step that further compresses each block.

Arithmetic Range Encoding We apply a classical technique from the late 1970s

known as arithmetic range encoding to each bit plane in order to take further advantage of

the reduced entropy of the spectral representation of the data [71]. This approach encodes

a stream of bits as a single number by using a model of the probabilities that each symbol

will occur. Our case is the most simple, since our alphabet consists of {0, 1}. Given a pair

of probabilities {p0, p1} the fraction of the data that is 0 and 1 respectively, and a range

within which to encode our symbols, we apply the algorithm symbol by symbol until the

entire message is encoded.

This encoding method relies on accurate probabilities and messages of sufficient length

to avoid the overhead cost from expanding the length of the message [57]. In the case where

p0 = 0.5 = p1 no compression is possible. We utilize a 32-bit integer for the encoding range

via the python package “constriction” [6].

We expect the MHB transform to produce a few large coefficients and many smaller

coefficients, on average. Let the bit planes be indexed by k ∈ {23, 22, . . . , t}. This means

that as we move from the most significant bit plane (23), towards the least significant bit

plane (t), we expect the first few bit planes to contain a larger proportion of zeros, relative

to the least significant bit planes. We find the bit plane in which we first see pk0 = 0.45,

which acts as a threshold for when we no longer expect to compress the following bit planes,



63

and then find the true proportion of zeros in the preceding bit planes. We then transmit

two quantized numbers with the range encoded data: one number encodes p0, as a fraction

in (0.0, 0.5) (in 4 bits) and the other encodes the bit plane at which we no longer apply

arithmetic range encoding (in 5 bits). We call this method Mesh-Float-Zip, or MFZ for

short.

4.3 Results

We test on a pair of 2D datasets and one 3D dataset which are all discretized over

non-uniform meshes. The first 2D dataset is a jet flame ignition process that is seen in

Section 2.4.2, and the second is a turbulent flow field over a non-uniform grid Section 4.3.

Each of the 2D datasets has 4 channels of data, and is represented as single precision floating

point numbers. The 3D dataset is a uniform mesh over a non-Cartesian domain, and has 1

single precision floating point channel of data. Each channel is processed separately in these

examples to highlight how performance can vary over different data.

(a) The ignition mesh. (b) The flat plate turbulent flow mesh.

We compress the data exclusively in the spatial dimensions, to emphasize the impact of

the spatial compression that each method is performing. Thus, to measure the performance

of each method at a given compression ratio, we perform time averaging over our metrics
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to arrive at a final metric for the performance of the spatio-temporal dataset. Let F t be a

spatial slice of the data at time t and F̃ t its decompressed approximation. We will use a pair

of different metrics to evaluate performance, the first is a time-averaged relative Frobenius-

norm also seen in Chapter 1 Eq. (2.12),

1

T

T∑
t=1

∥F̃ t − F t∥HS

∥F t∥HS

(4.21)

where t = 1, . . . , T indexes the time dimension of the (time-dependent) PDE simulation and

∥F t∥HS =
(∑

ij |F t
ij|2
)1/2

is the Hilbert-Schmidt (aka Frobenius) norm. The second is the

time-averaged Peak-Signal-to-Noise-Ratio or PSNR,

1

T

T∑
t=1

10 log10

(
I2

MSE(F t, F̃ t)

)
(4.22)

where MSE(F t, F̃ t) = 1
N

∑
ij(F

t
ij−F̃ t

ij)
2 is the mean-squared error and I = maxF t−minF t.

4.3.1 Ignition Dataset

This dataset consists of 450 uniformly sampled time steps of a jet ignition simulation

that lie on a non-uniform spatial mesh of size 2189. The wavefront is fully resolved in time.

This dataset is transport dominated for the initial portion of the simulation until the jet

flame reaches steady state. The dataset is approximately lexicographically ordered, so even

in the mesh the points that are adjacent in memory are spatially correlated. In order to

show the difference this makes in the results we run ZFP, SZ and Mesh-Float-Zip (MFZ) on

each of the channels in the dataset both with and without shuffling the data. PDE data that

is adjacent in memory is not always spatially correlated, as it may be rearranged for more

efficient memory access patterns or as in pivoting to reduce matrix condition numbers.
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(a) Oxygen Concentration (b) Shuffled Oxygen Concentration

(c) CO2 Concentration (d) Shuffled CO2 Concentration

Figure 4.8: Demonstrating the effect of shuffling the data order, for combustion data. In the

plots, higher PSNR is better.

We can see in Fig. 4.8 that MFZ performs well across all of the data seen here, but

there is wide variation in the overall performance. The oxygen concentration channels,

seen in Fig. 4.8b and Fig. 4.8a have the most complex dynamics since the oxygen jet is

being injected into the simulation domain. This makes these channels much less spatially

compressible, and so the margins between each of the methods are very small. Even still,

the shuffled data Fig. 4.8b exhibits a sharp decrease in performance for ZFP and SZ. This

shows that these methods are heavily relying on the memory layout of the data to match
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the results of MFZ.

The CO2 channel seen in Fig. 4.8c and Fig. 4.8d has much more simple dynamics and a

large number of zeros are found in the data, making this a much easier channel to compress.

As there is more spatial correlation and structure, MFZ is able to take advantage of this

structure and performs better than ZFP and SZ in both the shuffled Fig. 4.8d and unshuffled

Fig. 4.8c cases.

4.3.2 Flat Plate Turbulent Flow

This dataset consists of 603 time steps with 9956 spatial points, and simulates a tur-

bulent fluid flow over a flat plate. Unstable turbulence structures present near the plate on

the bottom of the domain near the no-slip boundary condition and so the mesh is resolved

more finely in that region. This dataset is discretized over a non-uniform grid, making it the

most similar to the expected spatial layout that ZFP and SZ were designed for.
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(a) Y Velocity (b) Shuffled Y Velocity

(c) Streamwise (X) Velocity (d) Shuffled Streamwise (X) Velocity

Figure 4.9: Demonstrating the effect of shuffling the data order, for turbulent flow data. In

the plots, higher PSNR is better.

We can see that the SZ outperforms ZFP and MFZ in both unshuffled cases, Fig. 4.9a

and Fig. 4.9c. Given SZ3’s complex internals, it is difficult to understand exactly why this

is the case. At a high level, the models SZ is applying describe the data very well. ZFP and

MFZ have very similar performance in this dataset, with MFZ having a slight edge in the

Y velocity. We see again that shuffling the data, as in Fig. 4.9b and Fig. 4.9d, makes MFZ

moderately better than SZ and ZFP, especially in the low compression / high PSNR regime.
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4.3.3 Neuron Transport

The neuron transport dataset is a simulation of the action potential of a membrane

channel which starts as a point mass of action potential in a 3D membrane channel. This

mesh is non-Cartesian, although spatially uniform in the meshed regions. It consists of 600

timesteps and 116,543 points, and is much larger than the other datasets seen in this chapter.

MFZ applies the same collocation method to generate a MHB in 3D, and extends its block

size from roughly 8× 8 to roughly 8× 8× 8.3

(a) Action Potential (b) Shuffled Action Potential

Figure 4.10: Demonstrating the effect of shuffling the data order, for neuron transport data.

In the plots, higher PSNR is better.

The layout of the neuron transport dataset in memory naturally has much less spatial

correlation in adjacent memory components. This means that the unshuffled data is much

less compressible for ZFP, as seen in Fig. 4.10a, but clearly there is still some spatial corre-

lation since the performance of ZFP is degraded with shuffling Fig. 4.10b. This illustrates a

case where the memory layout of PDE data loses its spatial correlation and becomes much

less compressible for standard compressors but not for MFZ.

3 We are not able to present SZ’s performance on this dataset, due to a bug in the SZ results that
produced abnormally large errors.
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4.3.4 Block Size

The block size is frequently a fixed parameter in block coders, since the implementation

of the block coder does not always allow for the block size to be changed easily. In MFZ,

the block size is a runtime parameter that affects the speed of the compression and the

compression factor. For MFZ we have chosen the block size to be approximately 8× · · · × 8

and be uniformly sized across the data. Algorithms such as JPEG 2000 [70] use blocks of

different sizes, depending on how well it compresses in each size. ZFP uses slightly smaller

blocks (4 elements per dimension), whereas SPERR uses much larger blocks (256 elements

per dimension). To illustrate how block sizes can affect compression, consider the ignition

data seen in Section 4.3.1 which has a large discontinuity at the boundary of the oxygen

jet, and resulting jet flame. At large block sizes this discontinuity would be present in every

block, whereas small block sizes create many highly compressible blocks and some blocks

with a discontinuity. Ultimately, the optimal block size is a function of the data. A more

advanced variant of MFZ may vary the block size or fit it to the data and store the block

size with the file, but our goal here was to demonstrate the advantages of a block coder that

uses the MHB and so it has not been a focus of this research.

4.3.5 Drawbacks

There are a number of drawbacks to MFZ as presented here, which make it less effective

than it could otherwise be. Firstly, we do not compress across blocks, time nor channels.

This leaves global patterns, temporal correlation and inter-channel correlation uncompressed.

Second, the 32-bit integer range that we compress into (during range encoding) is large for

the message sizes since we may not be using the entire information capacity of all of the

32-bit integers, but the convenience of the “constriction” package has made implementation

much easier. This leaves some overhead in our lossless compression scheme. Third, our

representation for all zero blocks is inefficient compared to something like ZFP. This means
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that for data which contains a larger number of zero blocks, our performance suffers slightly.

Finally, the code has been implemented in Python, which is slow compared to state of the art

compression software written in C++. For example the MFZ compressor is 50× slower than

ZFP, owing mostly to inefficiencies in array creation, type casting and bit string manipulation

in Python. A better implementation of MFZ could approach the performance of ZFP, aside

from the MHB creation and a single floating point matrix-vector multiplication (ZFP uses a

special DCT, implemented only with bit shifts). The MHB creation consists of many small

generalized eigenvector problems, which can be parallelized and are only done once at the

beginning of a compression task. We believe that a better implementation would make this

a useful compression tool for scientists working with data over meshes.

4.4 Conclusion

We have presented a block coder data compression tool that has been designed specif-

ically for non-uniform meshes. We accomplish this by partitioning the mesh with METIS,

generating the Manifold Harmonic Basis for each block, and using a set of data compression

steps that are used in ZFP [64]. This compressor shows improvement over ZFP on non-

uniform meshes in 2D, and in 3D the improvement is even larger. We leverage a collocation

method to help to generate the MHB faster, and in arbitrary dimensions. We also use clas-

sical data compression tools to adapt to some of the changes the MHB necessitates in the

compression chain. This results in an advancement of the block coder style compressors and

an improvement in the compression of scientific data on non-uniform domains.



Chapter 5

Conclusion

This thesis has covered numerical methods for the building linear and non-linear op-

erators for non-uniform data sources, with the goal of exploiting spatio-temporal correlation

to create compressed representations of data for storage.

In Chapter 1, we covered a neural network layer called QuadConv [21] that allows

for the construction of convolutional neural network architectures over non-uniform data

sources. We tested this layer on a data compression problem and showed that it performs

better than existing neural network layers.

In Chapter 2, we extended max pooling to non-uniform data sources using mesh down-

sampling techniques [58] and improved upon QuadConv. We made QuadConv converge

faster, compute faster and provide more flexibility when considering parameter and accu-

racy budgets for practical problems. We also made QuadConv easier to work with and

demonstrated how to create typical convolutional neural network architectures using this

improved interface (Appendix B).

Finally in Chapter 3, we used a collocation technique on a generalized eigenvalue

problem in order to derive a Manifold Harmonic Basis. This allowed us to generate the

MHB in 2D, 3D and beyond with faster runtimes than the popular FEM technique. Using

this method we created Mesh-Float-Zip, an error-bounded compressor for non-uniform data

sources that leverages the MHB in the same way that JPEG [111] or ZFP [64] uses the

discrete cosine transform. This technique surpassed state of the art compressors on data
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sets whose memory layout did not match their spatial correlation.

We believe there are a number of interesting directions for future research, specifically

in the compression regime that exists between neural networks and classical compressors.

Compressors in this regime have the opportunity to leverage some runtime to learn about

the data, before making high accuracy compressed representations. We believe leveraging

the lessons from both the neural methods (which has learned non-linear maps to exploit data

correlation) and the classical compressors (which use spectral structure and floating point

compression tricks) will lead to interesting and effective solutions.
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Appendix A

Quadrature Convolutions
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Figure A.1: Error analysis of GCN for the uniform grid ignition data.
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Figure A.2: Error analysis of SplineCNN for the uniform grid ignition data.
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Figure A.3: QCNN error analysis of non-uniform ignition data.
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Figure A.4: QCNN error analysis of non-uniform flow data.



Appendix B

Refining Quadrature Convolutions

A ResNetBlock, implemented on an arbitrary geometry with QuadConv and Domain

objects.

1

2 import torch
3 import torch.nn as nn
4

5 from torch_quadconv import QuadConv, Mesh_MaxPool, Mesh_AvgPool, Grid
6

7 class ResNetBlock(nn.Module):
8 def __init__(self, domain, c_in, act_fn=nn.ReLU, subsample=False, c_out=-1):
9 """

10 Inputs:
11 c_in - Number of input features
12 act_fn - Activation class constructor (e.g. nn.ReLU)
13 subsample - If True, we want to apply a "stride" inside the block
14 and reduce the output shape by 2 in height and width (spatial domain)
15 c_out - Number of output features.
16 Note that this is only relevant if subsample is True, as otherwise, c_out = c_in
17 """
18 super().__init__()
19 if not subsample:
20 c_out = c_in
21 else:
22 c_out = c_in*4 if c_out == -1 else c_out
23

24 self.block_domain = domain
25 self.block_range = domain if not subsample else domain.downsample(factor=2)
26 self.conv1 = QuadConv(domain = self.block_domain,
27 range = self.block_range,
28 in_channels = c_in,
29 out_channels = c_out,
30 output_same=True if not subsample else False,
31 bias=False) # No bias needed as the Batch Norm handles it
32

33 self.bnorm1 = nn.BatchNorm1d(c_out)
34 self.conv2 = QuadConv(domain = self.block_range,
35 range = self.block_range,
36 in_channels = c_out,
37 out_channels = c_out,
38 output_same=True,
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39 bias = False) # No bias needed as the Batch Norm handles it
40

41 self.bnorm2 = nn.BatchNorm1d(c_out)
42

43 #Transform
44 self.downsample = Mesh_AvgPool(self.block_domain.pool_map(kernel_size = 2))
45 if subsample else None
46 self.expand_downsample = nn.Conv1d(c_in, c_out, kernel_size=1, stride=1)
47 if subsample else None
48

49 self.act_fn = act_fn()
50

51 def forward(self, x):
52

53 z = self.conv1(x)
54 z = self.act_fn(self.bnorm1(z))
55 z = self.conv2(z)
56 z = self.bnorm2(z)
57

58 if self.downsample is not None:
59 x = self.downsample(x)
60 x = self.expand_downsample(x)
61

62 out = z + x
63 out = self.act_fn(out)
64 return out
65



Appendix C

Mesh-Float-Zip

C.0.1 Ignition Mesh: Full Results
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C.0.2 Flat Plate: Full Results

C.0.3 Neuron Transport: Full Results
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