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The oracle complexity model for optimization has been the source of many advances in

optimization algorithms with applications to machine learning, artificial intelligence, and high-

dimensional statistics. For example, many adaptive methods have their beginnings as algorithms

with tune-able hyper-parameters appearing in theoretical complexity bounds. This thesis investigates

three different problems from the oracle complexity model.

The first problem, presented in Chapter 2, considers the online smooth convex optimization

problem, motivated by time-varying applications. Two important results are a lower bound on

the upper bounds of general online first-order methods and an algorithm with a matching upper

bound. The algorithm presented applies Nesterov’s method to a stale cost function until sufficient

convergence has been achieved at which point the cost function is updated to the current one.

The second problem, presented in Chapter 3, considers the approximate compiling problem

of quantum computing. We focus on the CNOT+rotation gate set and consider three different

CNOT patterns. Despite the non-convexity of the problem, we find that local minima perform well

for random target circuits. We also find that simple CNOT patterns seem to achieve the lower

bound on the number of CNOTs required to exactly compile random target circuits. We also use

the optimization framework to explore and find new decompositions of particular target circuits

such as the Toffoli gate.

The third problem, presented in Chapter 4, considers the stochastic smooth non-convex

optimization problem, motivated by machine learning applications. Two important results are

a Freedman-type concentration inequality that breaks through the sub-exponential threshold to

heavier-tailed martingale difference sequences and a high probability convergence bound for stochastic

gradient descent with sub-Weibull gradient noise.
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Chapter 1

Introduction

The optimization framework presented 40 years ago in [3] has found a happy home in today’s

age of machine learning, artificial intelligence, and high-dimensional statistics. Deriving theoretical

guarantees on the number of gradient calls required to reach a certain optimization precision (or,

equivalently, on the precision for a particular number of gradient calls) can lead to new insights

and developments in existing first-order algorithms. In this thesis, we focus on three different

problems framed in such a way. For each, we give practical motivation for the problem, present new

algorithms, and provide theoretical guarantees for the algorithms.

The basic optimization framework we focus on is the following: (1) we are given a smooth

function f with Lipschitz continuous gradient, with minimum f? > −∞, and with minimizer set

X? 6= ∅; (2) we iteratively construct a sequence of vectors (xt), making one gradient call per

iteration, then output a final vector xout; and (3) theoretical guarantees are in the form of bounds

on f(xout)− f?, dist(xout, X
?)2, or ‖∇f(xout)‖2.

The online optimization framework is a variation on the basic framework: (1) we are given a

sequence of smooth convex functions (ft) with Lipschitz continuous gradients and similarly denoted

minima and minimizer sets; (2) we iteratively construct a sequence of vectors (xt), making one

gradient call per iteration, where the gradient can be the current one or a past one; and (3) theoretical

guarantees are in the form of bounds on the tracking error: lim supt f(xt)−f?t , lim supt dist(xt, X
?
t )2,

or lim supt ‖∇f(xt)‖2.

The stochastic optimization framework is another variation on the basic framework: (1) we
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are given a smooth function f with Lipschitz continuous gradient; (2) we iteratively construct a

sequence of vectors (xt), making one stochastic gradient call per iteration where the expected value

of the stochastic gradient is assumed to equal the true gradient, then output a final vector xout; and

(3) theoretical guarantees are in the form of bounds on f(xout)− f?, dist(xout, X
?)2, or ‖∇f(xout)‖2.

The approximate compiling problem is a particular application of optimization to quantum

computing. The problem can be written as

min
x∈Rn

1

2d
‖V (x)− U‖2F

where V (x) and U are both d by d unitary matrices and ‖ · ‖F is the Frobenius norm. A forthcoming

work (not included in this thesis) considers a stochastic form of the objective,

1

2d
‖V (x)− U‖2F = E

[
1

2
‖ξξ†[V (x)− U ]‖2F

]
where ξ is sampled from the uniform distribution on the unit sphere in Cd; and a sketched form of

the objective,

1

2m
‖QQ†[V (x)− U ]‖2F .

Chapter 2 deals with the online problem and was published in March 2021:

Bounds for the Tracking Error of First-Order Online Optimization Methods.

Liam Madden, Stephen Becker, Emiliano Dall’Anese. Journal of Optimiza-

tion Theory and Applications, 189:437-457, 2021.

with abstract:

This paper investigates online algorithms for smooth time-varying optimiza-

tion problems, focusing first on methods with constant step-size, momentum,

and extrapolation-length. Assuming strong convexity, precise results for

the tracking iterate error (the limit supremum of the norm of the difference

between the optimal solution and the iterates) for online gradient descent

are derived. The paper then considers a general first-order framework, where
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a universal lower bound on the tracking iterate error is established. Further-

more, a method using “long-steps” is proposed and shown to achieve the lower

bound up to a fixed constant. This method is then compared with online

gradient descent for specific examples. Finally, the paper analyzes the effect

of regularization when the cost is not strongly convex. With regularization,

it is possible to achieve a non-regret bound. The paper ends by testing the

accelerated and regularized methods on synthetic time-varying least-squares

and logistic regression problems, respectively.

Chapter 3 deals with the approximate compiling problem and was published in March 2022:

Best Approximate Quantum Compiling Problems. Liam Madden, Andrea

Simonetto. ACM Transactions on Quantum Computing, 3(2):1-29, 2022.

with abstract:

We study the problem of finding the best approximate circuit that is the

closest (in some pertinent metric) to a target circuit, and which satisfies a

number of hardware constraints, like gate alphabet and connectivity. We look

at the problem in the CNOT+rotation gate set from a mathematical program-

ming standpoint, offering contributions both in terms of understanding the

mathematics of the problem and its efficient solution. Among the results that

we present, we are able to derive a 14-CNOT 4-qubit Toffoli decomposition

from scratch, and show that the Quantum Shannon Decomposition can be

compressed by a factor of two without practical loss of fidelity.

Chapter 4 deals with the approximate compiling problem and was submitted to a journal in

November 2021. It can be found on arXiv:

High-probability Convergence Bounds for Non-convex Stochastic Gradient De-

scent. Liam Madden, Emiliano Dall’Anese, Stephen Becker. arXiv preprint:

arxiv:2006.05610, 2021.
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with abstract:

Stochastic gradient descent is one of the most common iterative algorithms

used in machine learning. While being computationally cheap to implement,

recent literature suggests it may have implicit regularization properties

that prevent over-fitting. This paper analyzes the properties of stochastic

gradient descent from a theoretical standpoint to help bridge the gap between

theoretical and empirical results. Most theoretical results either assume

convexity or only provide convergence results in mean, while this paper

proves convergence bounds in high probability without assuming convexity.

Assuming strong smoothness, we prove high probability convergence bounds

in two settings: (1) assuming the Polyak- Lojasiewicz inequality and norm

sub-Gaussian gradient noise and (2) assuming norm sub-Weibull gradient

noise. In the first setting, we combine our convergence bounds with existing

generalization bounds in order to bound the true risk and show that for a

certain number of epochs, convergence and generalization balance in such

a way that the true risk goes to the empirical minimum as the number of

samples goes to infinity. In the second setting, as an intermediate step to

proving convergence, we prove a probability result of independent interest.

The probability result extends Freedman-type concentration beyond the

sub-exponential threshold to heavier-tailed martingale difference sequences.

Chapter A contains the appendices for Chapter 4.



Chapter 2

Tracking error bounds for online convex optimization

2.1 Introduction

Modern optimization applications have increased in scale and complexity [4], and furthermore,

some applications require solutions to a series of problems with low latency. For example, in contrast

to legacy power distribution systems that were built for constant and unidirectional flow, modern

power systems that include solar power at the residential nodes must incorporate variable and

bidirectional flow. Thus, in order to preserve efficiency, control decisions, solved via optimization,

need to be made frequently, at the time scale of changing renewable generation and non-controllable

loads (e.g., seconds). Making the problem even harder is that the problem must be solved for a

greater number of control points, and so it takes longer to find a suitable solution. In this example,

and many others, batch algorithms take longer to find a suitable solution than is allowed, and so

we have to abandon them in favor of online algorithms. Motivated by applications requiring a

time-varying framework, such as power systems [5, 6], transportation systems [7], and communication

networks [8], this chapter evaluates such online algorithms.

In particular, we consider online first-order algorithms. If it takes time h > 0 to make one

gradient call (or one gradient call and one evaluation of the proximal operator), then we encode

this into the time-varying problem by discretizing the cost function with respect to h, leading to a

sequence of cost functions. The goal of an online algorithm is to track the minimum of this sequence,

taking only one step at each time.

In the presence of strong convexity, upper bounds for online gradient descent have been proved
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in, e.g., [9, 10]. For completeness, we include such an upper bound in Theorem 1. Furthermore, for

the first time it is established (Theorem 2) that this is a tight bound. Beyond online gradient descent,

there are dynamic regret bounds for online accelerated methods, but these are not shown to be

optimal [11]. This chapter goes further. First, Theorem 4 proves a lower bound for online first-order

methods in general. Then, we define a method that we call online long-step Nesterov’s method, and

prove a proportional upper bound for it in Theorem 5. In the absence of strong convexity, we show,

in Theorem 6, that regularizing online gradient descent leads to a useful bound that is not in terms

of the regret. Finally, this chapter demonstrates the performance of the algorithms by applying

them to synthetic time-varying least squares and logistic regression problems.

The rest of the chapter is organized as follows. Section 2.2 provides all the necessary

preliminaries. Section 2.3 considers online gradient descent, online Polyak’s method, and online

Nesterov’s method. Section 2.4 considers the full class of online first-order methods, including online

long-step Nesterov’s method. Section 2.5 details the results for online regularized gradient descent.

Section 2.6 demonstrates the performance of the algorithms on some numerical examples. Section

2.7 concludes the chapter.

2.2 Preliminaries

This section reviews useful results from convex analysis [12, 13, 14, 15, 16, 17], and introduces

key definitions that will be used throughout the chapter. The chapter considers functions on

a Hilbert space H with corresponding norm ‖ · ‖. We assume all functions, ft : H → R, are

proper, lower semicontinuous, convex, and strongly smooth (meaning differentiable with Lipschitz

continuous gradient); t ∈ N∪{0} denotes the time index [4, 18, 19, 20]. The discretized time-varying

optimization problem of interest is the sequence of convex problems (one for each t):

min
x∈H

ft(x) , t ∈ N ∪ {0} (2.1)

along with a time-varying minimizer set. In particular, assume that the minimizer set, denoted as

X?
t , is nonempty for each t. Let x?t denote an element of X?

t and f?t = ft(x
?
t ). We denote the set of
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sequences of L-strongly smooth functions by S ′(L). For function sequences that are additionally

µ-strongly convex, X?
t contains only one point; therefore, we can measure the temporal variability

of the optimal solution trajectory of (2.1) with the sequence

σt := ‖x?t+1 − x?t ‖, t ∈ N ∪ {0}.

We define S(κ−1, L, σ), where κ is the condition number, as the set of L-strongly smooth, κ−1L-

strongly convex functions sequences with σt ≤ σ for all t. For both S ′(L) and S(κ−1, L, σ), the

Hilbert space, along with its dimension, is left implicit since the results are independent of it.

Throughout the chapter, we will consider various measures of optimality [18, 19, 20, 4, 21,

22, 23, 24, 9]: the iterate error ‖xt − x?t ‖, the function error ft(xt) − f?t , and the gradient error

‖∇ft(xt)‖. For functions that are not strongly convex, the iterate error yields the strongest results,

while the gradient error is the weakest. That is,

‖∇ft(x)‖ ≤ L‖x− x?t ‖, (2.2)

ft(x)− f?t ≤
L

2
‖x− x?t ‖2, (2.3)

and ‖∇ft(x)‖2 ≤ 2L (ft(x)− f?t ) (2.4)

where the first two inequalities follow from standard arguments in convex analysis, and the third

inequality follows by comparing a point and a gradient step from it in the definition of strong

smoothness [25, Sec. 12.1.3]. For functions that are strongly convex, bounds in the opposite

directions can be found.

Due to the temporal variability, we cannot expect any of the error sequences to converge

to zero in general. Thus, we will characterize the performance of online algorithms via bounds

on the limit supremum of the errors, which we term “tracking” error, rather than bounds on the

convergence rate (to the tracking error ball).

Note that for S ′(L), the regret literature uses the dynamic regret, RegT :=
∑T

t=0 ft(xt)− f?t ,

as a measure of optimality [23, 21, 24, 22]. The path variation, function variation, and gradient



8

variation—respectively,

V p
T = max

{x?t∈X?
t }Tt=0

T∑
t=1

‖x?t − x?t−1‖,

V f
T =

T∑
t=1

sup
x
|ft(x)− ft−1(x)|,

and V g
T =

T∑
t=1

sup
x
‖∇ft(x)−∇ft−1(x)‖

—are used to bound the dynamic regret. On the other hand, our approach to S ′(L) is inspired by

regularization reduction [26]. Through regularization, we are able to bound the tracking gradient

error via the (σt) corresponding to the regularized problem. But, there are a couple of reasons

why our bound cannot be compared with the bounds in the regret literature. First, it is possible

for RegT /(T + 1) to be bounded while the function error has a subsequence going to infinity. For

example, let (∆t)t∈N∪{0} = (1, 0, 2, 0, 0, 3, 0, 0, 0, . . .). Then 1
T+1

∑T
t=0∆t ≤ 1 even though there is a

subsequence of (∆t) that goes to infinity. Second, in order for the function variation or gradient

variation to be finite, the constraint set must be compact. Our bound only requires that the optimal

solution trajectory lie in a compact set.

In this chapter, we consider three general algorithms: ALG(α, β, η) presented in Section 2.3,

online long-step Nesterov’s method (OLNM(T )) presented in Section 2.4, and online regularized

gradient descent (ORGD(δ, xc)), presented in Section 2.5. ALG(α, β, η) encompasses methods such as

online gradient descent, online Polyak’s method (also known as the online heavy ball method), and

online Nesterov’s method as special cases (see Table 2.1).

The proposed OLNM is motivated by the following observation: suppose that the optimizer

has access to all the previous functions; depending on the temporal variability of the problem, the

question we pose is whether it is better to use the same function for some number of iterations

before switching to a new one, or utilize a new function at each iteration. This question is relevant

especially in the case where “observing” a new function may incur a cost (for example, in sensor

networks, where acquisition of new data may be costly from a battery and data transmission

standpoint). We call the former idea “long-steps,” drawing an analogy to interior-point methods [27,
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Sec. 14], [16, Sec. 11]. Specifically, we pause at a function for some number of iterations, and we

apply a first-order algorithm with the optimal coefficients for the number of iterations, in the sense

of [28, 29, 30]. Thus, short-steps are online gradient steps. Restarting Nesterov’s method has been

shown to be optimal for strongly convex functions in, e.g. [31], [32, App. D]. It turns out that the

optimal restart count as a long-step length is optimal for the strongly convex time-varying problem.

On the other hand, the literature on batch algorithms with inexact gradient calls has shown

that accelerated methods accumulate errors for some non-strongly convex functions [33, Prop. 2], [34,

Thm. 7], [35, 36, 37]. This suggests that there may be some non-strongly convex function sequences

such that all online accelerated methods perform worse than online gradient descent. On the other

hand, only averaged function error bounds exist for online gradient descent. We get around this

via regularization; in particular, we balance the error introduced by the regularization term with a

smaller tracking error achieved by the regularized algorithm. This allows us to derive a non-averaged

error bound for ORGD.

While the chapter considers strongly smooth functions for simplicity of exposition, we note

how to extend results to the composite case (where the cost function is the sum of f and a possibly

nondifferentiable function with computable proximal operator, such as an indicator function encoding

constraints or an `1 penalty). We leave the analysis for Banach spaces as a future direction. See [38,

Sec. 3.1] for an excellent treatment of acceleration for Banach spaces.

2.3 Simple first-order methods

In this section, we focus on the class of algorithms that, given x0, construct (xt) via:

xt+1 = xt − α∇ft(yt) + β(xt − xt−1) (ALG(α, β, η))

yt+1 = xt+1 + η(xt+1 − xt)

which will be referred to as ALG(α, β, η), where α > 0 is the step-size, β is the momentum, and η

is the extrapolation-length. ALG(α, 0, 0) corresponds to online gradient descent, ALG(α, β, 0) to an

online version of Polyak’s method [39], and ALG(α, β, β) to an online version of Nesterov’s method
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Form of ALG(α, β, η) Typical parameter choice Name

ALG(α, 0, 0) 0 < α < 2
L Online gradient descent

ALG(α, β, 0) α = 4

(
√
L+
√
µ)

2 , β =
(√

L−√µ√
L+
√
µ

)2

Online Polyak’s method [39]

ALG(α, β, β) α = 1/L, β = η =
√
L−√µ√
L+
√
µ

Online Nesterov’s method [15]

Table 2.1: Special cases of ALG(α, β, η) for (ft) ∈ S(κ−1, L, σ) where µ = L/κ.

[15].

It should be pointed out that, while the analysis of online algorithms for time-varying

optimization such as ALG(α, β, η) share commonalities with online learning [40, 21, 22], the two

differ in their motivations and aspects of their implementations, as noted in [4]. For example, in

online learning frameworks, the step size may depend on the time-horizon or, in the case of an

infinite time-horizon, a doubling-trick may be utilized [41, Sec. 2.3.1]. On the other hand, every

step of an online algorithm applied to a time-varying problem is essentially the first step at that

time. Hence, the parameters of the algorithm should be cyclical or depend on measurements of the

temporal variation. We only consider the former. The simplest subset of cyclical algorithms is the

set of algorithms with constant parameters, as in ALG.

In the following subsections, we give a tight bound on the performance of online gradient

descent and analyze ALG for two examples.

2.3.1 Online gradient descent

When the function ft is strongly convex for all t, upper bounds on the tracking errors for

online gradient descent are available in the literature (see, e.g., [9, 10, 42, 43]); these results are

tailored to the setting considered in this chapter by the following theorem, which is followed by two

examples used to give intuition and prove tightness results.

Theorem 1. Suppose that (ft) ∈ S(κ−1, L, σ) and let α ∈]0, 2/(µ+L)]. Then, given x0, ALG(α, 0, 0)
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constructs a sequence (xt) such that

lim sup
t→∞

‖xt − x?t ‖ ≤ (αµ)−1σ (2.5)

where µ = κ−1L. In particular, the bound is minimized for α = 2
µ+L , in which case,

lim sup
t→∞

‖xt − x?t ‖ ≤
κ+ 1

2
σ. (2.6)

The proof follows by using the fact that the map I − α∇ft is Lipschitz continuous with

parameter c = max{|1−αµ|, |1−αL|} [44, Sec. 5.1] and x?t is a fixed point of that map. The result

straightforwardly extends to the composite case by using the nonexpansiveness property of the

proximal operator and a similar fixed point result.

2.3.2 Example: translating quadratic

For quadratic functions with constant positive definite matrix but minimizer moving at

constant speed on a straight line, the analysis of [45] can be extended, using the Neumann series, to

show that the set of (α, β, η) such that ALG has a finite worst-case tracking iterate error is exactly

the stability set of (α, β, η) in the batch setting (i.e., in a setting where the cost does not change

during the execution of the algorithm). As an example, the stability set for online Nesterov’s method

is given in [46, Prop. 3.6]. Thus, in the online setting, one should consider only (α, β, η) that are in

the batch stability set.

As a particular example, let f(x) = 1
2x

TAx, with A = diag(µ,L, L, ...). Given (α, β, η)

and initialization x0, we want to construct (ft) ∈ S(µ/L,L, σ) in such a way that the iterates of

ALG(α, β, η) trail behind (x?t ) at a constant distance. Towards this end, define ξ =
(

1−β
αµ + η

)
σ,

which will end up being the trailing distance. Let e denote the first canonical basis vector, and

define ft = f(· − x?t ) where x?t = x0 + (tσ + ξ)e. By induction, we will show that ∆t := xt − x?t =

−ξe ∀t ∈ N ∪ {0}. The base case follows by construction. Now, assume the result holds for all
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t′ ≤ t. Then,

∆t+1 = (1 + β)xt − βxt−1 − x?t+1 − α∇ft
(
(1 + η)xt − ηxt−1

)
= (1 + β)∆t − β∆t−1 + (1 + β)(x?t − x?t+1)− β(x?t−1 − x?t+1)

− α∇f
(
(1 + η)∆t − η∆t−1 − η(x?t−1 − x?t )

)
= −(1 + β)ξe+ βξe− (1 + β)σe+ 2βσe

− α∇f (−(1 + η)ξe+ ηξe+ ησe)

= −ξe− (1− β)σe− α∇f(−ξe+ ησe)

= −ξe+ αµξe− (1− β + αµη)σe

= −ξe

and so the result holds for all t by induction. Figure 2.1 shows how the iterates trail behind the

minimizers.

xt xt+1 x?t x?t+1

σ ξ − σ σ e axis

Figure 2.1: Movement of iterates and minimizers

For online gradient descent, we have ξ = (αµ)−1σ; this shows that the bound in Theorem 1 is tight.

We formalize this tightness result (which is a contribution of the present chapter) in Theorem 2.

Theorem 2. For all α ∈]0, 2/(µ+ L)] and initialization x0, ∃(ft) ∈

S(µ/L,L, σ) such that ALG(α, 0, 0) constructs a sequence (xt) with

lim sup
t→∞

‖xt − x?t ‖ = (αµ)−1σ. (2.7)

For Polyak’s method, using the usual parameters, one gets ξ =
√
κσ. On the other hand, for

Nesterov’s method one gets ξ = (2
√
κ− 1)σ. Thus, when applied to this example, the tracking

iterate error scales with the square root of the condition number for both of these methods. However,

as we will see in the next example, this is not always the case for these methods.
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2.3.3 Example: rotating quadratic

Consider the function f utilized in the previous example, and consider rotating the first two

canonical basis directions every iteration. We can reduce the full problem to one in R2. Define

ft(x) =
1

2
xTAtx

A2t =

L 0

0 µ



A2t+1 =

µ 0

0 L


and note that (ft) ∈ S(µ/L,L, σ) for all σ ≥ 0. Now, let (xt) be the sequence generated by

ALG(α, β, η) given x0. Denote a+ = (1 + β)− (1 + η)αL, a− = (1 + β)− (1 + η)αµ, b+ = −β + ηαL,

and b− = −β + ηαµ. Then,

x2t =

a− 0

0 a+

x2t−1 +

b− 0

0 b+

x2(t−1)

x2t+1 =

a+ 0

0 a−

x2t +

b+ 0

0 b−

x2t−1

=

a+a− + b+ 0

0 a+a− + b−

x2t−1 +

a+b− 0

0 a−b+

x2(t−1).

Define zt = [x2t; x2t+1]. Then,

zt =



b− 0 a− 0

0 b+ 0 a+

a+b− 0 a+a− + b+ 0

0 a−b+ 0 a+a− + b−


zt−1

:= Czt−1

= Ctz0.
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Thus, zt → z? = 0 precisely when ρ(C) < 1 (since ρ(C) = limt ‖Ct‖1/t). It is easy to see that C is

similar to the block-diagonal matrix with D and E on the diagonal blocks where

D =

 b− a−

a+b− a+a− + b+

 and E =

 b+ a+

a−b+ a+a− + b−.


Furthermore, D and E have the same trace and determinant:

tr(D) = tr(E) = a+a− + b+ + b−

det(D) = det(E) = a+a−b− + b+b− − a+a−b− = b+b−.

Thus, ρ(C) = ρ(D) = ρ(E). Note that ρ(C) = 0 when α = 1
L and β = η = 0. In fact, ALG(1/L, 0, 0)

converges exactly in just two steps. Thus, online gradient descent performs better than online

Polyak’s method and online Nesterov’s method for the rotating quadratic example. In fact, online

Polyak’s method actually diverges. For the usual parameters of Polyak’s method, ρ(C) = 6
(√

κ−1√
κ+1

)2
,

which is bigger than 1 precisely when κ >
(√

6+1√
6−1

)2
≈ 5.7. We state this more formally in Theorem

3.

Theorem 3. For all κ ≥ 6, L > 0, σ ≥ 0, ∃(ft) ∈ S(κ−1, L, σ), such that online Polyak’s method

diverges (for any non-optimal initialization x0).

In the batch setting, decreasing the step-size increases robustness to noise [45, 47]. Thus, it

makes sense that in the online setting, decreasing the step-size leads to greater stability. In other

words, online Polyak’s method diverges because of its large step-size. By reducing the stepsize to

α = 1
L , then η ≤ β < 1 is sufficient to guarantee ρ(C) < 1.

2.4 General first-order methods

In [3], Nemirovsky and Yudin proved lower bounds on the number of first-order oracle calls

necessary for ε-convergence in both the smooth and convex setting and the smooth and strongly

convex setting [3, Thm. 7.2.6]. Then, in [48], Nesterov constructed a method that achieved the

lower bound in the smooth and convex setting. His method has a momentum parameter that goes
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to one as the iteration count increases. By modifying the momentum sequence, it is possible to

achieve the lower bound in the smooth and strongly convex setting as well. This can be done by

either setting the momentum parameter to a particular constant, restarting the original method

every time the iteration count reaches a particular number, or adaptively restarting the original

method [31].

Nesterov presents the lower bounds in Theorems 2.1.7 and 2.1.13 respectively of [15]. These

theorems involve some subtleties, which we now discuss. First, Nesterov says that (xt) comes

from a first-order method if xt+1 − x0 ∈ span{∇f(x0), ...,∇f(xt)} for all t. This is the definition

that we will generalize to the time-varying setting. Second, the lower bounds do not hold for all

t. The lower bound in the smooth and convex setting only holds for t < 1
2(d− 1) where d is the

dimension of the space. In the smooth and strongly convex setting, Nesterov only proves the bound

for infinite-dimensional spaces. In fact, for finite-dimensional spaces, the lower bound can only

hold for t ≤ O(d) since the conjugate gradient method applied to quadratic functions converges

exactly in d iterations. In order to prove lower bounds that hold for all t in finite-dimensional

spaces, it is necessary to restrict to smaller classes of methods. In particular, [49] excludes the

conjugate gradient method by restricting to methods with “stationary” update rules. Third, the

lower bounds are based on explicit adversarial functions. In particular, we will use the adversarial

function that Nesterov gives in [15, 2.1.13] to construct an adversarial sequence of functions in the

time-varying setting. Thus, our lower bound only holds for infinite-dimensional spaces. It is an

open problem whether the function sequence can be modified to give a lower bound that holds for

all t in finite-dimensional spaces or whether it is necessary to restrict to smaller classes of methods.

We say that (xt) comes from a first-order method if xt+1 − x0 ∈

span{∇fτ0(x0), ...,∇fτt(xt)} where, for each t, τt ∈ {0, ..., t}. More generally, we still consider (xt)

to be from a first-order method if (xt) is a simple auxiliary sequence of some (yt) that is more

precisely first-order. Now, calling the most recent gradient at each step of the algorithm, as ALG

does, corresponds to τt = t for all t. While it is possible for an algorithm to call an older gradient,

it is not clear how this could be helpful. In section 2.4.2 will show that having τt = T bt/T c for all t
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makes it possible to build up momentum in the online setting.

2.4.1 Universal lower bound

In Theorem 4 we give a generalization of Nesterov’s lower bound for the online setting

considered in this chapter. In the proof, we omit certain details that can be found in [15, Sec. 2.1.4].

Theorem 4. Let H = `2(N). For any x0, ∃(ft) ∈ S(κ−1, L, σ) such that, if (xt) is generated by an

online first-order method starting at x0, then

‖xt − x?t ‖ ≥
√
κ− 1

2
σ.

Proof. First, set γ =
√
κ−1√
κ+1

and let c be the solution to γc = σ
√

1+γ
1−γ , namely c = log

(
σ
√

1+γ
1−γ

)
/ log(γ).

Note that γ√
1−γ2

=
√
κ−1
2 κ−1/4 =

√
κ−1
2

√
1−γ
1+γ . Set µ = κ−1L, define A as the symmetric tridiagonal

operator on `2(N) with 2’s on the diagonal and −1’s on the sub-diagonal, and let a ∈ [µ,L]. Abusing

notation to write the operators as matrices, define

ft(x) =
1

2
xT

aIt 0

0 L−µ
4 A+ µI

x− γcxT
 a1t

L−µ
4 e1

 .

Then, ∇ft(x) =

aIt 0

0 L−µ
4 A+ µI

x− γc
 a1t

L−µ
4 e1



so x?t (i) =


γc i ≤ t

γi−t+c i > t

and so ‖x?t+1 − x?t ‖2 = γ2c 1− γ
1 + γ

.

Thus, (ft) ∈ S(κ−1, L, σ). Without loss of generality, assume that x0 = 0 since shifting (ft) does

not affect membership in S(κ−1, L, σ). Then, xt(i) = 0 ∀i > t for any first-order online algorithm.
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Thus,

‖xt − x?t ‖ ≥
( ∞∑
i=t+1

γ2(i−t+c)
)1/2

= γc
γ√

1− γ2

=

√
κ− 1

2
γc
√

1− γ
1 + γ

=

√
κ− 1

2
σ.

Remark 1. If κ ≥ 5, then L−µ
4 ∈ [µ,L]. If we apply ALG(4/(L − µ), 0, 0) to the online Nesterov

function with a = L−µ
4 , then it is easy to see that ‖xt− x?t ‖ =

√
κ−1
2 σ. Thus, online gradient descent

with an appropriately large step-size performs optimally against the online Nesterov function.

In the following subsection, we will construct an algorithm that performs optimally up to a

fixed constant against the full class S(κ−1, L, σ); that is, it exhibits an upper bound that is equal to

the lower bound of Theorem 4 times a fixed constant.

2.4.2 Online long-step Nesterov’s method

There is a conceptual difficulty when it comes to adapting accelerated methods to the online

setting. Informally, in batch optimization, “acceleration” refers to the fact that accelerated methods

converge faster than gradient descent. However, the goal in the online optimization framework

considered here is reduced tracking error, and not necessarily faster convergence. As shown by the

rotating quadratic example, tracking and convergence actually behave differently. Fortunately, we

can leverage the fast convergence of Nesterov’s method towards reduced tracking error.

In this section, we present a long-step Nesterov’s method; the term “long-steps” refers to

the fact that the algorithm takes a certain number of steps using the same stale function before

catching up to the most recent function and repeating. For this particular long-step Nesterov’s

method, we are able to prove upper bounds on the tracking error (on the other hand, no bounds for

the online Nesterov’s method are yet available, and are the subject of current efforts).
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The specific sequence constructed by OLNM(T ) is defined in Algorithm 1.

Algorithm 1 OLNM(T )

Require: x0

1: y0 ← x0, z0 ← x0, a0 ← 1
2: for t = 1, 2, . . . do
3: zt+1 = yt − 1

L∇fT bt/T c(yt)
4: if T 6 | t+ 1 then

5: at+1 =
1+
√

1+4a2t
2

6: yt+1 = zt+1 + at−1
at+1

(zt+1 − zt)
7: xt+1 = xt . so xt+1 = xt = xT bt/T c
8: else if T | t+ 1 then
9: at+1 = 1

10: yt+1 = zt+1

11: xt+1 = zt+1

12: end if
13: end for

The method can be extended to the composite case by applying the proximal operator to

the z iterates. Theorem 5 gives an upper bound on the tracking iterate error of OLNM, using results

from [12, Thm. 10.34].

Theorem 5. If (ft) ∈ S(κ−1, L, σ), then, given x0, OLNM(T ) where T = c
√
κ for c > 2 such that

c
√
κ ∈ N, constructs a sequence (xt) such that

lim sup
t→∞

‖xt − x?t ‖ ≤
2c(c− 1)

c− 2

√
κσ. (2.8)

Proof. First, via standard batch optimization bounds, we have

‖xkT − x?(k−1)T ‖ ≤
2
√
κ

T
‖x(k−1)T − x?(k−1)T ‖.

Thus,

‖xkT − x?kT ‖ ≤
2
√
κ

T
‖x(k−1)T − x?(k−1)T ‖+ Tσ

≤
(

2
√
κ

T

)k
‖x0 − x?0‖+

Tσ

1− 2
√
κ

T

=

(
2
√
κ

T

)k
‖x0 − x?0‖+

T 2σ

T − 2
√
κ
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and so

‖xt − x?t ‖ = ‖xT bt/T c − x?t ‖

≤ ‖xT bt/T c − x?T bt/T c‖+ ‖x?t − x?T bt/T c‖

≤
(

2
√
κ

T

)bt/T c
‖x0 − x?0‖+

T 2σ

T − 2
√
κ

+ Tσ.

Then, taking the limit supremum, we get

lim sup
t→∞

‖xt − x?t ‖ ≤
T 2σ

T − 2
√
κ

+ Tσ

=
2Tσ (T −√κ)

T − 2
√
κ

=
2c(c− 1)

c− 2

√
κσ.

If we minimize the bound in Eq. (2.8) over c ∈ R, then we get c = 2 +
√

2 with a value of

2c(c − 1)/(c − 2) = 6 + 4
√

2 ≈ 11.66; this is in contrast with the batch setting, where c =
√

8.

However, we have the extra restriction that c
√
κ ∈ N so, in general, we will take T = b(2 +

√
2)
√
κc.

Note that the bound is asymptotically (as the condition number goes to infinity) optimal

(hence tight) up to the constant 4c(c− 1)/(c− 2). In particular, for κ ≥ (4c(c− 1)/(c− 2))2, the

bound is better than the bound for online gradient descent. However, these are bounds over a

general class of functions. One question is how the two methods fare against specific examples, as

exemplified next.

As we noted in Remark 1, online gradient descent with an appropriately large step-size

performs optimally against the online Nesterov function. Even with a typical step-size, the tracking

iterate error of online gradient descent still scales linearly with the square root of the condition

number. Furthermore, while OLNM also scales linearly with the square root of the condition number,

online gradient descent has a smaller constant. Figure 2.2(a) depicts the iterate error for algorithms

applied to the online Nesterov function with condition number equal to 500. Online gradient descent

performs the best, followed by online Nesterov’s method and OLNM. In fact, this can be seen in the
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dependence on the condition number as well. Figure 2.2(b) shows the linear dependence of the

tracking iterate error on the square root of the condition number. The constant for online gradient

descent is 0.481, the constant for online Nesterov’s method is 1.101, and the constant for OLNM is

2.491. Note that, despite OLNM having a worse constant than online gradient descent, the former’s

constant is still less than its upper bound of 2c(c− 1)/(c− 2) ≈ 11.66.
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Figure 2.2: Algorithms applied to the online Nesterov function with L = 500, d = 1000, a = (L+µ)/2,

σ = 1, and T = b(2 +
√

2)
√
κc. (a) Evolution of the iterate error for the particular example µ = 1.

(b) Tracking iterate error for varying µ.

For the rotating quadratic example, the minimizer is fixed, so OLNM has the same convergence

rate as Nesterov’s method does in the batch setting. However, with the right step-size, online

gradient descent can converge in just two steps! On the other hand, for the translating quadratic

example, since the tracking iterate error of online gradient descent scales with κ, while the tracking

iterate error of OLNM scales with
√
κ, OLNM outperforms online gradient descent for sufficiently high

condition number. In particular, Figure 2.3(a) depicts the iterate error for algorithms applied to

the translating quadratic function with condition number equal to 500. Online Nesterov’s method

performs the best, followed by OLNM and online gradient descent. Figure 2.3(b) shows the tracking

iterate error for varying condition number for OLNM (online gradient descent and online Nesterov’s
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method are left out since we analytically solved for their tracking iterate error). The constant is 7.21.

Note that this is larger than the constant for OLNM applied to the online Nesterov function. While

the online Nesterov function is a universal adversary, the translating quadratic is more particularly

adversarial for OLNM because the minimizer is maximizing its distance away from the OLNM iterates

by moving in a straight line away from the old minimizer the OLNM iterates are approaching. Also

note that this is more than half of the upper bound, showing that the upper bound is tight at least

up to a constant less than two.
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Figure 2.3: Algorithms applied to the translating quadratic function with d = 2, σ = 1, and

T = b(2 +
√

2)
√
κc. (a) shows the evolution of the iterate error for L = 500 and µ = 1. (b) shows

the tracking iterate error for L = 1 and varying µ.

2.5 Regularization

When the functions are convex, but not strongly convex, performance metrics for online first-

order methods typically rely on dynamic regret bounds. The dynamic regret is the averaged function

error. We take a different approach, however, deriving a gradient error bound via regularization.

While gradient error bounds are weaker than function error bounds, the benefit is that we bound

the error, rather than the averaged error.
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The main idea is that there is a trade-off between tracking error and regularization error.

Regularizing by any amount means that we can apply Theorem 1. In this case, increasing the

amount of regularization increases the regularization error while also decreasing the tracking error.

In the following, we provide a framework for balancing these two errors.

Given x0, let online regularized gradient descent, ORGD(δ, xc), with δ > 0, construct the

sequence (xt) via

xt+1 = xt −
2

L+ 2δ
(∇ft(xt) + δ(xt − xc)). (ORGD(δ, xc))

It is easy to see that ORGD(δ, xc) is vanilla online gradient descent for the regularized problem

ft(·; δ, xc) = ft + δ
2‖ · −xc‖2. Since we don’t vary xc in the analysis, we write ft(·; δ) for simplicity.

Now, in order to bound the algorithm error of ORGD, we need to bound the regularization

error. As with the algorithm error, we can measure the regularization error in terms of the variable,

the cost, or the gradient. Unfortunately, it is impossible, without further assumptions, to bound the

variable regularization error, ‖x? − x?r‖ where x?r is the unique minimizer to the regularized problem

[50, 51]. For example, if we regularize a constant function by any amount, then there are minimizers

arbitrarily far away from the regularized minimizer. However, if we assume the function is coercive

(‖x‖ → ∞ =⇒ f(x) → ∞), then we know the variable regularization error is bounded. But, it

is still impossible to bound it in terms of the strong smoothness constant. For example, assume

that we are going to regularize by adding δ
2‖ · ‖2. Then, for an arbitrary distance ξ, there exists

an L-smooth function such that the variable regularization error is greater than ξ. In particular,

consider f(x) = λ
2‖x− 2ξe‖2 where λ ≤ min{L, δ} and e is a unit vector. Then x?r = λ

λ+δe and so

‖x? − x?r‖ = δ
λ+δ‖2ξe‖ ≥ ξ.

Fortunately, even without coercivity, it is possible to bound the gradient regularization error

[15, Thm. 2.2.7], which allows us to bound the tracking gradient error of ORGD. However, we do

have to make an additional assumption. Loosely, we have to assume that the sequence of minimizer

sets doesn’t “drift.” To make the assumption more precise, we need some definitions.

First, let x?t (δ) = argminx ft(x; δ) for δ > 0. We know the right-hand side is a singleton by



23

strong convexity. Furthermore, since ft is proper, closed, and convex, ∂ft is maximally monotone,

and so we can apply [13, Thm. 23.44], which tells us that x?t (·) is continuous and limδ→0 x
?
t (δ) is the

unique projection of xc onto the zero set of ∂ft. Thus, we can define x?t (0) = limδ→0 x
?
t (δ). We also

have that δ 7→ ‖x?t (δ)− xc‖ is monotonically decreasing (this is not hard to show and can be found

in the proof of [15, Thm. 2.2.7]). Let R(δ;xc) = supt∈N∪{0} ‖x?t (δ)− xc‖ for all δ ≥ 0. Again, since

we do not vary xc in the analysis, we write R(δ) for simplicity. Note that R(·) is also monotonically

decreasing. Thus, if R(0) <∞, then R(δ) <∞ for all δ ≥ 0. We will assume this is true:

R(0) <∞. (bounded drift)

While this assumption precludes problems like the translating quadratic, it is realistic when the

problem is data-dependent. For machine learning problems it is common to have normalized data

and to be learning normalized weights. Then, the minimizer will, in fact, lie in a bounded set.

Let σ(δ) = supt∈N ‖x?t (δ)−x?t−1(δ)‖ for δ ≥ 0. Note that σ(δ) is bounded above by 2R(δ), via

the triangle inequality, which in turn is bounded above by R(0) <∞, via the monotonicity of R(·).

Finally, consider the function h(δ) = σ(δ)
R(δ) − 2

(
δ
L

)2
for δ ≥ 0. h(·) is continuous since x?t (·) is

continuous and R(δ) > 0 for all δ ≥ 0 (unless xc = x?t (0), which would be the trivial case). Also,

h(0) = σ(0)
R(0) > 0 and h(L) ≤ 0. Thus, via the Intermediate Value Theorem, we have just proved the

following lemma.

Lemma 1. If (ft) ∈ S ′(L) has bounded drift, then ∃ 0 < δ ≤ L s.t. δ = L
√

σ(δ)
2R(δ) .

In Theorem 6, we derive a bound on the tracking gradient error in terms of σ(δ) and R(δ).

However, since σ(δ) and R(δ) both depend on δ, it is impossible, without further information about

the function sequence, to minimize the bound explicitly with respect to δ. The δ in Lemma 1

corresponds to what the minimizing δ would be if σ(δ) and R(δ) were constant.

Theorem 6. If (ft) ∈ S ′(L) has bounded drift, then ∃ 0 < δ ≤ L such that, given x0, ORGD(δ, xc)

constructs a sequence (xt) with

lim sup
t→∞

‖∇ft(xt)‖ ≤ 2
√

2L
√
σ(δ)R(δ). (2.9)
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Proof. Let δ be as in Lemma 1. Observe,

0 = ∇ft(x?t (δ); δ)

= ∇ft(x?t (δ)) + δ(x?t (δ)− xc)

so

‖∇ft(x?t (δ))‖ = δ‖x?t (δ)− xc‖.

Thus,

‖∇ft(xt)‖ ≤ ‖∇ft(x?t (δ))‖+ ‖∇ft(xt)−∇ft(x?t (δ))‖

≤ δ‖x?t (δ)− xc‖+ L‖xt − x?t (δ)‖

≤ δR(δ) + L‖xt − x?t (δ)‖

so

lim sup
t→∞

‖∇ft(xt)‖ ≤ δR(δ) +
L(L+ 2δ)σ(δ)

2δ

= L
√

2σ(δ)R(δ) + Lσ

≤ L
√

2σ(δ)R(δ) + L
√

2σ(δ)R(δ)

= 2
√

2L
√
σ(δ)R(δ).

Note that if σ(0) ≈ σ(δ) ≈ R(δ) ≈ R(0) then the bound in Eq. 2.9 is ≈ 2
√

2LR(0), which is

of the same form but has worse constants than the bound for the algorithm which abstains from

tracking (i.e., ∀t xt = xc):

‖∇ft(xt)‖ = ‖∇ft(xc)‖

= ‖∇ft(xc)−∇ft(x?t (0))‖

≤ L‖xc − x?t (0)‖

≤ LR(0).
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Conversely, if σ(δ)� R(δ), then δ is small so σ(0) ≈ σ(δ) and R(0) ≈ R(δ). In this case, Eq. 2.9

becomes ≈ 2
√

2
√

σ(0)
R(0)LR(0)� LR(0). Thus, we can only guarantee the usefulness of ORGD when

σ(δ)� R(δ).

2.6 Illustrative numerical examples

Our code is online at github.com/liammadden/time-varying-experiments. In this section,

we consider time-varying least-squares regression and time-varying logistic regression. At each

t ∈ N ∪ {0}, we are given an input matrix A(t) ∈ Rn×d, with i-th row vector denoted by a
(t)
i , and

an n-dimensional output vector b(t), where each (a
(t)
i , b

(t)
i ) corresponds to a single data point. For

least-squares regression, b(t) ∈ Rn. For logistic regression, b(t) ∈ {−1, 1}n. For simplicity, we assume

the inputs are constant across time, i.e. At = A for all t, while only the outputs change. This type

of time-variation fits applications with time-series data where the time-dependency is not captured

by any of the input features. For example, a problem may have a discrete number of states that it

switches between based on a hidden variable.

The cost function for least-squares regression is

ft(x) =
1

2

n∑
i=1

(
〈ai, x〉 − b(t)i

)2

=
1

2
‖Ax− b(t)‖2

and for logistic regression is

ft(x) =
1

n

n∑
i=1

log
(

1 + exp(−b(t)i 〈ai, x〉)
)
.

The least-squares cost function is strongly convex while the logistic cost function is only strictly

convex. However, it can be shown that gradient descent still achieves linear convergence when

applied to the logistic cost function [52].

A “weight vector,” x ∈ Rd, predicts an output, b, from an input, a. For least-squares

regression, b = 〈a, x〉. For logistic regression, b = sign(〈a, x〉); more precisely, x predicts b = 1 with

https://github.com/liammadden/time-varying-experiments
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probability (1 + exp(−〈a, x〉))−1 and b = −1 with the remaining probability. The minimizer, x?t , of

the respective objective function is the “optimal” weight vector.

2.6.1 Least squares regression

For the least-squares regression we considered the case n = 20 and d = 5. We generated A

by defining its singular value decomposition. For its left and right-singular vectors, we sampled

two Haar distributed orthogonal matrices, U ∈ Rn×n and V ∈ Rd×d. We let its singular values

be equally spaced from 1/
√
κ to 1. We generated bt by varying x?t via a random walk with σ = 1

and adding a low-level of Gaussian noise (mean, 0; standard deviation, 10−3) to the corresponding

outputs. We initialized x?0 as the vector of ones. For each κ, we ran the experiment 200 times and

took the average of the tracking errors.

For OLNM, we set T = b(2 +
√

2)
√
κc. However, instead of updating the x iterate by the z

iterate only every T iterations, we updated it every iteration. Doing so works better in practice,

though we lose the theoretical guarantees of Theorem 5. However, the theory only requires that the

x iterates do not move away from the minimizer that the z iterates are converging to. Not updating

the x iterates ensures they do not move away, but it is too conservative in practice.

For all the algorithms, we initialized x0 = x?0 so that we wouldn’t need a long “burn-in”

period while waiting for convergence to the tracking error. We computed the tracking error as the

maximum error over the 5th cycle of T . Figure 2.4 shows the results. OLNM performs better than

online gradient descent, however, online Nesterov’s method performs much better than both of the

other methods, despite its lack of guarantees.
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Figure 2.4: Least-squares regression with random data matrix and random walk variation of the

minimizer.

2.6.2 Logistic regression with streaming data

For logistic regression we again considered the case n = 20 and d = 5. We generated A in

the same way as for least-squares regression, but with singular values drawn from the uniform

distribution on (0,1) and then scaled to have maximum singular value equal to 2
√
L (since the

strong smoothness constant of the cost function is ‖A‖22/4). We initialized bt from the Rademacher

distribution and uniformly at random chose one label to flip each time step.

A classic problem that logistic regression is used for is spam classification. The problem is

to predict whether an email is spam or not based on a list of features. Since emails are received

in a streaming fashion, this is a time-varying problem. Thus, when an email first arrives, we may

report that it is spam, but then later realize it is not, or vice versa. Such an extension of spam

classification can be incorporated into the time-varying logistic regression framework.

We let xc be the zero vector. As a weight vector, xc predicts 1 or −1 with equal probability.

For each L, we approximated the solution to the fixed point equation δ = L
√

E(σ(δ))
E(R(δ)) where the

expectation is taken over A and the bt’s. Figure 2.5(a) shows how σ(δ) and R(δ) vary with L. The

ratio between σ(δ) and R(δ) stays constant at ≈ 0.5.

We ran the experiment 200 times and took the average of the tracking errors. We calculated
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the tracking error using windows of 100 iterations and stopping when the maximum error over the

last two windows was the same as over the last window. Figure 2.5(b) shows the results. Online

gradient descent (which lacks theoretical tracking gradient error bounds) performs slightly better

than ORGD and both outperform xc. Thus, with only one label flipping every time step, it is still

possible to track the solution. However, if we sufficiently increased the number of labels that flip

every time step, then it would be better to just guess the labels, as xc does.

200 400 600 800 1000

L

0

0.01

0.02

0.03

0.04

0.05

0.06

S
a

m
p

le
 m

e
a

n

( )

R( )

(a)

200 400 600 800 1000

L

7

8

9

10

11

12

S
a

m
p

le
 m

e
a

n
 o

f 
tr

a
c
k
in

g
 g

ra
d

ie
n

t 
e

rr
o

r

online gradient descent

ORGD

x
c

(b)

Figure 2.5: Logistic regression with random data matrix and randomly flipping labels.

2.7 Conclusions

By categorizing classes of functions based on the minimizer variation, this chapter was able

to generalize results from batch optimization to the online setting. These results are important for

time-varying optimization, especially for applications in power systems, transportation systems,

and communication networks. We showed that fast convergence does not necessarily lead to small

tracking error. For example, online Polyak’s method can diverge even when the minimizer variation

is zero. On the other hand, online gradient descent is guaranteed to have a tracking error that does

not grow more than linearly with the minimizer variation. We also gave a universal lower bound
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for online first-order methods and showed that OLNM achieves it up to a constant factor. It is a

future research direction to consider more deeply the connection to the long-steps of interior-point

methods and see if a satisfactory criteria can be found for adaptively deciding when to long-step.

Perhaps, this enquiry may eventually lead to error bounds for online Nesterov’s method itself.



Chapter 3

Best approximate quantum compiling problems

3.1 Introduction

With the steady advances in quantum hardware and volume [53], quantum computing is well

on track to become widely adopted in science and technology in the near future. One of the core

challenges to enable its use is the availability of a flexible and reliable quantum compiler, which can

translate any target quantum circuit into a circuit that can be implemented on real hardware with

gate set, connectivity, and length limitations.

Since the celebrated Solovay-Kitaev theorem [54, 55], quantum compiling has been a rich

research area. Works have investigated how to efficiently map different gates into canonical (universal)

gate sets up to an arbitrary accuracy [56, 57, 58, 59, 60, 61, 62, 63], or how to “place” the target circuit

onto the real connectivity-limited hardware [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]

A more holistic strategy in quantum compiling has been the construction of universal para-

metric circuits to serve as templates to compile any target circuit. This line of research, which we

will call decomposition-based, focuses primarily on templates based on the versatile CNOT+rotation

gate set [79, 80, 81, 82, 83, 84, 85]. These works unveiled fundamental lower bounds on the number

of CNOTs that almost all target circuits require in order to be compiled in such a gate set and

delivered a constructive method for doing so, the quantum Shannon decomposition (QSD), which was

only a factor of two off from the lower bound of efficiency. This research is formalized mainly in the

language of Lie theory as a recursive sequence of Cartan decompositions. Despite the constructive

and sound theory, the QSD decomposition does not have the flexibility of trading off precision and
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length.

The quantum compiling problem in its essence can be cast as an optimization problem in the

space of unitary matrices. Here one needs to find a unitary matrix that can be realized in hardware

(with various constraints, e.g., gate set and connectivity) that is the “closest” to a target unitary

(i.e., the circuit that one wants to realize, or compile). Here “closest” is intended with respect to a

pertinent metric. On the one hand, this optimization problem could encompass the whole quantum

compiling research; on the other hand, it is a very difficult mathematical problem and even for a

small number of qubits cannot be stored in memory. Recently, a series of papers [86, 2], have revised

this optimization-based compiling approach with some simplifying assumptions and heuristics, and

have introduced the idea of computing the cost and its gradients in a quantum-assisted way. With

the same optimization lens, but with other classical heuristics, the works [87, 88] have looked at

hierarchical compilations, whereby one need not compile a unitary directly to a two-qubit gate

circuit, but can instead start with higher-qubit gates, and then continue recursively to the two-qubit

gate target. Finally, the recent works [89, 90] arrange the CNOTs to explicitly decouple the qubits

one at a time using a particular cost function. Moreover, they provide numerical evidence that

their approach can compile arbitrary target circuits very close to the lower bound on the number of

CNOTs.

In this chapter, we aim at analyzing the optimization approach in more depth and offering

some sound evidence on the justification of critical assumptions and solution methods. Further, we

aim at helping to bridge the gap between Cartan decomposition-based research and optimization-

based compiling. Our approach consists in formulating best approximate compiling problems,

which trade-off exact compilation with constraint violation. In particular, we offer the following

contributions.

• We start by analyzing the quantum compiling mathematical problem in the CNOT+rotation

gate set and show how to construct versatile “CNOT units,” i.e., elementary building blocks,

that can be used to parametrize any circuit of a given number of qubits;
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• We show that optimizing over the parametrized circuit consists of optimizing the structure

(i.e., where to place the CNOT units) and optimizing the rotation angles of the rotation gates.

We show that the former is largely unimportant once past the so-called surjectivity bound

(even when imposing hardware constraints), while the latter is easy from an optimization

perspective, by using e.g., Nesterov’s accelerated gradient descent [48, 91];

• With the intention to further compress the compiled circuit, allowing for approximation

errors in terms of gate fidelity, we propose a novel regularization based on group LASSO [92],

which (among other things) can reduce the length of the QSD down to the CNOT theoretical

lower bound without affecting fidelity noticeably (i.e., a factor of two compression);

• Various numerical results support our findings. In particular, we showcase how to use our

approach to discover new decompositions in the CNOT+rotation gate set of special gates

(e.g., the Toffoli gate) and how to use the compression mechanism as an extension of any

compilation code available (e.g., Qiskit transpile [93]) that can trade-off accuracy for circuit

length, where length is the number of CNOTs.

While discussing the main contributions, the chapter focuses on three complementary goals,

[G1] Approximate quantum compiling for random unitary matrices: here the goal is to derive

results in terms of the number of CNOTs to use to compile any given random unitary

matrix, with connectivity constraints;

[G2] Approximate quantum compiling for special gates: here the goal is to derive results in terms

of the number of CNOTs to use to compile special gates;

[G3] Approximate quantum compiling for circuit compression: here the goal is to derive results

that allow for compression of circuits, freeing the possibility to have inexact compilation.

Organization. This chapter is organized as follows. In Section 3.2, we report the

mathematical and physical preliminaries to our algorithmic development. In Section 3.3, we
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formalize the approximate quantum compiling problem as a mathematical program. In Section 3.4,

we devise a programmable unit (the two-qubit CNOT unit) with which we can build any circuit. In

Section 3.5, we discuss the property of the mathematical program introduced in Section 3.3 when

specified for the parametric circuit presented in Section 3.4.

From Section 3.6 on, we focus on particular layout patterns, namely the sequential, spin, and

Cartan, and we present their properties. In Section 3.7, we discuss the use of gradient descent

to optimize the rotation angles once the layout is fixed, and we showcase numerical results in

Sections 3.7.2-3.7.3. Section 3.8 discusses our proposed compression strategy to trade-off accuracy

and length, both theoretically and numerically. We then conclude in Section 3.9.

3.2 Preliminaries

We work with n-qubit quantum circuits, which are represented either by a collection of ordered

gate operations, or by a d by d unitary matrix with d = 2n. The class of unitary matrices of

dimension d × d together with the operation of matrix multiplication have an important group

structure [94], denoted as the unitary group U(d). In particular, the group is a Lie group of

dimension d2 as a real manifold; we let u(d) be its Lie algebra, which consists of anti-Hermitian

matrices. Unitary matrices with determinant equal to 1 are called special unitary matrices. Special

unitary matrices of dimension d× d together with the operation of matrix multiplication form the

the special unitary group of degree d: SU(d), which is a Lie group of dimension d2 − 1 as a real

manifold. We let su(d) denote its Lie algebra, which consists of traceless anti-Hermitian matrices.

A useful property of the determinant det(·) of any squared d by d matrix A and scalar c is that

det(cA) = cdA. Hence if U ∈ U(d) then U/ det(U)1/d ∈ SU(d). Since scalars (e.g., global phases in

quantum computing) are easy to implement on a quantum computer (and in fact unimportant),

we normalize unitary matrices as above, and so we only need to know how to “work with” special

unitary matrices. We remark that if U ∈ SU(d), then adding any global phase multiple of 2π/d

does not alter the matrix determinant, i.e., ei
2πm
d U ∈ SU(d) as well for any integer m ∈ Z. The

equivalence classes from this relation form the projective special unitary group, PSU(d), which is
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isomorphic to the projective unitary group, PU(d) := U(d)/U(1). Thus, compiling a matrix from

SU(d) also provides a compilation for its d− 1 equivalent matrices in PSU(d).

A single-qubit gate on the jth qubit is a unitary matrix of the form I2j−1 ⊗ u⊗ I2n−j where

u ∈ U(2), Iq is the identity matrix of dimension q, and ⊗ represents the Kronecker product. An

important set of matrices in U(2) is the set of Pauli matrices, which we denote with their usual

notation as X,Y, Z, which are unitary, Hermitian, traceless, and have determinant equal to −1. From

the Pauli matrices, one obtains the rotation matrices Rx(θ), Ry(θ), Rz(θ) by matrix exponentiation.

The rotation matrices are special unitary. An important fact that we use extensively in this chapter

is that any u ∈ SU(2) can be written as a product of any three rotation matrices with no consecutive

two the same [54].

Among multiple-qubit gates, we focus on the two-qubit CNOT gate, or controlled-X gate,

with control qubit j and target qubit k, which is the matrix

CNOTjk = I2j−1 ⊗

1 0

0 0

⊗ I2n−j

+



I2j−1 ⊗

0 0

0 1

⊗ I2k−j−1 ⊗X ⊗ I2n−k if j < k

I2k−1 ⊗X ⊗ I2j−k−1 ⊗

0 0

0 1

⊗ I2n−j if k < j

.

For example, for n = 2, we have

CNOT12 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, CNOT21 =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


.

Note that for n = 2, CNOT has determinant −1, and so we have to normalize it. On the other

hand, for n > 2, CNOT has determinant 1.
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3.3 Approximate quantum compiling as mathematical optimization

We are interested in compiling a quantum circuit, which we formalize as finding the “best”

circuit representation in terms of an ordered gate sequence of a target unitary matrix U ∈ U(d),

with some additional hardware constraints. In particular, we look at representations that could

be constrained in terms of hardware connectivity, as well as circuit length, and we choose a gate

basis in terms of CNOT and rotation gates. The latter choice is motivated by an implementation in

the Qiskit software package [93]. We recall that the combination of CNOT and rotation gates is

universal in SU(d) and therefore it does not limit compilation (i.e. we can compile everything with

only CNOTs and rotations) [54].

To properly define what we mean by “best” circuit representation, we define the metric as

the Frobenius norm between the unitary matrix of the compiled circuit V and the target unitary

matrix U , i.e., ‖V − U‖F. This choice is motivated by mathematical programming considerations,

and it is related to other formulations that appear in the literature (see Remark 2).

We are now ready to formalize the approximate quantum compiling problem as follows.

Given a target special unitary matrix U ∈ SU(2n) and a set of constraints, in terms

of connectivity and length, find the closest special unitary matrix V ∈ V ⊆ SU(2n), where

V represents the set of special unitary matrices that can be realized with rotations and

CNOT gates alone and satisfy both connectivity and length constraints, by solving the

following mathematical program:

(AQCP) min
V ∈V⊆SU(2n)

f(V ) :=
1

2
‖V − U‖2F. (3.1)

Note that the cost function can be equivalently written

1

2
‖V − U‖2F =

1

2
Tr[U †U − U †V − V †U + V †V ] =

1

2
Tr[2I]− 1

2
Tr[U †V ]− 1

2
Tr[V †U ]

= d− IRe Tr[U †V ] (3.2)

where we used that U and V are unitary matrices.
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We call (3.1) the approximate quantum compiling (master) problem (AQCP). A solution of

the problem is an optimal V indicated as V ∗, along with an ordered set of gate operations that

respect the constraints.

If V ∗ is such that the cost is null, then we say that the compilation is exact, otherwise it is

approximate and the approximation error is computed by the cost 1
2‖V ∗ − U‖2F. Without further

specifications (and simplifications), Problem (3.1) is intractable but for very small circuits. How to

efficiently solve (3.1) is our aim.

Remark 2. In [2], a different metric was used, namely the Hilbert-Schmidt test defined as

CHST (U, V ) = 1− 1

d2
|Tr[V †U ]|2 =

d+ 1

d
(1− F̄ (U, V )),

where F̄ (U, V ) is the fidelity averaged over the Haar distribution. Given that f(V ) = 1
2‖V − U‖2F =

d− IReTr[V †U ], then IReTr[V †U ] = d− f(V ). Hence,

F̄ (U, V ) = 1− d

d+ 1
CHST (U, V ) = 1− d

d+ 1
+

1

d(d+ 1)
((IReTr[V †U ])2 + (IImTr[V †U ])2) ≥

1− d

d+ 1
+

1

d(d+ 1)
(d− f(V ))2 =: F̄F(U, V ),

where we have defined the new quantity F̄F(U, V ) as the Frobenius fidelity, which is always lower

than the F̄ (U, V ). By minorization arguments, minimizing f(V ) has the effect of maximizing the

Frobenius fidelity.

The stepping stones of our work are the papers [86, 2]. There, the AQCP is approached by a

bi-level technique. Since V needs to be sought in the space of matrices that can be realized with

rotation and CNOT gates, one can solve for V by interleaving an optimization on the structure (at

fixed length), i.e., which gate needs to be implemented where, and an optimization on the rotation

angles. The first problem (deciding the structure) is combinatorial and non-convex, and [86, 2]

propose a meta-heuristic based on simulated-annealing and compactifications, while the second

problem (deciding the rotation angles) is continuous and non-convex, and [86, 2] include a gradient

descent algorithm. [86, 2] also offer an algorithm to fix the CNOT structure, more or less arbitrarily,
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HW (A) (B)

Figure 3.1: Possible two-qubit gate units structures. HW depicts the hardware connectivity of
a four-qubit quantum computer. (A) the structure, or ansatz, proposed in [2], where each block
represents a CNOT gate with rotation gates before and after, is easily implementable but may miss
some hardware connections or introduce some that are not there; (B) a possible sequential structure,
which alternates among all the possible two-qubit blocks and could capture hardware connectivity
better.

and optimize only for rotation angles, which is more efficient in terms of computation time, but less

optimal.

Despite the encouraging results, key challenges in these works remain. First, optimizing the

structure via simulated-annealing is far from optimal and it can be very time consuming. But most

importantly it is physics-agnostic, therefore one may wonder if one could do better by using physics.

Second, fixing the structure, as is done in [2], is by no means universal nor does it mirror the

hardware connectivity; a better structure could be a sequential structure (see Figure 3.1).

Third, the gradient descent algorithm used in [2] seems to work surprisingly well, despite the

non-convexity of the problem at hand, and one may wonder why this is so, which is a non-trivial

question.

The rest of this chapter answers these questions by using a pertinent parametrization of the

matrix V in terms of CNOTs and rotation gates.

3.4 A programmable two-qubit gate and the CNOT unit

We start by defining a flexible two-qubit gate, which is parametrized by four rotation angles,

and which will be the building block of the parametric circuit.

Let us focus for now on basis set constraints alone. Given the target special unitary U ∈ SU(d),

compiling means to find a product of matrices from the basis set (as said CNOT+rotations) that
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either approximates or equals U . We define the “length” of the compilation as the number of

CNOTs in the product. In 2004, Shende, Markov, and Bullock derived a universal lower bound

on the length for exact compilation in this setting [81]. The bound specifies a sufficient minimal

number of CNOTs for exact compilation, for all the matrices in SU(d). And, while a particular

special unitary matrix may be exactly compiled with a smaller length than the universal lower

bound (the bound is not necessary), there exists a special unitary matrix that cannot (the bound

is sufficient and necessary for at least one special unitary matrix). Moreover, the set of special

unitary matrices that can be compiled with a smaller length than the universal lower bound has

measure zero in SU(d).

We summarize the proof of this fact, as it motivates our parametrization ideas.

Lemma 2. [81, Prop. III.1] The set of special unitary matrices U ∈ SU(d), d = 2n, that do not

need at least
⌈

1
4(4n − 3n− 1)

⌉
CNOTs to be exactly compiled has measure zero in SU(d).

Proof. First, since each rotation gate has 1 real parameter while SU(d) has real dimension d2 − 1,

Sard’s theorem [95] can be used to show that the set of special unitary matrices that do not need

d2 − 1 rotation gates to be exactly compiled has measure zero in SU(d) [81, Lem. II.2]. Thus, if a

product of matrices from the basis set can be reduced to a product with less than d2 − 1 rotation

gates, then it is in the measure zero set. In particular, more than 3 consecutive rotation gates on

the same qubit in a product can be reduced to only 3 rotation gates. So, without CNOTs, any

product can be reduced to one with only 3n < d2 − 1 rotation gates. Furthermore, Rz commutes

with the control of CNOTs and Rx commutes with the target of CNOTs. Thus, whenever 3 rotation

gates are applied after a CNOT on either the control or target qubit, we can rewrite them as 3

rotation gates such that one of the rotation gates commutes with the CNOT. Thus, we can reduce

any product of matrices from the basis set to a product with 3 rotation gates applied to each qubit,

followed by CNOTs, each followed by only 4 rotation gates. Thus, a product with L CNOTs can be

reduced to a product with 4L+ 3n rotation gates. So, the set of special unitary matrices that do

not need at least
⌈

1
4(4n − 3n− 1)

⌉
CNOTs to be exactly compiled has measure zero in SU(d) [81,
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Prop. III.1].

Therefore, for an arbitrary n-qubit circuit, one would need at least Ω(4n) CNOT gates for

exact compilation. Henceforth, we refer to the bound
⌈

1
4(4n − 3n − 1)

⌉
as the theoretical lower

bound, or TLB for short. Figure 3.2 gives a glimpse of how the reduction in terms of CNOTs and

rotations can be carried out for a 3-qubit circuit.

q1 A B C

q2 D E F G

q3 M N O

≡

q1 ARz RyRz RyRz

q2 DRx RyRx RyRz RyRz

q3 MRyRx RyRx RyRx RyRx

Figure 3.2: An example of an equivalent quantum circuit with CNOT and rotations gates, all
the capital letter gates, e.g. A, are single-qubit unitaries that can be compiled via three rotation
gates up to an irrelevant global phase. Note that the Ry next to M results from flipping the two
upward-facing CNOTs and has angle −π/2.

While [81] only proved a lower bound, their reasoning motivates a flexible parametric circuit

construction. Since every product of matrices from the basis set can be reduced to a product of the

form described in the previous paragraph (see also Figure 3.2), we will consider products of that

form with different sequences of CNOTs. Let CUj→k(θ1, θ2, θ3, θ4) be the matrix represented by

j Ry(θ1) Rz(θ2)

k Ry(θ3) Rx(θ4) .

We call this a “CNOT unit” and we use it as a programmable two-qubit block in the parametric

circuit. Define

J(L) = {(j1 → k1, ..., jL → kL) | jm < km ∈ {1, . . . , n} for all m ∈ {1, . . . , L}},

as the set of L-long lists of pairs of control-target indices with the control index smaller than the

target index. The latter constraint is without loss of generality since a CNOT can be flipped with

y-rotations (Ry(π/2) on the left of the control and right of the target, and Ry(−π/2) on the right of

the control and left of the target). The set J(L) represents all the possible CNOT unit sequences that

one can have of length L. In Figure 3.2, we have one element of J(4) as (1→ 2, 1→ 3, 2→ 3, 2→ 3).



40
1

2

3

4

q1

q2

q3

q4

HW

Figure 3.3: Decomposition of a realizable quantum circuit in terms of Vct(θ). The first three
one-qubit gates for all qubits are rotation gates, Rz, Ry, Rz, while the two-qubit blocks represents
CNOT units as specified. Here L = 4, hence there are 28 rotation angles variables. Moreover,
ct = (1→ 2, 2→ 3, 1→ 3, 3→ 4), so the hardware connectivity is satisfied.

The cardinality of J(L) can be shown to be |J(L)| = (n(n− 1)/2)L. The notation ct is used

for an element of J(L), i.e. an L-long list of pairs defining the location of our CNOT units. For

example, ct could be (1 → 2, 1 → 3, 2 → 3, 2 → 3). Given ct ∈ J(L), define ct(i) as the pair at

position i and let Vct : [0, 2π)3n+4L → SU(2n) be the following circuit

Vct(θ) =CUct(L)(θ3n+4L−3, ..., θ3n+4L) · · ·CUct(1)(θ3n+1, ..., θ3n+4)

[Rz(θ1)Ry(θ2)Rz(θ3)]⊗ · · · ⊗ [Rz(θ3n−2)Ry(θ3n−1)Rz(θ3n)],

where we have collected all the angles (θ1, . . . , θ3n+4L) into the vector θ. The circuit Vct corresponds

to the reduced product in the lower bound proof and will be the main object of our study: it will

be the circuit blueprint for any circuit realizable in hardware (see also Figure 3.3).

Remark 3. A useful circuit decomposition is the quantum Shannon decomposition (QSD), proposed

in 2006 by Shende, Bullock, and Markov, which uses 23
484n− 3

22n+ 4
3 CNOTs to decompose any n-qubit

circuit [82]. This number of CNOTs is only twice the TLB. The resulting circuit is formalized

as a sequence of recursive Cartan decompositions in [84], and Theorems 4, 8, and 12 in [82]

can be recursively used to (uniquely) find an explicit ct corresponding to the QSD. For n = 3,

ct = (1 → 2, 1 → 2, 1 → 2, 2 → 3, 1 → 3, 2 → 3, 1 → 2, 1 → 2, 1 → 2, 2 → 3, 1 → 3, 2 → 3, 1 →

3, 1→ 2, 1→ 2, 1→ 2, 2→ 3, 1→ 3, 2→ 3, 1→ 2, 1→ 2, 1→ 2) [84, Fig. 3].

At this point, we can already reformulate the approximate quantum compiling problem (3.1),
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in the equivalent form

(AQCP-CT) min
L∈[1,...,L̄],θ∈[0,2π)3n+4L,ct∈C(L)

fct(θ) :=
1

2
‖Vct(θ)− U‖2F, (3.3)

where the set C(L) represents the set of L-long realizable lists in hardware (for connectivity

limitations), and L̄ is the length limit.

Problem (3.3) is by no means easier than the original Problem (3.1). However, it is instructive

to understand its properties and this will help us devise better solution strategies. For instance, if

we were to drop hardware constraints and adopt the QSD strategy of Remark 3, then Problem (3.3)

could simplify into:

(AQCP-QSD) min
L= 23

48
4n− 3

2
2n+ 4

3
,θ∈[0,2π)3n+4L,ct=QSD(n)

fct(θ) :=
1

2
‖Vct(θ)− U‖2F, (3.4)

which is a non-convex (but continuous) optimization problem in the θ variables. In fact, since the

structure is fixed, the only free parameters are the rotation angles. But on the other hand, can we

do better in terms of number of CNOTs and in terms of incorporating the hardware constraints?

3.5 The optimization landscape

We start by deriving some useful properties of the cost function fct(θ) := 1
2‖Vct(θ) − U‖2F

given the target unitary U and a fixed structure. In particular, we will look at Vct and its properties

of differentiability, as well as the first and second order derivatives of fct, which are important for

optimization purposes.

First, we would like to prove that Vct(θ) is a smooth mapping in the rotation angles θ. To

do so, we apply the partial derivative operator, ∂
∂θk

, to Vct, with respect to an arbitrary angle θk,

where k is an index in [1, 3n+ 4L]. We further let Rgk be the rotation gate associated to that angle

and σgk be the respective Pauli operator (g can be x, y, z depending on which type of rotation gate

the angle refers to). With this notation, d
dθk
Rgk(θk) = − i

2σgkRgk(θk), and d2

dθ2k
Rgk(θk) = −1

4Rgk(θk).

Thus, if a sequence of partial derivative operators are applied to Vct, to compute its gradient, or

Hessian, or higher order derivative, the result is a complex constant times Vct with Pauli gates

inserted at specific locations. Thus, we have proved the following theorem.
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Theorem 7. The circuit Vct(θ) is infinitely differentiable with respect to the rotation angles θ.

Next, we look at the cost fct(θ). Using Eq. (3.2), we get

∂

∂θk

1

2
‖Vct(θ)− U‖2F = −IRe Tr

[
∂

∂θk
Vct(θ)†U

]
and

∂2

∂θk∂θ`

1

2
‖Vct(θ)− U‖2F = −IRe Tr

[
∂2

∂θk∂θ`
Vct(θ)†U

]
. (3.5)

In particular, by the fact that d2

dθ2k
Rgk(θk) = −1

4Rgk(θk), for the diagonal elements:

∂2

∂θ2
k

1

2
‖Vct(θ)− U‖2F =

1

4
IRe Tr[Vct(θ)†U ] =

d

4
− 1

8
‖Vct(θ)− U‖2F . (3.6)

Now we are ready to show that fct(θ) is strongly smooth in the optimization sense (i.e., its gradient

is Lipschitz continuous).

Theorem 8. For all θ, the Hessian of fct(·) = 1
2‖Vct(·) − U‖2F evaluated at θ has spectrum in

[−(3n+ 4L− 3/4)d, (3n+ 4L− 3/4)d].

Proof. First of all, the Hessian is real and symmetric, so its eigenvalues lie on the real line. Then,

note that for all unitary matrices, W ∈ U(d): ‖W‖2F = d and the farthest unitary matrix from any

W is −W . Thus, IRe Tr[·†·] : U(d)2 → [−d, d]. Hence, using (3.5), we can show that each off-diagonal

element of the (3n+ 4L) by (3n+ 4L) Hessian matrix is bounded in absolute value by d. As for the

diagonal elements, Eq. (3.6) says that they are bounded below by −d/4 and above by d/4.

With this in place, we can use Gershgorin’s disc theorem [96, Theorem 6.1.1.] with centers in

[−d/4, d/4] and radii in [0, (3n+ 4L− 1)d] to prove the claim.

Theorem 8 says that fct(θ) is a strongly smooth function (since the spectrum of the Hessian

is uniformly bounded), which implies fast convergence to a stationary point (i.e., points for which

the gradient vanishes) for gradient descent. In addition, even though fct(θ) is non-convex, gradient

descent with random initialization [97], perturbed gradient descent [98], and perturbed Nesterov’s

method [99] all converge to second-order stationary points under strong smoothness. Second-order
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stationary points are stationary points where the Hessian is positive semi-definite, and therefore

are local minima. So, applying these methods to fct(θ), we will be sure to reach at least a local

minimum.

In some cases, such as in non-convex low rank problems, most second-order stationary points

are, in fact, global minima [100]. Even though this is not the case for fct, we do not need to converge

to a global minimum necessarily. We would be content finding a θ∗ such that Vct(θ
∗) is a global

minimum up to a global phase transformation.

To this aim, we now present supporting facts that lead us to conjecture that, under certain

conditions, we can easily find global minima up to a global phase transformation.

First, we report a technical lemma.

Lemma 3. Indicate with ⊥IRe〈·,·〉 the orthogonal complement with respect to the IReTr[(·)†(·)] operation.

The orthogonal complement u(d)⊥IRe〈·,·〉 is the set of Hermitian matrices and su(d)⊥IRe〈·,·〉 = u(d)⊥IRe〈·,·〉+

spanR{iI}.

Proof. Recall that u(d) consists of anti-Hermitian matrices and su(d) consists of traceless anti-

Hermitian matrices. The orthogonal complement u(d)⊥IRe〈·,·〉 is the set of all the matrices H for which

IReTr[H†U ] = 0, for all U anti-Hermitian. By direct calculation, indicating with hij the element i, j

of matrix H, and with ui,j the one of matrix U , as well as h̄i,j the conjugate of hi,j , then,

IReTr[H†U ] = IRe

∑
i

∑
j

h̄i,jui,j

 .
If the above has to be 0 for all anti-Hermitian matrices U , then H has to be Hermitian by uj,i = −ūi,j

(in particular, the diagonal of U is only imaginary). On the other hand, if H is Hermitian (therefore

its diagonal is only real), then,

IReTr[H†U ] = IRe
[∑
j>i

h̄i,jui,j +
∑
j<i

hi,j ūi,j

]
︸ ︷︷ ︸

=0

+ IRe
[∑
i=j

h̄i,jui,j

]
︸ ︷︷ ︸

=0

= 0

Hence, the orthogonal complement u(d)⊥IRe〈·,·〉 is the set of Hermitian matrices.
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In addition, su(d) consists of traceless anti-Hermitian matrices, so its orthogonal complement

consists not only of Hermitian matrices, but also of any matrix of the form H + ciI, where H is

Hermitian and c ∈ R. Thus, the thesis follows.

With the Lemma in place, we are ready for another intermediate result that pertains to

stationary points.

Theorem 9. Let U ∈ SU(d) be a special unitary matrix, and V (·) : Rp → SU(d) be a function

that is infinitely differentiable, surjective, and of constant rank. For all U ∈ SU(d), a parameter

value θ ∈ [0, 2π)p is a stationary point of the cost f(·) = 1
2‖V (·)− U‖2F if and only if V (θ)†U has

eigenvalues in {eiα,−e−iα} for some α ∈ [0, 2π).

Proof. Assume the hypotheses. We have the following line of implications:

θ is a stationary point of f
1⇐⇒ IRe Tr

[
∂

∂θk
V (θ)†U

]
= 0 for all k ∈ [p]

2⇐⇒ U ∈ spanR

{
∂

∂θk
V (θ)

}⊥IRe〈·,·〉

3
=
[
TV (θ)SU(d)

]⊥IRe〈·,·〉

4
= [V (θ)su(d)]⊥IRe〈·,·〉

5
= V (θ)su(d)⊥IRe〈·,·〉

⇐⇒ V (θ)†U ∈ su(d)⊥IRe〈·,·〉 .

Step 1 follows from the definition of a stationary point (a point where the gradient vanishes)

and our derivation of the gradient for f(·) = 1
2‖V (·)− U‖2F. Step 2 follows from the definition of

an orthogonal complement and the linearity of the trace (i.e., U is in the span of the orthogonal

complement of the derivative of V if and only if the gradient is zero). Step 3 follows from

the global rank theorem [95, Thm 4.14] under infinite differentiability, surjectivity, and constant

rank assumptions, where we use T to denote the tangent space (which appears since we are

taking the derivative of V (θ)). Concretely, given W ∈ SU(d), TWSU(d) := {γ′(0) | γ : R →

SU(d) smooth with γ(0) = W}. For Step 4, a little more care has to be put. First, it can be shown,
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via the left or right group action, that TWSU(d) is isomorphic to TISU(d) = su(d). We want now

to show that TWSU(d) = W su(d). Since they are isomorphic, we only have to show one direction.

Let A ∈ su(d). We want to show WA ∈ TWSU(d). Towards this end, define γ(t) = W exp(tA).

Note γ(0) = W , and γ′(0) = WA. Furthermore, γ(t) ∈ SU(d) (which is easy to see by direct

computations1 ). Thus, WA = γ′(0) ∈ TWSU(d) and so TWSU(d) = W su(d), proving Step 4. Step

5 follows via properties of the Hermitian transpose. Explicitly, for a set U ,

[WU ]⊥IRe〈·,·〉 = {Y | IRe Tr[Y †WA] = 0 for all A ∈ U}

= {Y | IRe Tr[(W †Y )†A] = 0 for all A ∈ U}

= W{W †Y | IRe Tr[(W †Y )†A] = 0 for all A ∈ U}

= WU⊥IRe〈·,·〉 .

Now all that is left is to determine the contents of su(d)⊥IRe〈·,·〉 ∩ U(d). We have from Lemma 3

that su(d)⊥IRe〈·,·〉 is the set of matrices that equal A + ciI for some Hermitian A and some c ∈ R.

Furthermore, Hermitian matrices are precisely those that equal Q†DQ for some unitary Q and

diagonal D with real entries. So, su(d)⊥IRe〈·,·〉 is the set of matrices that are unitarily diagonalizable

with eigenvalues in {λ + ci | λ ∈ R} for some c ∈ R. But, unitary matrices are precisely the

matrices that are unitarily diagonalizable with eigenvalues in U(1). Thus, su(d)⊥IRe〈·,·〉 ∩U(d) is the

set of matrices that are unitarily diagonalizable with eigenvalues in {eiα,−e−iα} for some α, since

{λ+ ci | λ ∈ R} ∩U(1) = {eiα,−e−iα} for α = arcsin(c).

Theorem 9 describes the space of stationary points for infinitely differentiable, surjective,

constant rank mappings. Note that the image of points that do not have constant rank has measure

zero in Im(V ) = SU(d) by Sard’s theorem [95, Ch. 6], so this assumption is not restrictive. Moreover,

we have from Theorem 7 that Vct is infinitely differentiable, so we already have a relevant mapping

that is infinitely differentiable. Finally, the surjectivity assumption appears as though it could be

relaxed. But, unfortunately, this is not the case.

1 We have γ(t)†γ(t) = exp(tA)†W †W exp(tA) = exp(tA)† exp(tA) = exp(tA†) exp(tA) = exp(−tA) exp(tA) =
exp(−tA+ tA) = I and det(γ(t)) = det(W exp(tA) = det(W ) det(exp(tA)) = det(exp(tA)) = exp(tTr(A)) = exp(0) =
1.
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Remark 4. One might wonder if the surjectivity assumption can be relaxed to the assumption

U ∈ Im(V ). The answer is no. We found counter-examples when we were running the numerical

experiments. In particular, for certain structures ct with length smaller than the TLB, hence lacking

surjectivity, and with the Toffoli gate as the target unitary U , we computed some stationary points

of fct that exactly compiled U and some that failed the eigenvalue condition of Theorem 9. In other

words, for these examples, U ∈ Im(Vct) but the conclusion of Theorem 3 does not hold. These results

are shown in Table 3.2: the stationary points in the unsuccessful compilations did not satisfy the

eigenvalue condition of Theorem 9.

Since Vct is infinitely differentiable, if only it is surjective as well then its stationary points are

precisely the points such that Vct(θ)†U has eigenvalues in {eiα,−e−iα} for some α ∈ [0, 2π). Having

more than one eigenvalue means that the stationary points are not in general global minima up

to a global phase transformation though. But, we conjecture that the form of stationary points in

Theorem 9 simplifies even further for second-order stationary points of Vct.

Conjecture 1. If the parametric circuit Vct(·) is surjective and the Hessian of the cost function

fct(·) = 1
2‖Vct(·)− U‖2F is positive semi-definite at a stationary point θ, then Vct(θ)†U = eiαI for

some α ∈ [0, 2π), meaning that any stationary point θ is a global minimum of the cost function

fct(·), and therefore a solution to the quantum compiling problem, up to a global phase.

We tested Conjecture 1 extensively. In order to falsify the conjecture, we would need an

example of Vct, θ, and U such that Vct is surjective, the Hessian is positive semi-definite, and

Vct(θ)†U is not a scalar matrix. We searched for counter-examples in two experiments. In both,

we used structures with length smaller than the TLB as the non-surjective mappings, and the

QSD decomposition structure as the surjective mapping. In the first experiment, we computed θ

via gradient descent. Hence, there was no need to explicitly compute the Hessian. In the second

experiment, we randomly generated W ∈ su(d)⊥IRe〈·,·〉 ∩ SU(d) and θ ∈ Rp, then set U = Vct(θ)W .

From the proof of Theorem 9, we have that su(d)⊥IRe〈·,·〉 ∩ SU(d) is the set of matrices that are

unitarily diagonalizable with eigenvalues in {e−α,−e−iα} for some α such that the multiplicity of
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eiα times α plus the multiplicity of −e−iα times π − α is an integer multiple of 2π. So, in order

to generate W , we sampled Q ∈ U(d) randomly and chose a non-scalar eigenvalue matrix Λ, then

set W = Q†ΛQ. Thus, Vct(θ)†U was a non-scalar matrix by construction. We did not find any

counter-examples in either experiment. Note that we did have to explicitly compute the Hessian

and its eigendecomposition for the second experiment, but this is the only place in the chapter

where we actually compute the Hessian.

Conjecture 1 says that, despite the difficulty in finding global minima due to non-convexity,

the stationary points we find are global minima up to a global phase. However, this is only in the

case of surjectivity, and so the non-convexity causes greater difficulty for lengths shorter than the

minimum required for surjectivity. We discuss this issue further in the next section. In particular,

the divide between easy compilation problems and harder ones is the surjectivity of Vct(θ).

3.6 Special structures

While the results and discussion in the previous section were for arbitrary CNOT unit

structures, we would like to focus on particular structures henceforth. The properties that we desire

such structures to have are:

(1) they have to be able to capture all circuits of a given qubit size (i.e., surjectivity);

(2) their length has to be between one and two times the lower bound for surjectivity;

(3) they have to be compressible, that is, they have to include a method for finding new

structures with shorter length;

(4) their maximum approximation error has to depend favorably on the compressed length;

(5) they should exactly compile special quantum gates (e.g., Toffoli gates) with length close to

optimal;

(6) incorporating hardware constraints should only increase the length of the compressed

structure by a constant multiplicative factor in order to preserve the same approximation
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error.

Many of these properties are intertwined. For example, property (1) is necessary for property

(4) and also for convergence (to a stationary point that only requires a global phase transformation),

as discussed in the previous section. On the other hand, since the compressed structure will not be

surjective when its length is less than the surjectivity bound, convergence becomes more difficult.

Assuming property (2), then properties (1) and (5) are the same for all unitary matrices except a

measure zero set. However, there are important matrices in the measure zero set, such as qubit

permutations, controlled operations, and cyclic shifts [101], so we keep these requirements separate.

But, as mentioned in Remark 4, if we want to exactly compile these with minimal length, the

mapping may be far from surjective and so convergence will be much more difficult. We will see

this when compiling for Toffoli gates.

We will consider three structures in this chapter: cart, standing for Cartan; sequ, standing for

sequential; and spin, standing for spin.

Definition 1. Let cart ∈ J(23
484n − 3

22n + 4
3) correspond to the QSD decomposition.

As an example, the structure of CNOT units for cart(3) is

.

where the CNOT boxes represent our CNOT unit [84]. cart satisfies properties (1) and (2)

by the constructive proof of [82]. On the other hand, as is, it does not satisfy property (3) on

compressibility. So, we will propose a method in Section 3.8 that can be used to compress it to as

short as the TLB with practically no error, thereby also supporting property (4). cart only increases

by a multiplicative factor of 9 for the uncompressed structure, as shown in [82]. However, it is an

open problem how to compile special gates close to their optimal length, and compress it in a way

that does not increase connectivity, so the answer to properties (5) and (6) is unknown.

While cart has a recursive structure, the next two layouts we consider have repeating structures.
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Definition 2. Let sequ(L) ∈ J(L) correspond to L CNOT units in order. There are n(n−1)
2 CNOT

units and the order of CNOTjk is n(j − 1) +
(
k − j(j+1)

2

)
. Once the end of the order is reached, it

repeats.

Definition 3. Let spin(L) ∈ J(L) correspond to the structure that alternates between (1→ 2, 3→

4, . . .) and (2→ 3, 4→ 5, . . .).

As an example, the structure of CNOTs for sequ(12) when n = 3 is

and for spin(12) when n = 3 is

.

Both sequ(L) and spin(L) have the length of the circuit as an input, and so satisfy property

(3). But for what L, if any, do they satisfy property (1) on surjectivity? We run experiments in

Section 3.7 to evaluate sequ(L) and spin(L) with respect to properties (1), (2), and (4). The results

support the following conjecture about (1) and (2).

Conjecture 2. Vsequ(L) and Vspin(L) are surjective for L ≥ 1
4(4n − 3n− 1), that is, the TLB.

In Section 3.7, we also apply sequ(L) and spin(L) to specific quantum gates (e.g., Toffoli),

thereby supporting property (5), despite non-surjectivity.

Structure sequ(L) can incorporate hardware constraints by simply skipping the CNOTs for

unconnected qubits, but it is not obvious how much L would have to increase to preserve a given

maximum approximation error.

Fortunately, the results in the next section suggest L would not have to increase at all. In the

next section, we test sequ(L) with hardware constraints corresponding to both a star topology and a

line topology. All three structures perform comparably to sequ(L) without any hardware constraints.
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Furthermore, spin(L), another structure that satisfies the line topology hardware constraints, also

performs comparably. The experiments suggest that different repeating structures, as long as they

include all of the qubits, may fill the space equally fast, on average.

In Table 3.1, we summarize our main findings for the particular structures we have discussed.

Remark 5. Quantum computers can implement arbitrary gates on disjoint qubits simultaneously.

Hence, they can implement CNOT units on disjoint qubits simultaneously. Thus, while our theory

is in terms of length–the number of CNOTs in a structure, two other relevant metrics are CNOT

depth—the minimum number of layers of CNOT units in a structure—and circuit depth—the

minimum number of layers in a structure. Note that if all rotation angles are non-zero, then circuit

depth is three plus three times CNOT depth. Also, CNOT depth is always smaller than or equal to

the length. In particular, spin(L) can be implemented with CNOT depth d2L/(n− 1)e for n > 3. As

another example, spin(12) when n = 4 is

which becomes, if we implement CNOT units on disjoint pairs of qubits simultaneously,

.

On the other hand, imposing the line topology hardware constraints on sequ(12) results in

which becomes, if we implement CNOT units on disjoint pairs of qubits simultaneously,
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Table 3.1: Considered structures and their properties. Numbered references are to subsections.

Structure Properties
(1) (2) (3) (4) (5) (6)

cart [84] [84] 3.8.3 3.8.3 ? ?
sequ(L) Conjecture 2 X 3.7.2 3.7.3 3.7.2
spin(L) Conjecture 2 X 3.7.2 3.7.3 X

.

Structurally, spin(12) and sequ(12) are almost identical on the line topology, except that

spin(12) moves the last CNOT unit of spin(12) to the first layer and so decreases the CNOT depth

from 9 to 8.

3.7 Gradient descent

In Section 3.3, we formulated the mathematical optimization problem, and in Section 3.5 we

discussed some of its properties once specified to CNOT unit structures. In the previous section, we

discussed some special layouts. We are now ready to look at the approximate compiling problem for

a fixed structure. Specifically, we look at the problem

(AQCP-θ) min
θ∈[0,2π)p,ct=ct

fct(θ) :=
1

2
‖Vct(θ)− U‖2F, (3.7)

where ct is fixed to one of the mentioned structures (cart, sequ(L), spin(L)), which in turn specifies

how many rotation angles there are (i.e., p), and we will use a first-order method to find second-order

stationary points. The specific method can be tuned in practice, so we present gradient descent and

then discuss the modifications that can be made for its variants.

First, we randomly initialize θ[0] from the uniform distribution on [0, 2π)p. Then, we compute

θ[t+ 1] = θ[t]− α∇fct(θ[t]) (3.8)
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until the stopping criteria, ‖∇fct(θ[t])‖ ≤ ε, is met. The step-size, α, is tuned in practice, and the

final θ is then wrapped in the [0, 2π)p set. Component-wise, Eq. (3.8) reads,

θk[t+ 1] = θk[t] + αIRe Tr

[
∂

∂θk
Vct(θ)†U

]
. (3.9)

One variant of gradient descent is Nesterov’s method [48], which applies the gradient descent

step to an auxiliary sequence. The auxiliary sequence is essentially the main sequence but with

so-called “momentum.” For smooth convex optimization, Nesterov’s method is optimal among

first-order methods.

Another modification that can be made to gradient descent is the injection of noise. On the

one hand, diminishing Gaussian noise can be added to the gradient, in which case the method is

called gradient descent with Langevin dynamics. On the other hand, noise uniformly sampled from

a fixed radius ball can be added in a random direction whenever a “stuck” criteria is met, in which

case the method is called perturbed gradient descent.

We found that it was not necessary to add noise and that Nesterov’s method was much faster

than gradient descent, so we used it as our method of choice. As mentioned previously, random

initialization helps escape saddle points to find second-order stationary points. However, the random

prior may also affect what kind of second-order stationary points are found. In the non-surjective

setting, we would like to avoid spurious local minima as well as saddle points, so it is a future

research direction to consider different initializations.

3.7.1 A note on computational complexity

Note that the gradient computation makes up the majority of the computation and memory

complexity. Specifically, we have to compute ∂
∂θk

Vct(θ) for each k ∈ {1, . . . , p}, each of which takes

the same number of flops to compute as Vct(θ). To compute the matrix for a single layer, via the

kronecker product, takes O(d2) flops. To multiply two matrices takes O(d3) flops. There are L

layers so the total computational complexity for Vct(θ) is O(Ld3). Thus, computing ∂
∂θk

Vct(θ) from

scratch for each k ∈ {1, . . . , p} comes out to O(L2d3). The memory complexity is O(L+ d2). Since
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this is the dominant part of the algorithm, the total computational complexity is O(L2d3T ) (where

T is the number of iterations) and the memory complexity is O(L+ d2).

Fortunately, it is possible to trade-off between the computational and memory complexity. We

do this in a similar way to backpropogation, the algorithm for computing the gradient of the loss of

a feedforward neural network applied to a sample point [102], which is an example of reverse mode

automatic differentiation [103]. Instead of computing ∂
∂θk

Vct(θ) from scratch for each k ∈ {1, . . . , p},

we can store each of the intermediate matrix computations. Specifically, we can compute the matrix

for each layer, taking O(Ld2) flops and storage. Then we can compute the matrix multiplications

from both the right and left, storing the intermediate outputs. That takes O(Ld3) flops and O(Ld2)

storage. Then, we compute four new versions of each layer corresponding to the partial derivative of

each of the four parameters in a layer. This takes O(Ld2) flops and storage again. Finally, for the

partial derivative of each parameter, we make only two matrix computations, taking O(Ld3) flops

and O(d2) storage (since we don’t store all p matrices at once, we multiply them by U and compute

the real part of the trace to get a real number). Thus, this way of computing the gradient descent

iterates amounts to O(Ld3T ) flops and O(Ld2) storage. The reduction in computational complexity

from L2 to L is significant since L can be exponential in the number of qubits. In particular, when

the goal is exactly compiling general unitary matrices, we need L = Ω(4n) = Ω(d2). On the other

hand, if the goal is exactly compiling specific unitary matrices or approximately compiling general

unitary matrices, L may be smaller. For example, to exactly compile the Toffoli gate, we only need

L = Ω(n) = Ω(log2(d)).

These analyses of the computation and memory complexity of gradient descent are for its

implementation on a classical computer. However, it can be implemented on a quantum computer as

well. Algorithm 3 of [2] explains how to implement it using the power-of-two-qubits circuit. While

this is a possibility, we do not follow it here.
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3.7.2 Numerical tests: random unitary matrices, towards G1

We start by testing the structures and gradient descent on random unitary matrices, which is

our goal [G1]. We consider three different hardware connectivity graphs with edge sets

E1 = {(j, k) | j, k ∈ {1, . . . , n}, j 6= k} (Full connectivity)

E2 = {(1, j + 1) | j ∈ {1, . . . , n− 1}} (Star connectivity)

E3 = {(j, j + 1) | j ∈ {1, . . . , n− 1}} (Line connectivity).

E1 corresponds to no hardware constraints, E2 corresponds to the star topology, and E3 corresponds

to the line topology. Corresponding to these, we consider the structures sequE1
, sequE2

, sequE3
, and

spin. Note that spin corresponds to E3, but sequE3
6= spin except when n ≤ 3.

Full connectivity results. We ran the experiments for n = 3 and n = 5 qubits. In both

cases, we sampled 100 random unitary matrices for each structure for different values of L. We ran

gradient descent for each sample and then computed the approximation error and its probabilities.

These curves are given in Figure 3.4 and Figure 3.5. As one can see, both sequ and spin are almost

identical on how the error depends on the length L, thereby suggesting that the actual structure

does not make a big difference. In addition, both structures reach zero error around their theoretical

lower bound (which can be computed as L = 14 for n = 3, and L = 252 for n = 5), supporting our

Conjecture 2. Figure 3.5 gives probabilistic statements: the x-axis represents a desired maximum

approximation error (bound), while the y-axis reports the probability that starting from a random

guess for a random unitary, we obtain an error larger than the desired bound. Note that this

corresponds to one minus the CDF of the approximation error. Each L considered has a curve

in Figure 3.5, representing the distribution of the approximation error, while in Figure 3.4 it is

compressed to a single point by taking either the mean or the maximum.

Limited connectivity results.

With the same settings, we investigate the effect of different connectivity patters on sequ, for

n = 5 qubits. For n = 5, the theoretical lower bound is 252 CNOTs. Figure 3.6 shows that sequ

on all three connectivity patterns approach zero approximation error around its theoretical lower
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Figure 3.4: Approximation error, fct, for n = 3 (left) and n = 5 (right).
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Figure 3.5: Error probabilities for sequ and spin on 3-qubits for different values of L that starting
from a random initial point for a random unitary we obtain an approximation error larger than a
desired bound.
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Figure 3.6: Approximation error n = 5 with different connectivity patterns.

bound (in the worst case, the max lines arrive at about 0.7 error, which corresponds to a fidelity of

96%). Furthermore, the dependence of the approximation error on the length is a convex curve that

is basically identical for all three patterns.

From an engineering perspective, it is quite surprising that the structures with limited

hardware connectivity perform as well as sequ, corresponding to full connectivity. However, from the

“separating parameters” perspective that was used to derive the lower bound, this is less surprising:

sequ seem to “fill out” the quantum circuit and separate the parameters equally as well on a line as

on a fully connected graph.

This is in sharp contrast with the QSD which uses 20 and 444 CNOT units for n = 3 and

n = 5, respectively, and increases in length by a multiplicative factor of 9 for the line topology.

These experiments suggest that both spin and sequ are surjective for L equal to the lower

bound and that their approximation error depends favorably on the length, supporting properties

(1) through (4). Regarding property (6), the experiments suggest that the length does not have to

increase at all (or perhaps very slightly, in the worst case scenario).

Remark 6. It is important to note here that the fact that the connectivity does not matter in a

random unitary setting is a general statement about the overall smooth optimization landscape. We

are saying that, if you take a random unitary, and a few random initial points, on average, the
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approximation error you obtain depends only on the number of CNOT units. This statement says

that even if the different structures have different local minima and properties, with a macro-scale

lens (i.e., in the worst-case), they behave very similarly. On the other hand, when one is interested

in compiling a particular gate (say a Toffoli), in the least number of CNOT units, the structure

plays an important role as discussed in the literature, e.g., [104, 105], and as we will see next. In

this case, the fact that connectivity matters is a statement about best case scenarios.

3.7.3 Numerical tests: special gates, towards G2

The only property we are left to explore in this section is property (5), meaning how close to

optimal are the various structures in the case of special (often used and well-studied) gates. So, in

addition to compiling random unitary matrices as efficiently as possible, we want to recover the

shorter lengths that some important gates allow. For example, k-controlled (n− k)-qubit operations

can be compiled with O(n) gates if k < n − 1 and O(n2) gates if k = n − 1 [101, Ex. 4.2][79,

Lems. 7.2 and 7.5]. In particular, the n-qubit Toffoli gate, also known as the multi-controlled-X

gate, can be thought of as a k-controlled (n− k)-Toffoli gate, and so can be compiled with O(n)

gates. Furthermore, [106] gives a lower bound of 2n CNOTs for the n-qubit Toffoli gate (other lower

bounds are possible when considering circuits with ancillae [107]). The lower bound is tight for

n = 3. Qiskit [93] decomposes the 3-qubit Toffoli gate into 6 CNOTs and the 4-qubit Toffoli gate

into 14 CNOTs2 . We remark that these numbers of CNOTs are significantly lower than the TLB,

and therefore property (5) is not trivial to fulfill.

In addition to the Toffoli gate, we also consider the Fredkin 3 qubit gate, as well as the 1-bit

full adder (which is a 4 qubit gate). The list of important gates is by no means exhaustive, but it

already gives a glimpse of how well sequ and spin work for important gates.

To test property (5), we ran our gradient descent algorithm on spin and sequ many times (we

report in Table 3.2 the results, as well as the number of exact compilations divided by the number

2 A 14 CNOT implementation can be obtained from the 20 CNOT one of [79] by substituting the controlled-Vs
with their 2-CNOT implementations and applying the templates presented in [60].
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of tries). We compare with the Qiskit compilations on full connectivity and on line connectivity

(with the usual workflow, one would compile e.g., a Toffoli gate on the full connectivity hardware

and then add swap gates to transpile it on the limited connectivity one) [93].

In the case of sequ, we also consider the case of permuting the CNOT units to span more

possibilities: this is, at the moment, a random search permuting all the possibilities, which is

unpractical for large L’s (for instance for L = 14 it would amount to over 150 million possibilities),

but gives us a glimpse that structure does matter when compiling very specific gates in the

non-surjective domain.

The results indicate that, e.g., sequ(18) and spin(18) can exactly compile a 4-qubit Toffoli,

which is better than the 20 CNOT implementation of [79]. And allowing for permutations in the

sequence of CNOTs, even sequ(14) can do it, which is optimal3 . The solution we have found is

reported in Figure 3.7, and it uses a different sequence of CNOT gates than the one in Qiskit.

What we observe is that there are different possibilities in compiling a certain circuit exactly,

and in most cases the optimal solutions are different. This shows that our algorithm can be used as

a tool to discover new exact compilations of special gates.

The experiment suggests that property (5) is satisfied to a reasonable extent for both sequ

and spin.

Finally, by looking at the performance of Qiskit when compiling on a line connectivity and

comparing it to our spin structure, which enforces the line connectivity by design, we further

appreciate the advantage of our method in terms of CNOT count.

3.8 Circuit compression via regularization

We move now to address property (3) on compressibility in more detail. In particular,

motivated by the cart structure, we notice that, while cart is provably surjective with length twice

the lower bound, thus satisfying properties (1) and (2), it is not clear how to compress it and

3 The ease at which we have found this, despite the 14!/3!/3!/2!/2!/2!/2! possible structures, indicates that there
may be more than one structure that can deliver an optimal compilation. Note that, in general, for m types of CNOTs
with corresponding quantities L1, . . . , Lm, there are (L1 + · · · + Lm)!/(L1! · · ·Lm!) permutations.
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Table 3.2: Exact compilations of special gates. In parentheses the number of successful compilations
vs. the number of trials starting with a different initial condition, and in the case of sequ with
permutation, with a different permutation of the CNOT layout. Note that the Qiskit compilation
is stochastic and can return a variable number of CNOTs. ∗After several trials, we have found a
satisfactory layout, and the numbers correspond to this one.

Gate Qiskit CNOTs sequ spin
Full conn. Line conn. w/o perm. w perm

Toffoli 3 qubit 6 7-9 7 (19/100) 6 (27/100) 8 (38/100)
Toffoli 4 qubit 14 36 18 (4/350) 14 (1/100)* 18 (1/350)
Fredkin 3 qubit 7 10 8 (55/100) 7 (4/100) 8 (31/100)

1-bit full adder 4 qubit 10 16 10 (11/100) 10 (3/100) 14 (8/500)

so address property (3). The purpose of this section is to develop an algorithmic technique for

compressing arbitrary structures, and cart in particular. Rather than choosing which CNOTs to

keep in a structure (equivalently, which CNOTs to eliminate) a priori, we consider the question of

how to design an algorithm that automatically finds the best compression for the target unitary U .

We approach this problems with two ideas: (1) we know that there are techniques to reduce

consecutive CNOTs when no rotation gates are between them (let us call these compaction rules);

(2) we know that, when optimizing for the angles, we can enforce sparsity of the solution by adding

a pertinent regularization.

A closer look at (2) inspires us to enforce groups of four rotation angles following the CNOTs

to be zero, thereby eliminating all the rotation gates after a CNOT. This leads naturally to a group

LASSO regularization, and we explore it in Section 3.8.2.

A closer look at (1) suggests special compaction rules, which we discuss in Section 3.8.1.

Finally, the complete algorithm starts by enforcing sparsity, eliminating zero rotation gates,

compressing the structure via compaction rules, and then re-optimizing with the regular gradient

descent on the compacted structure. This algorithm is discussed in Section 3.8.3.

3.8.1 The “synthesis” algorithm

The guiding question for this subsection is: given a list of CNOTs, can we find a shorter list

of CNOTs such that the matrix product, in SU(2n), of the first list and the second list are equal.
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While the research works in this area are many [108, 109, 110, 111, 112, 113, 101], we use here an

adapted version of the “synthesis” algorithm of [108]. There the authors give an asymptotically

optimal synthesis of CNOT circuits. The idea is that CNOTs on n-qubits can be identified with

elementary matrices in GL(n,Z2). Given A ∈ GL(n,Z2), we can compute its LU decomposition in

terms of elementary matrices. On the other hand, things are easier in our case, since we only consider

downward-facing CNOTs, which can be related to LT(n,Z2), the group of n by n lower unitriangular

matrices on Z2. This leads us to implement an adapted “synthesis” algorithm that consists of

three steps: identifying CNOTs with their corresponding matrices in LT(n,Z2), multiplying them

in LT(n,Z2), and reading off the locations of 1’s in the product. We report the following theorem

concerning this algorithm.

Theorem 10. [108] Given an L-long circuit of downward-facing CNOTs, the “synthesis” algorithm

correctly outputs an equivalent circuit of downward-facing CNOTs of length ≤ n(n− 1)/2 in O(n3L)

computations.

The correctness of the algorithm follows from [108], the length follows from the fact that there

are n(n − 1)/2 lower-triangular entries in an n by n matrix, and the run-time is based on L − 1

matrix multiplications. While the algorithm may output a word of length n(n− 1)/2, it is possible

for words to be further reduced. Hence, this “synthesis” algorithm is not optimal, but its simplicity

is appealing. The lower bound on word lengths is Ω(n2/ log(n)) for GL(n,Zn), and one way to

obtain it is to partition the matrix into blocks, as is done in [108]. Note that words can also be

reduced via identities on three qubits, namely commutation rules, cancellations of two subsequent

identical CNOTs, and mirror rules (see, e.g, [114]). However, these have little effect for n > 3.

We remark that, in general, the “synthesis” algorithm does not respect hardware connectivity,

so it will be used only in cases in which hardware connectivity is not an issue. However, the three

qubit identities do maintain the hardware connectivity constraints of the original circuit, so they can

be used in all the cases. Note that there are recent works using Steiner trees to apply the synthesis

algorithm in a way that does respect hardware connectivity: [115, 116, 117, 118, 119].
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3.8.2 Setting parameters to zero

The guiding question for this subsection is: which parameters should we set to zero to get a

good compressed structure via the techniques presented in the previous subsection? As mentioned,

our approach is to enforce sparsity of the resulting θ vector by pushing groups of the four-rotation

angles following a CNOT to be zero (i.e., all the rotations of a given CNOT unit). This can be

achieved via a group Lasso regularization [92] (see also [120, 91, 121]), as follows. The collection

of rotation angles for each of the CNOT units is the vector θ` := [θ3n+4`−3, . . . , θ3n+4`], with

` = {1, . . . , L}. Enforcing each of these vectors to be zero, amounts to adding a regularization of

the form ‖θ`‖2 for each group, and therefore solving the problem:

(AQCP-θ, λ) min
θ∈[0,2π)p,ct=ct

fct(θ;λ) :=
1

2
‖Vct(θ)− U‖2F + λ

L∑
`=1

‖θ`‖2, (3.10)

with regularization parameter λ > 0, which trades off approximation error and sparsity.

We can solve (3.10) by a proximal gradient descent, as done in [92]; although problem (3.10)

is non-convex, we have similar convergence results as for gradient descent, meaning that for small

regularization parameters λ, we can show convergence of perturbed proximal gradient descent to a

second-order stationary point [122].

In particular, proximal gradient descent amounts to computing a gradient descent step and

then applying a proximal operator (which, in this case, is the block-wise soft-thresholding operator

[123, Eq.(7)]). Starting from a randomly initialized θ[0], this yields the component-wise recursion

for k = 3n+ 4`− 3, . . . , 3n+ 4`, for ` = 1, . . . , L, as

[θ+
` ]k = θk[t] + αIRe Tr

[
∂

∂θk
Vct(θ[t])†U

]
for all k ∈ {3n+ 4`− 3, . . . , 3n+ 4`}(3.11a)

θk[t+ 1] =
[θ+
` ]k

‖θ+
` ‖

(‖θ+
` ‖ − αλ)+ for all k ∈ {3n+ 4`− 3, . . . , 3n+ 4`} (3.11b)

θk[t+ 1] = θk[t] + αIRe Tr

[
∂

∂θk
Vct(θ[t])†U

]
for all k ∈ {1, . . . , 3n}, (3.11c)

where (y)+ = max{y, 0}.

Eq.s 3.11 are block-wise recursions: for each CNOT unit, we run the gradient descent for each
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angle of the unit, and then run the proximal operator. For the angles not belonging to the CNOT

units, then it is business as usual.

3.8.3 Compression algorithm

Integrating the ideas from the previous two subsections, we propose the following algorithm

for compressing an arbitrary structure.

Algorithm 2 Compression via group LASSO

Require: U, ct, λ, initial condition θ[0]

1: compute θ∗GL via proximal gradient descent (3.11) on fct(·, λ)

2: Eliminate all the rotation gates that have zero rotation angle

3: compress ct via the “synthesis” algorithm

4: further compress ct via CNOT identities

5: compute θ∗ via standard gradient descent (3.8) on fct′ , where ct′ is the compressed structure

6: return compressed structure, ct′, and corresponding angles, θ∗

The algorithm consists of running proximal gradient descent (3.11), starting with some given

initial condition θ[0], on the regularized cost fct(·, λ). Then, we eliminate all the rotation gates

that have zero rotation angle and apply the compaction rules to reduce the circuit. Finally, we run

standard gradient descent (3.8) on fct′ , where ct′ is the compressed structure, to compute the best

parameters θ∗ for the compressed structure.

Line 3 (i.e., “synthesis”) can be included, when hardware connectivity constraints are not

important, or not, when they are.

3.8.4 Numerical tests: random unitary matrices, towards G3

We test our compression algorithm on random unitary matrices with sequ and cart structures

for both n = 3 and n = 5 qubit circuits (we do not consider spin because it corresponds to the line

connectivity which is not preserved under the synthesis algorithm). In particular, we randomly
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initialize the iterates and consider 100 different random unitary matrices, and we plot both mean

and standard deviation of the result.

We report our results in Figure 3.8. We start with circuits of L = 14 and L = 250 for sequ

and from L = 22 and L = 528 for cart, respectively for n = 3 and n = 5, and we compress them

with different regularization parameters. In the x-axis, we can see the regularization parameter λ

used, while in the y-axis, we can note the final number of CNOTs (in blue), as well as the Frobenius

fidelity F̄F(U, V ) (in orange). The lines correspond to the average, and the shaded areas to one

standard deviation.

As one can appreciate, a small compression is possible for sequ, especially if the “synthesis”

algorithm is used. Note that the three qubit reductions have little affect for n = 5 and this is true

for all n ≥ 5.

A better compression, with very high Frobenius fidelity F̄F(U, V ), is possible instead for

cart, showing that this structure can be tuned to be compressed to TLB (L = 14 and L = 252,

respectively) without losing fidelity. One can see this by looking at the second data point on the left

for both n = 3 and n = 5, where we obtain a reduction to L = 14 and L < 252 (blue curve), with

no practical loss of fidelity (orange curve). This is encouraging (meaning that the recursive Cartan

decomposition can be easily compressed in practice) and supports properties (3) and (4) for cart.

3.8.5 Numerical tests: compressing compiled circuits, towards G3 in Qiskit

Finally, we move to analyze the effect of the compression algorithm to already compiled

circuits in Qiskit, or other compilers. The idea here is to see how one can use the approximate

quantum compiler as an add-on to the usual workflow, by allowing the user to trade-off accuracy

and circuit depth, as defined in Remark 5.

We consider the quantum circuits of 3, 4, 5 qubits in the [1] database. We compile them in

Qiskit and transform them into the parametric circuit of the present chapter (see Figure 3.2 for

an example). Then we use this compiled circuit as a warm start for our compression algorithm,

Algorithm 2 for different λ’s. This yields the graphs in Figure 3.9, where we can appreciate how λ
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affects compression, as well as Frobenius fidelity.

A better overview is offered by Table 3.3, where we look at the best compression we can obtain

for a Frobenius fidelity as high as 90%, and its associated computational overhead. To compile the

table, we have looked at different λ’s parameters, and we have considered the best compression

with fidelity ≥ 90%. The column ‘Depth’ refers to the depth of the original circuit in the database

(which can have gates not in the gate set), the Qiskit depth is the circuit depth once compiled in

Qiskit and transformed into the parametric circuit, the compressed depth is the minimal depth that

we were able to obtain with Algorithm 2, with a fidelity ≥ 90% (by varying λ), the fidelity column

is the Frobenius fidelity of the maximal compressed circuit, while the overhead is the time that the

computation of the latter circuit has taken.

As one can see, we can achieve some compression with a small loss in fidelity, and in some

cases, without any loss. For some circuits, compression is quite high (∼ 58% of the Qiskit depth),

for others, less so.

We remark that, ultimately, the compression capabilities are a by-product of Qiskit (or others)

compilation properties. If the compiler used can achieve optimal compilation, no further compression

can be obtained, no matter how sophisticated the devised algorithm is. While compilation is getting

better and better (new exact or heuristic algorithms are proposed at a rapid pace, see for instance [78]),

we believe that our tool can also be used to globally gauge if circuits can be further compressed

and which part of the circuit is not optimally compiled. This has immediate practical applications

in devising better compilation algorithms. For example, further studies are needed to understand

what makes ‘miller 11’ or ‘decod24-v2 43’ difficult for Qiskit, and how to improve its compiler.

Finally, more research has to be dedicated towards devising better strategies to select the

best parameter λ for compression, instead of a random search, and analyzing what happens with

the use of different compilers rather than Qiskit.

3.9 Conclusions and open points
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Table 3.3: Best achieved compression for the circuit of the [1] database, along with their Frobenius
fidelity and computational overhead. Depth is the original depth; Qiskit depth is the depth once
compiled in Qiskit and transformed into the parametric circuit; Compr. depth is the best compression
obtained with Fr. Fidelity ≥ 90%, while its indicated % represents the ratio of the compressed
depth w.r.t. the Qiskit depth.

Qiskit Fr. Fidelity ≥ 90%
File name Depth depth Compr. depth (& %) F̄F [%] Overhead [s]

4gt5 77 74 137 136 (99%) 93.41 24.34
4gt13 91 61 119 119 (100%) 100.0 20.76

one-two-three-v0 98 82 163 163 (100%) 100.0 23.7
4gt13 90 65 121 120 (99%) 99.99 20.63
ham3 102 13 25 24 (96%) 99.99 1.28

one-two-three-v1 99 76 152 152 (100%) 100.0 23.65
4gt5 76 56 115 111 (97%) 98.75 20.57

4mod7-v0 94 92 175 171 (98%) 95.22 27.19
aj-e11 165 86 177 177 (100%) 100.0 36.16
alu-v0 26 49 99 95 (96%) 99.99 17.26
miller 11 29 65 38 (58%) 99.99 3.1

rd32-v1 68 21 35 34 (97%) 92.02 4.58
one-two-three-v2 100 40 79 79 (100%) 100.0 13.82
one-two-three-v3 101 40 80 79 (99%) 91.84 16.85

4mod5-v0 20 12 25 25 (100%) 100.0 6.01
alu-v0 27 21 43 41 (95%) 99.99 7.8

mod5mils 65 21 44 44 (100%) 100.0 8.61
ex-1 166 12 28 26 (93%) 99.99 1.28

decod24-v1 41 50 94 93 (99%) 99.99 16.32
alu-v3 34 30 60 60 (100%) 100.0 11.45
3 17 13 22 45 37 (82%) 99.98 2.11

decod24-v3 45 84 157 155 (98%) 98.4 25.86
4gt11 84 11 21 21 (100%) 100.0 2.82

decod24-v0 38 30 62 52 (84%) 99.99 5.48
4mod5-v0 19 21 45 41 (91%) 95.94 8.76
4mod5-v1 22 12 29 29 (100%) 100.0 6.06

alu-v1 29 22 43 41 (95%) 99.99 6.98
alu-v1 28 22 45 39 (87%) 99.99 7.18

4mod5-v1 23 41 83 76 (92%) 99.99 14.79
4mod5-v0 18 40 84 73 (87%) 99.99 11.06

rd32 270 47 96 84 (88%) 99.81 20.94
4gt10-v1 81 84 159 159 (100%) 100.0 29.35
rd32-v0 66 20 33 33 (100%) 100.0 3.73
alu-v3 35 22 44 42 (95%) 99.99 7.77

4gt13-v1 93 39 70 70 (100%) 100.0 14.66
4mod7-v1 96 94 164 164 (100%) 100.0 24.4
4mod5-v1 24 21 41 38 (93%) 97.4 8.68
mod5d1 63 13 30 30 (100%) 100.0 8.92
alu-v4 36 66 117 117 (100%) 100.0 20.24
4gt11 82 20 42 42 (100%) 100.0 7.18
4gt5 75 47 88 88 (100%) 100.0 16.24

alu-v2 33 22 42 38 (90%) 99.99 6.96
alu-v2 32 92 174 174 (100%) 100.0 25.21
4gt11 83 16 41 37 (90%) 99.95 9.18

decod24-v2 43 30 65 47 (72%) 99.99 5.23
4gt13 92 38 71 71 (100%) 100.0 14.1
alu-v4 37 22 44 42 (95%) 99.99 7.73

mod5d2 64 32 67 67 (100%) 100.0 14.08
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In this chapter, we have examined, in deep mathematical and numerical detail, variants of

the best approximate quantum compiling problem. We have shown how to build hardware-aware

structures and how to optimize over them. While we have presented encouraging results to support

various theoretical and numerical properties, several open points are left for future research. In

particular, on top of our priority list are (1) to investigate Conjecture 2 and analytically determine

the relationship between approximation error and number of CNOTs (which has been done for

2-qubits using the Weyl chamber [124, 125, 126, 53]); (2) to investigate Conjecture 1; and (3) to

investigate properties (5) and (6) for cart.
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Figure 3.7: A different from Qiskit 4-qubit Toffoli exact compilation, obtained by permuting the
CNOT units in the sequ(14) structure and running gradient descent with many initial points.



68

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Regularization parameter

0

2

4

6

8

10

12

14

Fi
na

l n
um

be
r o

f C
NO

Ts

0

20

40

60

80

100

Fr
ob

en
iu

s F
id

el
ity

 [%
]

n=3, sequ, with synthesis

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Regularization parameter

0

2

4

6

8

10

12

14

Fi
na

l n
um

be
r o

f C
NO

Ts

0

20

40

60

80

100

Fr
ob

en
iu

s F
id

el
ity

 [%
]

n=3, sequ, without synthesis

0.0 0.1 0.2 0.3 0.4 0.5
Regularization parameter

0

50

100

150

200

250

Fi
na

l n
um

be
r o

f C
NO

Ts

0

20

40

60

80

100

Fr
ob

en
iu

s F
id

el
ity

 [%
]

n=5, sequ, with synthesis

0.0 0.1 0.2 0.3 0.4 0.5
Regularization parameter

0

50

100

150

200

250

Fi
na

l n
um

be
r o

f C
NO

Ts

0

20

40

60

80

100

Fr
ob

en
iu

s F
id

el
ity

 [%
]

n=5, sequ, without synthesis

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Regularization parameter

0

5

10

15

20

Fi
na

l n
um

be
r o

f C
NO

Ts

0

20

40

60

80

100

Fr
ob

en
iu

s F
id

el
ity

 [%
]

n=3, Cartan

0.0 0.1 0.2 0.3 0.4 0.5
Regularization parameter

0

100

200

300

400

500

Fi
na

l n
um

be
r o

f C
NO

Ts

0

20

40

60

80

100

Fr
ob

en
iu

s F
id

el
ity

 [%
]

n=5, Cartan

Figure 3.8: Final number of CNOT units and Frobenius fidelity, for n = 3 and n = 5 qubit circuits
and different structures. We divide the cases for sequ for when “synthesis” is run, and when it is
not. For cart, since hardware constraints are not imposed, “synthesis” is always run. For all graphs,
the x-axis represents the regularization parameter λ, while the y-axis represents the compression
obtained, in blue, and the Frobenius fidelity, in orange. The continuous line is the average, while
the shaded area is one standard deviation.
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Figure 3.9: Compression of compiled circuits from the [1] database, for various regularization
parameter values. For all graphs, the x-axis represents the regularization parameter [0− 2], while
the y-axis the compression obtained in blue (normalized to the starting CNOT count), and the
Frobenius fidelity in orange.



Chapter 4

High-probability convergence bounds for non-convex stochastic gradient

descent

4.1 Introduction

Stochastic gradient descent (SGD) is an algorithm for minimizing a cost function by relying

on noisy estimates of the gradient. Theoretical results provide guarantees for the convergence of

SGD to a stationary point via convergence bounds in mean, almost sure convergence, or convergence

bounds in probability. All three depend on the properties of both the cost function and the noise

distribution. In particular, we consider the follow settings:

(S1) where the cost function is strongly smooth and satisfies the Polyak- Lojasiewicz (PL)

inequality, and the noise is norm sub-Gaussian;

(S2a) where the cost function is strongly smooth, and the noise is norm sub-Gaussian; and

(S2b) where the cost function is strongly smooth and Lipschitz continuous, and the noise is norm

sub-Weibull.

The PL inequality is a weaker form of strong convexity that does not imply convexity and is

motivated by recent papers that prove PL-type inequalities for neural nets [127, 128, 129, 130]. The

sub-Weibull noise assumption is weaker than the sub-Gaussian noise assumption and is motivated

by recent results where the noise for empirical risk minimization applied to particular problems is

not sub-Gaussian for small batch-sizes [131, 132, 133].

Almost sure convergence to a first-order stationary point can be proved assuming only strong
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smoothness and a weak assumption on the noise [35, 134]. In this case, the mean convergence

rate of the squared gradient norm to zero is O(1/
√
T ), where T denotes the number of iterations

[135, 136]. It is also possible to prove a matching almost sure convergence rate [137]. If the PL

inequality is also assumed, then the mean convergence rate of the cost function of the iterates to

the minimum is O(1/T ) [52, 136]. However, a convergence guarantee is generally required with

some arbitrary probability, 1 − δ. A mean convergence rate is acceptable when it is possible to

re-run SGD many times, since Markov’s inequality can be applied and the best run chosen. On the

other hand, if only one run of SGD is allowed, then the (1/δ)-dependence of Markov’s inequality

quickly blows up. What is needed is a bound with logarithmic dependence on 1/δ. Assuming

strong smoothness and norm sub-Gaussian noise, [138] proves a O(log(T ) log(T/δ)/
√
T ) convergence

bound. We do not know of any other convergence bounds in the strongly smooth setting that have

only logarithmic dependence on δ. In Section 4.2, we introduce the preliminaries; delineate the

optimization assumptions, the types of convergence, and the noise assumptions; and discuss how

our results fit into the broader literature.

Section 4.3 is dedicated to setting (S1). In Section 4.3.1, we prove a O(log(1/δ)/T ) convergence

bound, which matches the optimal convergence rate in mean of O(1/T ). In Section 4.3.2, we focus

on the statistical learning framework and consider SGD with a mini-batch and sub-Gaussian (as a

random vector) noise. We prove, as a simple application of our convergence analysis, a bound on

the true risk that goes to the empirical minimum as the sample size increases to infinity. The bound

has 1/
√
δ dependence on δ, which, while not logarithmic, is better than the 1/δ that comes from

the mean convergence bound and Markov’s inequality. Furthermore, it is based on a conservative

step-size constant and a fixed number of epochs, corresponding to practice where a better step-size

constant for convergence may paradoxically fit random labels [139] and where early stopping is used

to avoid over-fitting.

Section 4.4 is dedicated to setting (S2). The convergence results are presented in Section 4.4.2.

For setting (S2a), we prove a O(log(T ) log(1/δ)/
√
T ) convergence bound, improving the log factors

of the bound in [138]. Moreover, our bound is for an argmin over a small number of iterates, while the
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bound in [138] is for an argmin over all of the iterates. This last point is an independent contribution

of the chapter and is presented in Theorem 16 where we call it “efficient post-processing.” For

setting (S2b), we prove a O(log(T/δ)θ log(1/δ)/
√
T ) convergence bound, where θ is the sub-Weibull

tail weight. On our way to proving the non-convex (without the PL inequality) convergence bounds,

we prove a Freedman-type inequality for martingale difference sequences with sub-Weibull tails.

Previously, such inequalities only allowed for, at most, sub-exponential tails, as in [140]. In order to

push beyond the sub-exponential boundary, we used the moment generating function truncation

techniques of [141]. The additional constants that the sub-Weibull noise introduces fortunately

balance in such a way that we are still able to get a 1/
√
T sub-linear convergence rate up to

logarithmic factors. Section 4.4.1 presents the sub-Weibull Freedman-type concentration inequality.

Section 4.5 provides numerical examples to elucidate the theoretical results. In particular,

SGD is applied to various neural-net-based synthetic problems.

4.2 Preliminaries

We are interested in the unconstrained optimization problem

min
x∈Rd

f(x), (4.1)

where f : Rd → R is a differentiable function, and the SGD iteration

xt+1 = xt − ηtgt ∀t ∈ N ∪ {0},

where gt ∈ Rd is an estimate of ∇f(xt), ηt is the step-size, and x0 ∈ Rd is the initial point.

Formalized in this way, it remains to specify: (1) the properties of f , the cost function; (2) the types

of convergence of (xt) to a stationary point; and (3) the properties of the noise et := ∇f(xt)− gt.

We restrict our attention to the setting where x0 is deterministic, but the results easily extend to

the setting where x0 is a random vector.

One of the main examples of Eq. (4.1) is the stochastic approximation problem: f = E [F (·, ξ)]

where (Ω,F , P ) is a probability space and F : Rd × Ω → R [142, 135, 143]. In this case, we

independently sample ξ0, ξ1, . . . and set gt = ∇F (xt, ξt).
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Note that we frequently use big-O and little-o notation. When comparing two sequences of

real numbers, (at) and (bt): at = o(bt) if lim at/bt = 0, at = O(bt) if lim sup |at|/bt <∞, at = Ω(bt)

if bt = O(at), at = ω(bt) if bt = o(at), and at = Θ(bt) if at = O(bt) and at = Ω(bt). We use

at = poly(bt) to denote that there is a polynomial function p such that at = O(p(bt)). Finally, we

use [n] to denote the set {1, . . . , n}.

4.2.1 Optimization Assumptions

Throughout the chapter we implicitly assume argminx∈Rdf(x) is non-empty so it is a well-

posed problem, and hence f? := minx∈Rd f(x) > −∞. We assume that f is L-strongly smooth (or

L-smooth for short) for a given L > 0; i.e., f ∈ C1 and its gradient is L-Lipschitz continuous.

A function f is µ-Polyak- Lojasiewicz (or µ-PL for short) if ‖∇f(x)‖2 ≥ 2µ(f(x)−f?) ∀x ∈ Rd.

Some examples of problems with PL objectives are logistic regression [52] and matrix factorization

[144]. Deep linear neural networks satisfy the PL inequality in large regions of the parameter

space [145, Thm. 4.5], as do two-layer neural networks with an extra identity mapping [127].

Furthermore, sufficiently wide recurrent neural networks satisfy the PL inequality locally around

random initialization [128, 129, 130]. While strong convexity implies the PL inequality, a PL

function need not even be convex, hence the PL condition is considerably more applicable than

strong convexity in the context of neural networks.

Recall that we focus on two main settings with regards to optimization assumptions: (S1) the

case where f is L-smooth and satisfies the PL inequality, and convergence is to a global optimum,

and (S2) the more general case where f is L-smooth, and convergence is to a stationary point.

We do not require convexity in either case, though we sometimes refer to the second case as the

“non-convex” case since the convergence is to a stationary point as is typical for non-convex analysis.

We also note that some of the non-convex results require f to be ρ-Lipschitz continuous; the

chapter will state when this assumption is needed. Lipschitz continuity of f follows immediately if

the iterates are bounded. This might lead one to consider projected SGD, but there are certain

issues preventing us from doing so which we discuss in Appendices A.5 and A.10.
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Further details on standard optimization terminology and results are in Appendix A.1.

4.2.2 Types of Convergence

To analyze the convergence of SGD, we define a sequence of pertinent random variables (XT ).

In the PL setting, since the PL inequality implies that all stationary points are global minima, we

set XT = f(xT )− f?. In the non-convex setting, since SGD may converge to a stationary point, we

set XT = min0≤t≤T−1 ‖∇f(xt)‖2 or XT = ‖∇f(yT )‖2 where yT is carefully chosen from x0 . . . , xT−1.

Note that we do not consider iterate averaging in either case because the usual trick using Jensen’s

inequality requires convexity, so a bound on the averaged error (i.e., the regret) does not translate

to a bound on the error of the average iterate.

Results bounding E [XT ] (expected/mean/L1 convergence) for SGD are common but strong

results bounding XT with (1 − δ)-confidence are relatively rare. See [142], [146], [147], [148],

[149], and [150] for such bounds in the non-smooth convex setting. Clearly, guarantees with high

confidence are quite desirable. We can go from expectation to probability via Markov’s inequality,

P (XT ≤ E [XT ] /δ) ≥ 1− δ, but we want the dependence on δ to be better than 1/δ multiplicative

dependence. In particular, we want poly(log(1/δ)), which we call “high probability” dependence, as

opposed to poly(1/δ), which we call “low probability” dependence.

One way to get high probability dependence from Markov’s inequality is through probability

amplification, which involves taking multiple runs and picking the best run based on a validation set;

for example, Exer. 13.1 of [25] describes probability amplification for the true risk. Their procedure

takes Θ(log(1/δ)) runs and Θ(log(1/δ)/ε2) validation samples and relies on the boundedness of the

loss function. [151] describes probability amplification for convergence in the strongly convex setting.

They use strong convexity to apply robust distance estimation and get around the Ω(1/ε2) sample

requirement for mean estimation [152]. Thm. 2.4 of [135] describes probability amplification for

convergence in the non-convex setting. Their procedure takes Θ(log(1/δ)) runs and Θ(log(1/δ)/(δε))

validation samples and relies on the boundedness of the variance of the norm of the gradient noise.

The above probability amplification techniques involve both an optimization cost and a
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validation cost. Re-running SGD multiple times clearly increases the optimization cost, so our

goal is to prove high probability convergence bounds for a single run of SGD that match the mean

convergence bounds without increasing the validation cost. The only bound we have that requires

validation is the non-convex bound since it is in terms of min0≤t≤T−1 ‖∇f(xt)‖2. If we want a

bound in terms of ‖∇f(xs)‖2 for a particular s, then we have to compute the argmin, which means

performing validation on T choices instead of Θ(log(1/δ)). Fortunately, Theorem 16 shows that

there is a workaround involving only Θ(log(1/δ)) iterates, same as for multiple runs. Then the same

validation step as in [135] can be applied.

Further details on the convergence of random variables can be found in Appendix A.2.

4.2.3 Noise Assumptions

We make assumptions involving the bias, variance, and tail behavior of the noise et. First, let

(Ω,F , P ) be the underlying probability space and define the natural filtration Ft = σ(e0, . . . , et) ∀t ≥

0, F−1 = {∅, Ω}. We assume the noise is unbiased, E [et | Ft−1] = 0, and that the variance is bounded

by a constant, E
[
‖et‖2 | Ft−1

]
≤ σ2. It is possible to prove almost sure convergence of SGD in

the smooth non-convex setting with weaker assumptions on the bias, namely that there is an

additional noise term εt in the gradient with the properties c1‖∇f(xt)‖2 ≤ −〈∇f(xt), εt〉 and ‖εt‖ ≤

c2 (1 + ‖∇f(xt)‖) for all t, and on the variance, namely that E
[
‖et‖2 | Ft−1

]
≤ σ2

(
1 + ‖∇f(xt)‖2

)
for all t [35, 134]; but it is not clear how to do so for high probability convergence.

Next, while mean convergence rates do not require assumptions on the tail behavior of

the noise, high probability convergence rates do. In particular, [142] makes the assumption

E
[
exp

(
‖et‖2/σ2

)]
≤ exp(1), which corresponds to sub-Gaussian tail behavior. Note that this tail

assumption implies the variance assumption via Jensen’s inequality. We consider sub-Gaussian,

sub-exponential, and sub-Weibull noise [153, 154, 141], defined below:

Definition 4. A random variable X is K-sub-Gaussian if E
[
exp

(
X2/K2

)]
≤ 2. See Prop. 2.5.2

of [155] for equivalent definitions.
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Definition 5. A random variable X is K-sub-exponential if E [exp (|X|/K)] ≤ 2. See Prop. 2.7.1

of [155] for equivalent definitions.

Definition 6. A random variable X is K-sub-Weibull(θ) if E
[
exp

(
(|X|/K)1/θ

)]
≤ 2. The tail

parameter θ measures the heaviness of the tail—higher values correspond to heavier tails—and the

scale parameter K gives us the following bound on the second moment, E
[
X2
]
≤ 2Γ (2θ + 1)K2

(Lemma 5). See Thm 2.1 of [153] for equivalent definitions. Note that sub-Gaussian and sub-

exponential are special cases with θ = 1
2 and θ = 1, respectively.

While many works in the context of SGD consider errors modeled by sub-Gaussian distributions,

we provide a brief discussion on the relevance of the sub-Weibull assumption. First, [156] shows that

a Gaussian prior on the weights in a Bayesian neural network induces a sub-Weibull distribution

on the weights with the optimal tail parameter for a particular layer proportional to its depth.

Secondly, a series of recent papers [131, 132, 133] suggest that SGD exhibits noise with tails that

are heavier than sub-Gaussian. [157] and [158] suggest that the heavier-tailed noise of SGD may be

vital to its ability to find machine learning models that perform well on unseen data.

To the best of the authors’ knowledge, all existing results for the high probability convergence

rate of SGD assume norm sub-Gaussian noise. While the central limit theorem can be used to justify

the sub-Gaussian noise assumption for mini-batch SGD with large batch-sizes, it cannot for small

batch-sizes. One alternative distribution that has been suggested is the α-stable distribution with

α < 2, which has infinite variance. [132] and [131] empirically determine the tail-index for stochastic

gradient noise assuming it follows an α-stable distribution and [159] proves mean convergence

bounds for clipped SGD in this setting. However, none of these papers actually show that the noise

is α-stable, or even that it has infinite variance. On the other hand, [133] tests when the noise is or

is not Gaussian. They find that the noise is Gaussian for a batch-size of 4096, is not for a batch-size

of 32, and starts out Gaussian then becomes non-Gaussian for a batch-size of 256.

Even though sub-Weibull noise has finite variance, by relaxing the noise assumption from

sub-Gaussian to sub-Weibull, we are taking a step towards a more realistic analysis of SGD.
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Remark 7. Our noise assumptions will be on the Euclidean norm of the noise vector. We note

that it is straightforward to show that if (ei) ∈ Rd is component-wise sub-Weibull, then its norm

is sub-Weibull. Concretely, assume ei is Ki-sub-Weibull(θ) for i = 1, . . . , d. Let |||·|||θ denote the

Orlicz norm (infimum of all possible scale parameters given the tail parameter θ). Then

∣∣∣∣∣∣ ‖(ei)‖ ∣∣∣∣∣∣θ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

d∑
i=1

e2
i

)1/2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
θ

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d∑
i=1

e2
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/2

2θ

≤
(

d∑
i=1

∣∣∣∣∣∣e2
i

∣∣∣∣∣∣
2θ

)1/2

=

(
d∑
i=1

|||ei|||2θ

)1/2

= ‖(Ki)‖.

Note that the components may be dependent.

4.2.4 Prior Work and Contributions

Assuming strong smoothness and strong convexity, the tight mean convergence rate is O(1/T )

[142]. The same mean convergence rate can be shown assuming strong smoothness and the PL

inequality [52, 160]. Assuming strong smoothness, the PL inequality, and norm sub-Gaussian noise,

our Theorem 11 provides a matching O(log(1/δ)/T ) convergence rate for the high probability case.

Our theorem depends on Proposition 1 which is a novel probability result, essentially saying that

adding two kinds of noise to a contracting sequence—sub-Gaussian noise with variance depending

on the sequence itself and sub-exponential noise—results in a sub-exponential sequence.

We then apply our convergence analysis to the statistical learning problem. We find that by

taking a more conservative step-size, the training error goes to zero slower, but the generalization

error also increases slower in such a way that we can balance the two. In particular, we find a bound

that supports running multiple, but limited epochs of mini-batch SGD. For papers developing the

generalization analysis that we use, see [161], [162], and [163]. Other relevant papers are [164], [145],

[165], [166], and [167]. Note that [166] proves high probability generalization bounds for SGD, but

only in the convex setting. Also, they balance their generalization result with the convergence result

of [149].

Assuming strong smoothness and convexity, the tight mean convergence rate of the squared

gradient norm is O(1/
√
T ) [3, Thm. 5.3.1]. In fact, this is the optimal rate for all stochastic

first-order methods assuming only strong smoothness (and not convexity) [168]. The same mean
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convergence rate can be shown for SGD assuming only strong smoothness [135]. However, the

result of [135] requires a constant step-size equal to Θ(1/
√
T ) to get the O(1/

√
T ) convergence

rate. On the other hand, for a Θ(1/
√
t) step-size sequence, the rate is O(log(T )/

√
T ). Assuming

strong smoothness and norm sub-Gaussian noise, [138] proves a O(log(T ) log(T/δ)/
√
T ) convergence

rate. Our non-convex convergence result, Theorem 15, improves this to O(log(T ) log(1/δ)/
√
T )

and, assuming strong smoothness, Lipschitz continuity, and norm sub-Weibull noise, proves a

O((log(T/δ)θ log(1/δ) + log(T ) log(1/δ)2θ)/
√
T ) convergence rate. To the best of the authors’

knowledge, all existing results for the high probability convergence rate of SGD assume norm

sub-Gaussian noise.

Another contribution is that our non-convex convergence rates are for an argmin over dlog(1/δ)e

iterates while the bound of [138] is for an argmin over all of the iterates. We are able to restrict the

number of iterates we have to minimize over via a post-processing sampling strategy that extends the

sampling strategy of [135] from mean to probability. The crux of the proof is Lemma 15. Then the

minimization step can be done via a validation set as in [135]. One takeaway from our convergence

rate is that the optimal step-size constant for mean convergence only depends on the variance,

whereas the optimal step-size constant for high probability convergence depends on δ and θ as well.

Our proof of Theorem 15 depends on a novel probability result, Proposition 2. The probability

result is of independent interest because it extends, for the first time, Freedman-type concentration

inequalities beyond the sub-exponential threshold [169, 140, 149]. In particular, we use the truncated

MGF technique of [141] to generalize the Generalized Freedman inequality of [149] from sub-Gaussian

to sub-Weibull martingale difference sequences.

4.3 Smooth, PL, Sub-Gaussian Setting

In this section, we assume the PL inequality and norm sub-Gaussian gradient noise. In

Section 4.3.1, we consider a stochastic recursion with two types of noise: sub-Gaussian with

dependence on the main sequence and sub-exponential. In Proposition 1, we prove that the main

sequence is sub-exponential. Then, we show that the error of SGD satisfies just such a recursion,
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allowing us to prove the high probability convergence bound in Theorem 11.

In Section 4.3.2, we consider the statistical learning framework as an example. It turns out a

more conservative step-size constant is needed, which gives a slower convergence rate; this is shown

in Theorem 13. Finally, we provide the resulting true risk bound in Theorem 14.

4.3.1 Convergence

We start our analysis by recalling that strong smoothness of the function f implies that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2

for any x, y ∈ Rd. Set x = xt+1 and y = xt; then, by subtracting f? from both sides and substituting

in xt+1 = xt − ηtgt = xt − ηt(∇f(xt)− et), we get

f(xt+1)− f? ≤ f(xt)− f? − ηt
(

1− Lηt
2

)
‖∇f(xt)‖2 + ηt(1− Lηt)〈∇f(xt), et〉+

Lη2
t

2
‖et‖2 (4.2)

≤ f(xt)− f? −
ηt
2
‖∇f(xt)‖2 + ηt(1− Lηt)〈∇f(xt), et〉+

Lη2
t

2
‖et‖2

≤ (1− µηt)(f(xt)− f?) + ηt(1− Lηt)〈∇f(xt), et〉+
Lη2

t

2
‖et‖2 (4.3)

where the 2nd line follows if ηt ≤ 1/L, and the 3rd line follows if f satisfies the PL inequality.

In Theorem 11, we will show that the sub-Gaussian assumption on et causes the second

term to be sub-Gaussian with an implicit dependence on f(xt) − f? and the third term to be

sub-exponential. In the following proposition, we show that such noise ends up causing f(xt)− f?

to be sub-exponential, identifying Xt ≈ t2(f(xt)− f?). Below, the indices for all sequences are the

natural numbers unless otherwise specified.

Proposition 1. Let (Ω,F , (Fi), P ) be a filtered probability space. Let (Xi), (ŵi), and (v̂i) be adapted

to (Fi), and X0 deterministic. Let (αi), (βi), and (γi) be non-negative sequences. Assume Xi and

v̂i are non-negative almost surely. Assume E[exp(λŵi) | Fi−1] ≤ exp(λ
2

2 β
2
iXi) for all λ ∈ R and

E[exp(λv̂i) | Fi−1] ≤ exp(λγi) for all λ ∈ [0, γ−1
i ]. Assume

Xi+1 ≤ αiXi + ŵi + v̂i.



80

Then, for any (Ki) such that K0 ≥ X0 and, for all i ≥ 0, K2
i+1 ≥ (αiKi + 2γi)Ki+1 + β2

iKi, and

any n ≥ 0, we have, w.p. ≥ 1− δ for all δ ∈ (0, 1),

Xn ≤ Kn log(e/δ).

The proof is in Appendix A.3. It is similar to the proof of Theorem 4.1 in [149] but with some

key differences. There, the recursion is Xi+1 ≤ αiXi + ŵi
√
Xi + vi where E [exp(λŵi) | Fi−1] ≤

exp
(
λ2

2 β
2
i

)
and vi is deterministic. We had to move the implicit dependence of the sub-Gaussian

term inside of the moment generating function in order to apply it to the inner product term in

Eq. (4.3). We also had to allow vi to be a sub-exponential random variable v̂i, and so applied

Cauchy-Schwarz, which contributed the 2 in the recursion for (Ki).

With Proposition 1, we are ready to prove high probability convergence for SGD with a

particular Θ(1/t) step-size sequence. The step-size is asymptotically equal to 2/µ/t. If the step-size

is instead set to ηt = c/t with c > 2/µ (e.g. if µ is unknown), then the convergence bound applies

by resetting t to zero once c/t ≈ 2/µ.

Theorem 11. Assume f is L-smooth and µ-PL and that, conditioned on the previous iterates, et

is centered and ‖et‖ is σ-sub-Gaussian. Then, SGD with step-size

ηt =
2t+ 4κ− 1

µ(t+ 2κ)2
,

where κ = L/µ, constructs a sequence (xt) such that, w.p. ≥ 1− δ for all δ ∈ (0, 1),

f(xT )− f? = O

(
Lσ2 log(1/δ)

µ2T

)
.

The proof is in Appendix A.4. The convergence bound of Theorem 11 matches the optimal

convergence rate in mean of O(1/T ) and has log(1/δ) dependence on δ.

Remark 8. It is natural to ask whether we can relax the sub-Gaussian assumption to a sub-Weibull

assumption. In Proposition 1, we need a bound on the moment generating functions of both ŵi and

v̂i. But, if ‖et‖ is σ-sub-Weibull(θ) with θ > 1/2, then ‖et‖2 is σ2-sub-Weibull(2θ). Thus, v̂i would

be sub-Weibull with tail parameter greater than 1, and so may have an infinite moment generating

function for all λ > 0.
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4.3.2 Generalization

A particular example of Eq. (4.1) that we are concerned with is the supervised statistical

learning problem [25, 170]. Consider a data set S := (si)
n
i=1 ∼ Dn consisting of n iid samples, si ∼ D

for i ∈ [n], where D is an arbitrary and unknown distribution. Let `(x, s) measure the loss of the

model parameterized by x ∈ Rd applied to the sample point s. Given S, let F (x, i) = `(x, si) and

define the empirical risk

f(x) =
1

n

n∑
i=1

`(x, si) = Ei∼U([n])[F (x, i)]. (4.4)

Sometimes we write fn (and f?n = minx fn(x)) when we want to emphasize the dependence of f on

the samples, otherwise the n is implicit. We will apply SGD to minimizing the empirical risk using

the mini-batch gradient estimator

g(x, b) =
1

b

∑
i∈I
∇`(x, si)

where I is a uniform sample of b indices sampled with replacement from [n]. In particular, we

sample gt ∼ g(xt, bt). However, the goal is actually to find an x that has a small true risk

f̃(x) = Es∼D `(x, s).

and we define f?∞ = minx f̃(x).

Applying SGD with many fewer than n/b iterations can be thought of as a stochastic

approximation to minimize f̃ directly, but most realistic scenarios take more than one-pass of the

data in order to further reduce the training error, so we adopt the statistical learning framework for

analysis. In this framework, we really care about f̃(xT )− f?∞, which we write as

f̃(xT )− f?∞ = f̃(xT )− fn(xT )︸ ︷︷ ︸
generalization error

+ fn(xT )− f?n︸ ︷︷ ︸
convergence error

+ f?n − f?∞︸ ︷︷ ︸
finite sample error

.

Since the finite sample error depends only on the data and distribution D and not on the algorithm,

we do not analyze it here; it is often assumed to be small, or at least dominated by the other terms.

We will analyze the generalization error and convergence error separately. Unlike classical theory
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which bounds the generalization error by restricting x to a low-complexity set, or by adding a

regularization term, we use the implicit regularization of early stopping (Thm. 12), so generalization

error is poly(T ). Meanwhile, convergence error decreases with iterates, and is poly(1/T ) (Thm. 13);

Theorem 14 shows that for T = Θ(n/b), both the poly(T ) and poly(1/T ) terms decay to 0 as the

number of samples n→∞. Proofs for this section can be found in Appendix A.6.

The foundations for the interplay between stability and generalization go back to [171]. Most

recent results build off of [161]. In particular, the results of [162] can be applied to the mean stability

bound of [163] to get a low probability generalization bound.

Theorem 12. [162, 163] Assume `(x, s) ∈ [0,M ] for all x and s. Assume `(·, s) is ρ-Lipschitz and

L-smooth for all s. Then, T iterations of SGD with ηt ≤ c/(t+ 1) and bt = b satisfies, w.p. ≥ 1− δ

over S and (It) for all δ ∈ (0, 1),

f̃(xT )− f(xT ) ≤ O
(√

Mρ2TLc(c+ 1/L)b

nδ

)
.

Unfortunately the generalization bound in Thm. 12 depends on 1/
√
δ, which makes it a

low probability bound. Furthermore, it grows with the number of iterations, counteracting the

decay of the convergence error. Before proceeding, we need to prove a convergence rate for a more

conservative step-size constant.

Theorem 13. Assume f is L-smooth and µ-PL and that ∇f(x)− g(x, 1) is centered and σ/
√
d-

sub-Gaussian for all x. Then, T iterations of SGD with ηt = c/(t+ 1), where c < 1/µ and c ≤ 1/L,

and bt = b satisfies, w.p. ≥ 1− δ over (It) for all δ ∈ (0, 1),

f(xT )− f? ≤ O
((

f(x0)− f? +
Lc2σ2

b

)
log(1/δ)

Tµc

)
.

Note that we assume ∇f(x) − g(x, 1) is σ/
√
d-sub-Gaussian (a random vector X is σ-sub-

Gaussian if 〈u,X〉 is σ-sub-gaussian for all unit vectors u) rather than assuming ‖et‖ is σ-sub-

Gaussian. The former tightly implies the latter for a batch-size of one and, more generally, it allows

us to show dependence on the batch-size in the results. While the convergence rate in Theorem 13

is much slower than that of Theorem 11, it allows us to balance convergence and generalization,
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by choosing T to approximately minimize the bound, and obtain true risk bounds that go to the

empirical minimum as n→∞. However, similarly to [145], one has to assume that µ is constant for

all n. The bound depends on SGD taking a certain number of epochs.

Theorem 14. Assume `(x, s) ∈ [0,M ] for all x and s. Assume `(·, s) is ρ-Lipschitz and L-smooth

for all s. Assume f is µ-PL. Let κ = L/µ. Assume ∇f(x) − g(x, 1) is centered and σ/
√
d-sub-

Gaussian for all x. Let bt = b, c = 1/(µ+ L), and T = Θ(n/b). Then, T iterations of SGD with

ηt = c/(t+ 1) satisfies, w.p. ≥ 1− δ over S and (It) for all δ ∈ (0, 1/e),

f̃(xT )− f?n ≤ O
(

b1/(2κ+2)

n1/(2κ+2)
√
δ

+
log(1/δ)

b1−1/(κ+1)n1/(κ+1)

)
.

Recall that f̃(xT )− f?n is the sum of the generalization and convergence errors. The proof of

Theorem 14 follows from plugging c and T into Theorems 13 and 12. Note that the right-hand side

goes to zero as n→∞, under the assumption that µ does not change. The form of the bound is

expected for a (mini-batch) SGD: the main message is that one should take multiple passes over

the data to converge sufficiently, but then stop early to avoid over-fitting. Also note that while

Theorem 14 provides a low probability bound proportional to 1/
√
δ it is still better than the 1/δ

dependence we would get without the high probability convergence.

4.4 Smooth, Non-convex, Sub-Weibull Setting

In this section, we consider norm sub-Weibull noise and a general possibly non-convex cost.

We seek to find an approximate stationary point, meaning a point x where ‖∇f(x)‖2 is small. First,

we prove a Freedman-type inequality in Proposition 2. There end up being three different regimes

corresponding to the heaviness of the tails, namely, sub-Gaussian tails, heavier than sub-Gaussian

but only up to sub-exponential tails, and heavier than sub-exponential tails.

Next, we apply Proposition 2 to the error of non-convex SGD. We are able to prove a

convergence bound for all three regimes of sub-Weibull gradient noise. The convergence bounds are

in terms of the error min0≤t≤T−1 ‖∇f(xt)‖2. Thus, a post-processing step is still required to get
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a single iterate. We provide a method for randomly picking a subset of iterates to minimize over,

instead of having to minimize over all T iterates.

4.4.1 Sub-Weibull Freedman Inequality

The following proposition provides a result for the concentration of the sum of a sub-Weibull

martingale difference sequence.

Proposition 2. Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and (Ki) be adapted to

(Fi). Let n ∈ N, then for all i ∈ [n], assume Ki−1 ≥ 0, E [ξi | Fi−1] = 0, and

E
[
exp

(
(|ξi|/Ki−1)1/θ

)
| Fi−1

]
≤ 2

where θ ≥ 1/2. If θ > 1/2, assume there exists (mi) such that Ki−1 ≤ mi.

If θ = 1/2, then for all x, β ≥ 0, and α > 0, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and 2
k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β), (4.5)

and for all x, β, λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and 2
k∑
i=1

K2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
. (4.6)

If θ ∈
(

1
2 , 1
]
, let

a = (4θ)2θe2

b = (4θ)θe.

For all x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β), (4.7)

and for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n]mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
. (4.8)
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If θ > 1, let δ ∈ (0, 1). Let

a = (22θ+1 + 2)Γ (2θ + 1) +
23θΓ (3θ + 1)

3

b = 2 log(n/δ)θ−1.

For all x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β) + 2δ, (4.9)

and for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n]mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
+ 2δ. (4.10)

For θ = 1/2 without α (i.e., α = 0), Eq. (4.6), we recover the classical Freedman’s inequality

[169]. For θ ∈ (1/2, 1] without α, Eq. (4.8), we recover Thm. 2.6 of [140]. For θ = 1/2 with

α, Eq. (4.5), we recover Thm. 3.3 of [149], called the “Generalized Freedman” inequality. For

θ ∈ (1/2, 1] with α, Eq. (4.7), we extend Thm. 2.6 of [140] to include α on the one hand, and we

extend Thm. 3.3 of [149] to θ ∈ (1/2, 1] on the other hand. For θ > 1 without α, Eq. (4.10), we

extend Thm. 2.6 of [140] to include α. Finally, we also provide Eq. (4.9) for the case θ > 1 with α.

The proof is in Appendix A.8. For θ ∈ (1/2, 1] with α, the proof is a simple extension of the

proof of Thm. 3.3 of [149]. For θ > 1 without α, the proof is a more technical extension of the proof

of Cor. 2 of [141] from i.i.d. random variables to martingale difference sequences. For θ > 1 with α,

the proof combines the previous two results.

4.4.2 Convergence

Rearranging and summing Eq. (4.2), we get

T−1∑
t=0

ηt

(
1− Lηt

2

)
‖∇f(xt)‖2 ≤ f(x0)− f(xT ) +

T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉+
L

2

T−1∑
t=0

η2
t ‖et‖2,

and using f(xT ) ≥ f?, we get

≤ f(x0)− f? +
T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉+
L

2

T−1∑
t=0

η2
t ‖et‖2.
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Then, applying Proposition 2 proves the following theorem.

Theorem 15 (Non-convex case, simplified version). Assume f is L-smooth and that, conditioned

on the previous iterates, et is centered and ‖et‖ is K-sub-Weibull(θ) with θ ≥ 1
2 . If θ > 1

2 , assume

f is ρ-Lipschitz. Let δ ∈ (0, 1) be a failure probability. Define

c? =

√
f(x0)− f?

K (4eθ log(2/δ))θ
√
L log(T + 1)

.

Then, for T iterations of SGD with stepsize ηt = c/
√
t+ 1 where c = c? and c? ≤ 1/L, we

have with probability at least 1− δ:

1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 ≤ O
(√

log(T ) log(1/δ)θ + log(T/δ)max{0,θ−1} log(1/δ)√
T

)
.

The full theorem, Thm. 15, is in the appendix, and covers the case when c? ≥ 1/L, which

essentially slightly worsens the numerator in the convergence rate, e.g., for θ = 1
2 , it worsens

from
√

log(T ) log(1/δ) to log(T ) log(1/δ). The condition c? ≤ 1/L is mild in the sense that it is

guaranteed to occur in any of the following limiting cases: (1) noise variance increases, K →∞, (2)

we start close to the solution, x0 → x?, (3) we want a high-probability bound, δ → 0, and/or (4) we

take many iterations, T →∞.

The proof is in Appendix A.9. Note that the convergence rate of O(1/
√
T ) is preserved, up

to log factors, for all values of θ. It is natural to ask whether we can allow for even heavier-tailed

noise beyond sub-Weibull. For sub-Weibull, we get the log(T/δ)θ−1 term from the assumed lower

bound on α in Proposition 2. For heavier-tailed noise, the assumed lower bound on α would be

even larger, and so the convergence rate would no longer be 1/
√
T up to log factors.

Note that the results of Thm. 15 are in terms of 1√
T

∑T−1
t=0

1√
t+1
‖∇f(xt)‖2 which is not a

particularly useful quantity by itself. The standard trick is to observe

min
0≤t≤T−1

‖∇f(xt)‖2 ≤
1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 (4.11)

so one could keep track of ‖∇f(xt)‖ at every iteration and record the iterate where this is lowest.

However, this requires exact gradient information, which may be more costly than the stochastic
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gradient used in the algorithm, so we desire a more clever post-processing scheme. In [135], they

pick index s with probability proportional to 1/
√
s+ 1 so that E

[
‖∇f(xs)‖2

]
is proportional to the

right-hand side of Eq. (4.11). They do this for Θ(log(1/δ)) runs and pick the best of the runs.

We, on the other hand, sample a set S of niter = Θ(log(1/δ)) indices and pick the best iterate

from among these samples. Basically, while Eq. (4.11) dictates that we should output the best

iterate

x = argmin
0≤t≤T−1

‖∇f(xt)‖2, (4.12)

the following Theorem allows us to output the best sampled iterate

x = argmin
t∈S

‖∇f(xt)‖2 (4.13)

with slightly worse convergence error bounds.

Theorem 16 (Efficient post-processing). Under the conditions of Theorem 15, if we pick a sample

set, S, of up to n of the indices s ∈ {0, . . . , T − 1}, choosing s with probability proportional to 1√
s+1

independently with replacement, then,

P

(
min
t∈S
‖∇f(xt)‖2 > eζ

)
≤ exp(−n) + P

(
1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 > ζ

)
∀ζ > 0.

The proof is in Appendix A.9. To combine with Thm. 15, set

niter = dlog(1/δiter)e

where δiter is the iterate sampling failure probability.

The final issue is that in order to compute even Eq. (4.13) we need full gradient information.

In the sample average approximation setting, this can be obtained by running on the full batch of

data (rather than a mini-batch). However, if this is computationally infeasible or if we are in the

stochastic approximation setting, then we instead have to use empirical gradients over a test or

validation set. Fortunately, a straight-forward application of Thm. 2.4 of [135] shows that using the

empirical gradients over a single test or validation set with sufficient samples only slightly worsens
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the convergence error bound. In order to apply Thm. 2.4 of [135] we have to further specify the

stochastic setting.

Suppose ∇f(x) = E [G(x, ξ)] for all x ∈ Rd, where G(x, ·) is the stochastic gradient at x.

Assume ‖∇f(x)−G(x, ξ)‖ is K-sub-Weibull(θ). At each iteration, sample ξt and set gt = G(x, ξt).

Thus, conditioned on the previous iterates, et is centered and ‖et‖ is K-sub-Weibull(θ). So, Thm. 15

and Thm. 16 apply.

Now we follow the second post-processing step of the 2-RSG method of [135]. First, we sample

ξ1, . . . , ξnemp independently. Second, we compute

x = argmin
t∈S

∥∥∥∥ 1

nemp

nemp∑
j=0

G(xt, ξj)

∥∥∥∥2

. (4.14)

By Lemma 5, we have

E
[
‖∇f(x)−G(x, ξ)‖2

]
≤ 2Γ (2θ + 1)K2.

So, we can apply Thm. 2.4 of [135] to get

P
(
‖∇f(x)‖2 > 5eζ

)
≤ P

(
min
t∈S
‖∇f(xt)‖2 > eζ

)
+

12Γ (2θ + 1)(niter + 1)K2

eζnemp
∀ζ, λ > 0.

So, altogether, if

nemp =

⌈
12(dlog(1/δiter)e+ 1)Γ (2θ + 1)K2

eζδemp

⌉
,

where δemp is the empirical gradient failure probability, then

P
(
‖∇f(x)‖2 > 5eζ

)
≤ P

(
1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 > ζ

)
+ δiter + δemp ∀ζ > 0.

4.5 Examples in Neural Networks

In this section, we will study synthetic neural net problems to provide insight for the theoretical

results of this chapter. In Section 4.5.1, we consider a neural net (similar to ResNet) that comes from

[127]. We provide numerical evidence that the true risk and misclassification have high probability

dependence on the failure probability for this PL-type problem. This is actually better than what
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we proved, which was only (1/
√
δ)-dependence on the failure probability δ. In Section 4.5.2, we

consider a neural net with two layers of ReLU. We provide numerical evidence that a single pass of

SGD (with post-processing) applied to this non-convex stochastic approximation problem results in

convergence error with high probability dependence on the failure probability. We compare to the

last iterate of SGD and find that the last iterate actually performs slightly better. In Section 4.5.3,

we modify the previous experiment to be a sample average approximation problem so that we can

compare with the best iterate as well. We find that the best iterate performs slightly better than

the last iterate.

To determine the probability dependence, we run over ntri trials and output a vector, y,

of the trial results (that is, the appropriate error metric). Then we compute a vector x as

1− (0, 1, . . . , ntri − 1)/ntri and plot x on the x-axis, y on the y-axis. By doing so, the y-coordinate

of a data point corresponds to the (1− δ)-percentile result for δ equal to the x-coordinate. Thus,

this approximates the dependence on the failure probability. However, the uncertainty increases as

we move away from δ = 0.5 towards δ = 1/ntri since we are doing less averaging.

Our code can be found at https://github.com/liammadden/sgd.

4.5.1 PL Generalization

Let φ(x) = max{0, x} element-wise denote the ReLU function. As we are interested in training,

our objective will be a function of the weights A ∈ Rd×d, parameterized by features x ∈ Rd and

labels y ∈ R:

∀(x, y) ∈ Rd × R,

F (· ;x, y) : Rd×d → R : (A;x, y) 7→ 1

2
(h(A;x)− y)2 where h(A;x) = ‖φ(Ax+ x)‖1

which comes from [127] and satisfies “one-point strong convexity” in a ball around the unique

minimizer, which in turn implies the PL inequality in a ball.

By defining the vector D = D(A;x) = IAx+x≥0 (where I denotes the 1-0 indicator function),

https://github.com/liammadden/sgd
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it is not difficult to derive

∂

∂A
F (A;x, y) = (‖φ(Ax+ x)‖1 − y)Dx>.

Note that F is a regression loss function. If our goal is classification, then it is a surrogate

for the misclassification rate. Thus, while we apply SGD to the regression loss, we also compute

the misclassification rate of the iterates where the label we associate with y is sign(y − a) for some

cut-off a chosen a priori.

Consider independent samples xi ∼ U(Sd−1), where U(Sd−1) denotes the uniform distribution

over the unit sphere in Rd. Training is done to minimize the empirical risk

f(A;X,Y ) =
1

n

n∑
i=1

F (A;xi, yi).

whereas our real goal is to minimize the true risk

f̃(A) = Ex∼U(Sd−1)[F (A;x, h(A?;x))].

We will use samples yi = h(A?;xi) for some fixed A?, hence the minimum of the empirical risk, as

well as the true risk, is zero.

Consider dimension d = 100 and misclassification cut-off a = 5, and sample A?ij ∼ N(0, 1/d)

and (A0)ij ∼ N(0, 1/d) (where A0 is the initial iterate for SGD) in that order with numpy random

seed 17. We use n = 250 samples, step-size ηt = 0.1/(t+ 1), batch-size b = 1, bT/n = 10 epochs,

and ntri = 1000 trials. Each trial uses new random data X ∈ Rn×d and new random minibatch

selection.

Figure 4.1 shows the dependence of the true risk and misclassification on the failure probability.

For reference, we have also plotted the least-squares best fit of the data based on a log(1/δ), 1/δ

and 1/
√
δ form, allowing for an offset. We ignore data for δ > 10−1 since we are interested in the

limit δ → 0. However, the uncertainty does become greater as δ approaches 1/ntri = 10−3. For the

true risk, the data are most consistent with a log(1/δ) functional form, but not entirely inconsistent

with 1/
√
δ. They do not appear to have a 1/δ relationship. Our bound, which is of the 1/

√
δ type,
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Figure 4.1: Dependence of the true risk and misclassification on the failure probability δ, for a fixed
number of samples and epochs. Our theory bounds the true risk by O(1/

√
δ).

explains data much better than the naive bound using 1/δ. However, it is possible that stronger

assumptions on the distribution could be used to improve the theoretical bound to reflect log(1/δ)

dependence. For the misclassification error, for which our experiment has no theoretical guarantees

(since we trained with the surrogate loss), again we see that log(1/δ) is most consistent with the

data.

4.5.2 Non-convex Stochastic Approximation Convergence

Again let φ denote the ReLU function and consider

∀x ∈ Rd1 , h(· ;x) : Rm×d1 × Rm×m × Rd2×m → Rd2 : (A,B,C;x) 7→ Cφ(Bφ(Ax))

and

∀(x, y) ∈ Rd1 × Rd2 ,

F (· ;x, y) : Rm×d1 × Rm×m × Rd2×m → R : (A,B,C;x, y) 7→ 1

2
‖h(A,B,C;x)− y‖22

By defining the matrices D1 = D1(A, x) = diagIAx≥0 and D2 = D2(A,B, x) = diagIBφ(Ax)≥0 we

can rewrite h and F with matrices instead of ReLUs so that we can take the derivative. The

gradients can be determined via automatic differentiation software like PyTorch, or, using Eq. (119)



92

of [172], we can work out the gradients by hand as follows:

∂

∂A
F (A,B,C;x, y) = (CD2BD1)>(CD2BD1Ax− y)x>

∂

∂B
F (A,B,C;x, y) = (CD2)>(CD2BD1Ax− y)(D1Ax)>

∂

∂C
F (A,B,C;x, y) = (CD2BD1Ax− y)(D2BD1Ax)>.

Note that A = B = C = 0 is a stationary point, so we should not initialize at zero.

Consider the stochastic approximation cost function

f(A,B,C) = Ex∼U(Sd1−1)[F (A,B,C;x, h?(A?, B?, C?;x))],

where the inner dimension of h? is m?.

We will apply SGD and compute the post-processing iterate via Eq. (4.14) with niter test

iterates and a test set of ntest samples. We will compute the convergence error as the norm-squared

of the empirical gradient over a validation set of nval samples. We will compare the convergence

error of both the post-processing iterate and the last iterate. We expect the convergence error of

the post-processing iterate to have a linear dependence on log(1/δ) as long as niter, ntest, and nval

are sufficiently large.

Consider input dimension d1 = 10, output dimension d2 = 1, true inner dimension m? = 20,

and model inner dimension m = 10. Sample A?ij ∼ N(0, 2/m?), B?
ij ∼ N(0, 2/m?), C?ij ∼ N(0, 1/d2),

(A0)ij ∼ N(0, 2/m), (B0)ij ∼ N(0, 2/m), and (C0)ij ∼ N(0, 1/d2) in that order with numpy random

seed 17. We use step-size ηt = 0.1/
√
t+ 1, T = 1000 iterations, batch-size b = 10, and ntri = 100

trials. Finally, we set niter = 200, ntest = 1000, and nval = 5000.

Figure 4.2 shows the (1 − δ)-percentile convergence error over the validation set, and the

right plot shows a least-squares best fit line to the form log(1/δ) (with an offset). As expected,

the convergence error of the post-processing iterate depends linearly on log(1/δ). The last iterate

actually performs slightly better than the post-processing iterate even though it does not have the

same theoretical guarantees; this justifies the standard practice of just using the last iterate.
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Figure 4.2: Top: Dependence of the convergence error on the failure probability. Bottom: Zoom,
and line of best fit to log(1/δ) form (allowing for an offset).
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Figure 4.3: Top: Dependence of the convergence error on the failure probability. Bottom: Zoom,
and line of best fit to log(1/δ) form (allowing for an offset).

4.5.3 Non-convex Sample Average Approximation Convergence

Here we modify the previous experiment by considering the sample average approximation

cost function

f(A,B,C) =
1

n

n∑
i=1

F (A,B,C;xi, h
?(A?, B?, C?;xi)).

Now, we actually do have access to the full gradient information for comparison if we are

willing to pay the computational cost for a full batch gradient. This allows us to compare with

the best iterate, computed via Eq. (4.12). Moreover, we can compute the convergence error as the

norm-squared of the true gradient.

Again, consider input dimension d1 = 10, output dimension d2 = 1, true inner dimension

m? = 20, and model inner dimension m = 10. Sample A?ij ∼ N(0, 2/m?), B?
ij ∼ N(0, 2/m?),

C?ij ∼ N(0, 1/d2), (A0)ij ∼ N(0, 2/m), (B0)ij ∼ N(0, 2/m), (C0)ij ∼ N(0, 1/d2), Xij ∼ N(0, 1) in

that order with numpy random seed 17. Then normalize the rows of X and compute Y . Again, we

use step-size ηt = 0.1/
√
t+ 1, T = 1000 iterations, batch-size b = 10, ntri = 100 trials, niter = 200,

and ntest = 1000.

Figure 4.3 shows the (1− δ)-percentile convergence error. The best iterate performs slightly

better than the last iterate, and the last iterate performs slightly better than the post-processing

iterate. The differences are slight, and all have a roughly O(log(1/δ)) relationship. Overall, this
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corroborates the theory: the iterate sampling scheme is slightly sub-optimal and scales similarly (in

δ) to the optimal iterate.

4.6 Conclusions

This chapter analyzed the convergence of SGD for objective functions that satisfy the PL

condition and for generic non-convex objectives. Under a sub-Gaussian assumption on the gradient

error, we showed a high probability convergence rate matching the mean convergence rate for

PL objectives. Our convergence result was then utilized in the context of statistical learning

to support the practice of taking multiple but limited epochs of mini-batch SGD. Under a sub-

Weibull assumption on the noise, we showed a high probability convergence rate matching the

mean convergence rate for non-convex objectives. We also provided and analyzed a post-processing

method for choosing a single iterate. To prove the convergence rate, we first proved a Freedman-type

inequality for martingale difference sequences that extends previous Freedman-type inequalities

beyond the sub-exponential threshold to allow for sub-Weibull tail-decay. Finally, we considered

two synthetic neural net problems, one with a PL objective, and one with a non-convex objective.

For the PL objective, we showed that the true risk and misclassification have high probability

dependence on the failure probability. We leave improving our true risk bound to high probability

and extending to classification as future work. For the non-convex objective, we showed that the

convergence error has high probability dependence on the failure probability whether we choose the

best iterate, the post-processing iterate, or the last iterate.
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[101] Beth, T., Rötteler, M.: Quantum algorithms: applicable algebra and quantum physics. In:
Quantum information, pp. 96–150. Springer (2001)

[102] Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

[103] Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics 16(2), 146–160 (1976)

[104] Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz,
A.: A generative modeling approach for benchmarking and training shallow quantum circuits.
npj Quantum Information 5(1), 45 (2019)

[105] Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K.,
Monroe, C.: Experimental comparison of two quantum computing architectures. Proceedings
of the National Academy of Sciences 114(13), 3305–3310 (2017)

[106] Shende, V.V., Markov, I.L.: On the CNOT-cost of TOFFOLI gates. Quantum Info. Comput.
9(5), 461–486 (2009)

[107] Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to multiple
control Toffoli optimization. Phys. Rev. A 93, 022,311 (2016)

[108] Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum
Information & Computation 8(3), 282–294 (2008)

[109] Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical Review A
70(5), 052,328 (2004)

[110] Amy, M., Chen, J., Ross, N.J.: A finite presentation of CNOT-dihedral operators. In:
International Conference on Quantum Physics and Logic, pp. 84–97 (2017)

[111] Maslov, D., Roetteler, M.: Shorter stabilizer circuits via Bruhat decomposition and quantum
circuit transformations. IEEE Trans. on Information Theory 64(7), 4729–4738 (2018)



103

[112] Garion, S., Cross, A.W.: On the structure of the CNOT-dihedral group. arXiv preprint
arXiv:2006.12042 (2020)

[113] Bravyi, S., Maslov, D.: Hadamard-free circuits expose the structure of the Clifford group.
IEEE Trans. on Information Theory 67(7), 4546–4563 (2021)

[114] Garcia-Escartin, J.C., Chamorro-Posada, P.: Equivalent quantum circuits. arXiv preprint
arXiv:1110.2998 (2011)

[115] Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ architectures.
Quantum Science and Technology 5(2), 025,010 (2020)

[116] Wu, B., He, X., Yang, S., Shou, L., Tian, G., Zhang, J., Sun, X.: Optimization of CNOT
circuits on topological superconducting processors. arXiv preprint arXiv:1910.14478 (2019)

[117] Kissinger, A., Meijer-van de Griend, A.: CNOT circuit extraction for topologically-constrained
quantum memories. Quantum Information and Computation 20(7&8), 581–596 (2020)

[118] de Griend, A.M.v., Duncan, R.: Architecture-aware synthesis of phase polynomials for NISQ
devices. arXiv preprint arXiv:2004.06052 (2020)

[119] Gheorghiu, V., Li, S.M., Mosca, M., Mukhopadhyay, P.: Reducing the CNOT count for
Clifford+ T circuits on NISQ architectures. arXiv preprint arXiv:2011.12191 (2020)

[120] Becker, S., Bobin, J., Candès, E.J.: NESTA: A fast and accurate first-order method for sparse
recovery. SIAM Journal on Imaging Sciences 4(1), 1–39 (2011)

[121] Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted `-1 minimization.
Journal of Fourier analysis and applications 14(5-6), 877–905 (2008)

[122] Huang, Z., Becker, S.: Perturbed proximal descent to escape saddle points for non-convex
and non-smooth objective functions. In: INNS Big Data and Deep Learning Conference, pp.
58–77 (2019)

[123] Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured sparsity regular-
ization with proximal methods. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 418–433 (2010)

[124] Peterson, E.C., Crooks, G.E., Smith, R.S.: Two-qubit circuit depth and the monodromy
polytope. Quantum 4(1), 247 (2020)

[125] Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum
computers using randomized model circuits. Physical Review A 100(3), 032,328 (2019)

[126] Crooks, G.E.: Gates, states, and circuits (2020)

[127] Li, Y., Yuan, Y.: Convergence analysis of two-layer neural networks with relu activation. In:
Neural Information Processing Systems (NeurIPS), vol. 30 (2017)

[128] Allen-Zhu, Z., Li, Y., Song, Z.: On the convergence rate of training recurrent neural networks.
In: Neural Information Processing Systems (NeurIPS), vol. 32 (2019)



104

[129] Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-
parameterization. In: International Conference on Machine Learning (ICML), vol. 97, pp.
242–252 (2019)

[130] Liu, C., Zhu, L., Belkin, M.: Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks. Applied and Computational Harmonic Analysis (2022)

[131] Gürbüzbalaban, M., Şimşekli, U., Zhu, L.: The heavy-tail phenomenon in SGD. In: Interna-
tional Conference on Machine Learning (ICML), vol. 139, pp. 3964–3975 (2021)
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Appendix A

Supplementary Material for Chapter 4

A.1 Standard Optimization Results

We state a few useful definitions and results from optimization. More details can be found

in [15] and [17]. All our definitions are with respect to the Euclidean norm, denoted ‖ · ‖, and we

let f : Rd → R. We write C1(Rd) or just C1 to denote functionals on Rd that are continuously

differentiable.

Definition 7 (Lipschitz continuity). We say f : Rd → R is ρ-Lipschitz continuous if |f(x)−f(y)| ≤

ρ‖x−y‖ for all x, y ∈ Rd. Likewise, g : Rd → Rm is ρ-Lipschitz continuous if ‖g(x)−g(y)‖ ≤ ρ‖x−y‖

for all x, y ∈ Rd.

Note that averages of Lipschitz continuous functions are Lipschitz continuous with the same

constant by the triangle inequality. Also, if f ∈ C1, then f is ρ-Lipschitz if and only if ‖∇f(x)‖ ≤ ρ

for all x ∈ Rd.

Definition 8 (L-smoothness). We say f is L-smooth if f ∈ C1 and its gradient is L-Lipschitz

continuous.

If f is L-smooth, then a standard result is

(∀x, y ∈ Rd) f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2. (A.1)

Applying this result to x− 1
L∇f(x) and x and rearranging terms gives

‖∇f(x)‖2 ≤ 2L(f(x)− f?) (A.2)
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and taking x ∈ argminx′ f(x′) gives

f(y)− f? ≤ L

2
‖y − x?‖2.

If f is both µ-PL and L-smooth, then combining the PL inequality and Eq. (A.2) gives

f(x)− f? ≤ L

µ
(f(x)− f?)

which implies L ≥ µ.

The following inequality is known as the quadratic growth (QG) condition:

∃µ > 0 s.t. (∀x ∈ Rd) ‖x− PX?(x)‖ ≤ 2

µ
(f(x)− f?) (A.3)

where PX? denotes the (set-valued) Euclidean projection onto the set of global minimizers, X? =

argminx f(x). The PL inequality implies the QG condition [52].

Strong convexity implies the PL inequality but the PL inequality only implies invexity, not

convexity. Furthermore, unlike the convexity and strong convexity properties, the PL property is

not preserved under nonnegative sums. The PL inequality implies the quadratic growth property

(Eq. A.3), which can be used to bound how far away the nearest minimizer is in terms of the

optimality gap (which can be bounded above by simply evaluating the cost function, if the cost

function is nonnegative).

A.2 Convergence of Random Variables

See [173, Sec. 20] for details. A sequence of random variables Xt converges to X :

◦ in probability if, for all ε > 0, limt P (|Xt −X| > ε) = 0, denoted Xt
p→ X;

◦ in mean if limt E|Xt −X| = 0, denoted Xt
L1

→ X;

◦ almost surely if P (limtXt = X) = 1, denoted Xt
a.s.→ X.

When the rate of convergence is of interest, we say a sequence of random variables Xt converges to

X:
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◦ with mean convergence rate r(t) if, for all t, E|Xt −X| ≤ r(t);

◦ with convergence rate r̃(t, δ) if, for all t and δ, P (|Xt −X| ≤ r̃(t, δ) ) ≥ 1− δ.

In particular, when r̃(t, δ) is separable, i.e. r̃(t, δ) = r(t)p(δ), we use “high probability” to refer

to p(δ) = poly(log(1/δ)) and “low probability” to refer to p(δ) = poly(1/δ). All five kinds of

convergence are interrelated:

◦ Convergence in mean and convergence almost surely both imply convergence in probability.

◦ Mean convergence with rate r(t) such that r(t)→ 0 as t→∞ implies convergence in mean.

◦ By Markov’s inequality, mean convergence with rate r(t) implies convergence with rate

r(t)/δ.

◦ By the Borel-Cantelli lemma [173, Thm. 4.3], convergence with rate r(t)p(δ) implies almost

sure convergence if
∑∞

t=0 min{1, p−1(a/r(t))} < ∞ for all a > 0. If p(δ) = 1/δc for some

c > 0, then r(t) = o(1/tc) is required. If p(δ) = log(1/δ), then only r(t) = O(1/tc) for some

c > 0 is required.

A.3 Proof of Proposition 1

We want to find requirements on a sequence (Ki) such that E [exp(λXi)] ≤ exp(λKi) ∀λ ∈

[0,K−1
i ]. Then, by Markov’s inequality and taking λn = K−1

n , P (Xn ≥ log(e/δ)Kn) =

P (exp(Xn/Kn) ≥ e/δ) ≤ δ. Our proof is inductive. For the base case, we need

(1) K0 ≥ X0.
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For the induction step, assume E
[
exp(λ̃Xi)

]
≤ exp(λ̃Ki) ∀λ̃ ∈ [0,K−1

i ]. Let λ ∈ [0,K−1
i+1]. Then

E [exp(λXi+1)] ≤ E [exp(λαiXi + λŵi + λv̂i)] by non-negativity

TE
= E [exp(λαiXi)E [exp(λŵi) exp(λv̂i) | Fi−1]]

CS
≤ E

[
exp(λαiXi)E [exp(2λŵi) | Fi−1]1/2 E [exp(2λv̂i) | Fi−1]1/2

]
(2)

≤ E
[

exp(λαiXi) exp

(
(2λ)2

2
β2
iXi

)1/2

exp(2λγi)
1/2

]
if 2λ ∈ [0, γ−1

i ]

= E
[
exp(λαiXi + λ2β2

iXi + λγi)
]

= E
[
exp(λ(αi + λβ2

i )Xi

]
exp(λγi)

(3)

≤ exp(λ((αi + λβ2
i )Ki + γi)) via induction if λ̃ := λ(αi + λβ2

i ) ≤ K−1
i

(4)

≤ exp(λKi+1)

where TE denotes the law of total expectation [173, Thm. 34.3], CS denotes the Cauchy-Schwarz

inequality, and (2)− (4) are the requirements

(2) 2λ ≤ γ−1
i ⇐= 2K−1

i+1 ≤ γ−1
i ⇐⇒ Ki+1 ≥ 2γi

(3) λ(αi + λβ2
i ) ≤ K−1

i ⇐= K−1
i+1(αi +K−1

i+1β
2
i ) ≤ K−1

i ⇐⇒ K2
i+1 ≥ αiKiKi+1 + β2

iKi

(4) Ki+1 ≥ (αi + λβ2
i )Ki + γi ⇐= Ki+1 ≥ (αi +K−1

i+1β
2
i )Ki + γi

⇐⇒ K2
i+1 ≥ (αiKi + γi)Ki+1 + β2

iKi.

The requirement of the proposition implies requirements (2)− (4), completing the proof.

A.4 Proof of Theorem 11

We first note that ηt is decreasing in t for κ ≥ 1 and t ≥ 0, and so

ηt =
2t+ 4κ− 1

µ(t+ 2κ)2
≤ 4κ− 1

µ(2κ)2
≤ 4κ

µ4κ2
=

1

L
.

Thus, we can use Eq. (4.3):

f(xt+1)− f? ≤ (1− µηt)(f(xt)− f?) + ηt(1− Lηt)〈∇f(xt), et〉+
Lη2

t

2
‖et‖2. (A.4)
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Defining

Xt = (t+ 2κ− 1)2(f(xt)− f?)

ŵt = ηt(1− Lηt)(t+ 2κ)2〈∇f(xt), et〉

v̂t =
Lη2

t (t+ 2κ)2

2
‖et‖2

then multiplying both sides of Eq. (A.4) by (t + 2κ)2 and noting 1 − µηt = (t+2κ−1)2

(t+2κ)2
gives the

recursion

Xt+1 ≤ Xt + ŵt + v̂t.

Observe that

E

[
exp

(
ŵ2
t

18L
µ2
Xtσ2

)∣∣∣∣ Ft−1

]
≤ E

[
exp

(
η2
t (1− Lηt)2(t+ 2κ)4‖∇f(xt)‖2‖et‖2

18L
µ2
Xtσ2

)∣∣∣∣ Ft−1

]

≤ E

exp

η2
t (1− Lηt)2 (t+2κ)4

(t+2κ−1)2
2LXt‖et‖2

18L
µ2
Xtσ2

∣∣∣∣ Ft−1

 via (A.2)

≤ E
[

exp

(
18L
µ2
Xt‖et‖2

18L
µ2
Xtσ2

)∣∣∣∣ Ft−1

]

≤ 2

since ‖et‖ is assumed to be σ-sub-Gaussian. Similarly,

E

[
exp

(
v̂t

2L
µ2
σ2

)∣∣∣∣ Ft−1

]
≤ E

[
exp

(
2L
µ2
‖et‖2

2L
µ2
σ2

)∣∣∣∣ Ft−1

]

≤ 2.

Thus, conditioned on Ft−1, ŵt is centered and 18L
µ2
Xtσ

2-sub-Gaussian and v̂t is 2L
µ2
σ2-sub-exponential.

Thus, for absolute constants a and b, by Prop. 2.5.2 and Prop. 2.7.1 of [155], we can set β2
t = 18aLσ2

µ2

and γt = 2bLσ2

µ2
and use Proposition 1. In particular, we can set

KT = X0 +
T−1∑
t=0

(2γt + β2
t )

= X0 +
(18a+ 2b)Lσ2T

µ2
.

Dividing by (T + 2κ)2 completes the proof.
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A.5 PL Projected SGD

When working with constraints to a set x ∈ X ( Rd, if f is strongly convex, then so is f

added to the indicator function of X, and results for gradient descent methods easily extend to

projected gradient descent. On the other hand, if f is PL, then f plus the indicator function is not

KL (Kurdyka- Lojasiewicz). This has real impacts on gradient descent algorithms, where gradient

descent might converge but projected gradient descent does not. For example, there is a smooth

function, a mollified version of f(x, y) =
(
a(x)2

+ − b (|y| − c)+

)
+

, such that the PL inequality is

satisfied but projected gradient descent does not converge to a minimizer; we formalize this in the

remark below.

Remark 9. Consider f(x, y) =
(
a(x)2

+ − b (|y| − c)+

)
+

where (·)+ denotes max(·, 0) and a, b >

0, c ≥ 0. The minimum of f is 0 and X? = {(x, y) | x ≤ 0 or |y| ≥ a
bx

2 + c}. If we use

ϕ(x) = XB1(0) · exp
(
−1/(1− ‖x‖2)

)
/Φ—where X denotes the indicator function, B1(0) denotes

the ball of radius 1 centered at 0, and Φ is the normalization constant—to mollify f , then, for

ε < c, fε has PL constant 2a and smoothness constant 2a. Consider the starting point (d, 0). For

a, b, c, d chosen appropriately, the distance from (d, 0) to its projection onto X? is strictly less than

d. Thus, if we let X be the ball centered at (d, 0) with radius equal to exactly that distance, then the

constrained problem and the unconstrained problem have the same minimum. However, projected

gradient flow, starting from (d, 0), ends up stuck at a non-minimizer: the point of X closest to (0, 0).

See Figure A.1 for the contour plot when a = 1/10, b = 1 = c, and d = 10.

In order to generalize gradient methods to projected gradient methods under PL-like assump-

tions, the proper generalization is that the function should satisfy a proximal PL inequality [52].

However, such an assumption is quite restrictive compared to the PL inequality. We leave the prob-

lem of convergence with just the PL inequality, via added noise or a Frank-Wolfe type construction,

as a future research direction.
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Figure A.1: Contour plot of the PL function counter-example to projected gradient flow
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A.6 Generalization Results

A random vector X is σ-sub-Gaussian if 〈u,X〉 is σ-sub-gaussian for all unit vectors u [155, Def.

3.4.1]. Assume∇f(x)−g(x, 1) is σ/
√
d-sub-Gaussian. Then∇f(x)−g(x, b) is Cσ/

√
bd-sub-Gaussian

for some universal constant C by Hoeffding’s inequality [155, Prop. 2.6.1]. Furthmore, by Lemma 1 of

[174], ‖∇f(x)− g(x, 1)‖ is Cσ/
√
b-sub-Gaussian. So, ‖∇f(x)− g(x, 1)‖2 is C2σ2/b-sub-exponential.

Definition 9. Let S and S′ differ in at most one sample. Let g and g′ be the respective gradient

estimators. Define x0 = x′0 and, for t ≥ 0, xt+1 = xt − ηtg(xt, bt) and x′t+1 = x′t − ηtg′(x′t, bt). We

say SGD with T iterations is α-uniformly stable in expectation if for all S and S′, sups |E[`(xT , s)−

`(x′T , s)]| ≤ α.

Theorem 17. [162, Thm. 12] Assume `(x, s) ∈ [0,M ] for all x and s. Let δ ∈ (0, 1). If SGD with

T steps is α-uniformly stable in expectation then, w.p. ≥ 1− δ over S and (it) for all SGD,

f̃(xT )− f(xT ) ≤
√

6Mnα+M2

2nδ
.

Note that Thm. 12 of [162] is actually for pointwise hypothesis stability in expectation, but

uniform stability in expectation implies pointwise hypothesis stability in expectation. Furthermore,

in the form we have it, Theorem 17 can be proved using Lem. 9 of [161] and Chebyshev’s inequality.

Define δt := ‖xt − x′t‖. Note that P (It = I ′t) =
(
1− 1

n

)
· · ·
(

1− 1
n−bt+1

)
= 1− bt

n . Following

[163], a uniform stability bound is sought by bounding the growth of δt; if `(·, s) is ρ-Lipschitz, this

implies that sups |`(xt, s)− `(x′t, s)| ≤ ρδt.

Lemma 4. [163, Lem. 2.5] Assume `(·, s) is ρ-Lipschitz and L-smooth for all s. Then,

δt+1 ≤


(1 + ηtL)δt if It = I ′t

δt + 2ηtρ o.w.

.

Theorem 18. Let ηt ≤ c/(t+ 1) and bt = b. Assume `(·, s) is ρ-Lipschitz and L-smooth for all s.

Then, SGD with T iterations is α-uniformly stable in expectation with

α ≤ 2ρ2TLc(c+ 1/L)b

n
.
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Proof. Define at = 0 if It = I ′t and at = 1 otherwise. Hence, at ∼ B(1, p) independently with

p = b/n. By Lemma 4,

δt+1 ≤ (1 + (1− at)ηtL)δt + 2ηtρat

≤ (1 + ηtL)δt + 2ηtρat.

Thus,

δT ≤ 2ρ

T−1∑
t=0

T−1∏
i=t+1

(1 + ηiL)ηtat

≤ 2ρ

T−1∑
t=0

exp

(
L

T−1∑
i=t+1

ηi

)
ηtat

≤ 2ρc

T−1∑
t=0

exp

(
Lc log

(
T

t+ 1

))
at
t+ 1

≤ 2ρcTLc
T−1∑
t=0

at
(t+ 1)Lc+1

.

Note that

T−1∑
t=0

1

(t+ 1)Lc+1
≤ 1 +

∫ T−1

0

dt

(t+ 1)Lc+1

= 1 +
1

Lc
− 1

LcTLc

≤ 1 +
1

Lc
.

The result follows by taking expectation and using sups |`(xt, s)− `(x′t, s)| ≤ ρδt.

Thm. 18 is essentially Thm. 3.12 of [163]. In fact, the two theorems consist of the same

analysis with only two differences. First, we extend the analysis to mini-batch SGD, though this

extension is not difficult. Second, [163] considers the first iteration where instability becomes

non-zero. They use this to break up the bound and optimize over it. However, in so doing, they

introduce the restriction (2cL)1/(Lc+1)TLc/(Lc+1) < n. Thus, for simplicity, we left out this step.

While it seems that makes our bound significantly larger, that is only when the restriction is not

met (in which case their bound is vacuous).
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To prove Theorem 13, we follow similar steps to Appendix A.4 but set

Xt = (t+ 1)µc (f(xt)− f?)

ŵt = η(1− Lηt)(t+ 2)µc〈∇f(xt), et〉

v̂t =
Lη2

t (t+ 2)µc

2
‖et‖2

and find that, conditioned on Ft−1, ŵt is centered and 6Lc2

(t+1)2−µcXtσ
2-sub-Gaussian and v̂t is

Lc2

(t+1)2−µcσ
2-sub-exponential. So, we can set

KT = O

(
X0 +

Lc2σ2

b

)
.

Dividing by (T + 1)µc completes the proof.

Finally, note that the assumptions for generalization are interrelated with the assumptions for

convergence:

Proposition 3. Define f as in Eq. (4.4) and assume it is µ-PL. Assume `(·, s) is L-smooth for all

s. Then f is L-smooth. Moreover, if ∇f(x)− g(x, 1) is sub-gaussian and `(x, s) is nonnegative for

all x and s, and assuming interpolation (f? = 0), then for (xt) generated by SGD with a O(1/t)

step-size sequence there exists a constant R < ∞ such that P (‖xt − x0‖ ≤ R ∀t ∈ N) = 1. If s

comes from a compact set (e.g., normalized data) and we assume `(x, s) is jointly continuous in x

and s, then there exist constants ρ and M such that, for all x in the ball of radius R around x0 and

for all s, `(x, s) is ρ-Lipschitz with respect to x and is bounded above by M .

Proof. The smoothness of f easily follows from that of ` using the definition of f in Eq. (4.4), the

definition of smoothness, and the triangle inequality.

The rest of the proof will hinge on bounding the SGD sequence (xt). Unrolling the SGD

updates, we have xT+1 = x0 +
∑T

t=0 ηtgt. Define f̃t = 1
bt

∑
i∈It `(·, si) so that g(·, bt) = ∇f̃t, and
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observe f̃ is L-smooth for the same reason that f is L-smooth. Then,

‖g(x, bt)‖2 = ‖∇f̃t(x)‖2 ≤ 2L(f̃t(x)− f̃?t )

≤ 2Lf̃t(x)

≤ 2L
n

bt
f(x)

where the first inequality follows from Eq. (A.2), the second from nonnegativity, and the third from

nonnegativity as well. For simplicity, assume a fixed minibatch size bt = b.

Thus, by the triangle inequality, ‖xT − x0‖ ≤
√

2Lnb
∑T−1

t=0 ηt
√
f(xt). For both Thm. 11 and

Thm. 13, the step-size is ηt = O(1/t), and, by interpolation, f(xt) ≤ log(1/δt)
C
tc for each t with

probability 1−δt, where C and c > 0 are constants (e.g., c = 1 for Thm. 11).1 Choose δt = O(1/t2),

then it holds that

w.p. ≥ 1− δ, (∀T ∈ N) ‖xT − x0‖ . C ′
T∑
t=1

log(t)

t1+c/2
≤ C ′′

for constants C ′ and C ′′ since the series converges (verified by, e.g., the integral test) and with

δ =
∑T−1

t=0 δt ≤
∑∞

t=0 δt < 1 coming from the union bound and the fact
∑∞

t=1 t
−2 = π2/6 <∞.

Let Ek be the event that ‖xT −x0‖ ≤ k for all T . Then the event
⋃∞
k=1Ek implies that (xt)

∞
t=0

is a bounded sequence. Since Ek is nested, by continuity of measure, P (
⋃∞
k=1Ek) = limk→∞ P (Ek),

and the argument from the previous paragraph shows that P (Ek) can be made arbitrarily close to 1

by choosing a sufficiently large radius k. Hence (xt)
∞
t=0 is a bounded sequence with probability 1.

Now that (xt) is bounded with probability 1, we turn to ρ and M . First, `(x, s) is jointly

continuous in x and s, and since (x, s) comes from a compact set, we get that ` attains its maximum

value [175, Thm. 1.68], which we call M . The same is true of ‖∇x`(x, s)‖ and we call its maximum

value ρ. Thus, since `(x, s) is C1 with respect to x, we have that it is ρ-Lipschitz with respect to

x.

1 These theorems and step-sizes are actually in terms of t+ 1 due to the 0-based indexing convention, so we now
use 1-based indexing to simplify presentation.
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A.7 Sub-Weibull Properties

Lemma 5 provides a simple bound for E [|X|p]; the proof is included for completeness and to

demonstrate the techniques. Lemma 6 is from Prop. 2.5.2 of [155]. Lemma 7 extends Prop. 2.7.1

of [155] to interpolate between the sub-Gaussian and sub-exponential regimes. Lemma 8 is an

application of Thm. 1 of [153], Lma. 5 of [154], and the triangle inequality for Lp spaces (note that

this is called the Minkowski inequality and requires p ≥ 1).

To go from probability to expectation, the CDF formula is used:

E [|Y |] =

∫ ∞
0

P (|Y | > t) dt.

To go from expectation to probability, Markov’s inequality is used:

P (|Y | > t) ≤ 1

t
E [|Y |] ∀t > 0.

In both cases, the trick is choosing what Y should be, e.g. Y = |X|p or Y = exp((λ|X|)1/θ).

Lemma 5. If X is K-sub-Weibull(θ) then E [|X|p] ≤ 2Γ (θp + 1)Kp ∀p > 0. In particular,

E
[
X2
]
≤ 2Γ (2θ + 1)K2.

Proof. First, for all t ≥ 0,

P (|X| ≥ t) = P
(

exp
(

(|X|/K)1/θ
)
≥ exp

(
(t/K)1/θ

))
≤ 2 exp

(
− (t/K)1/θ

)
.

Second,

E [|X|p] =

∫ ∞
0

P (|X|p ≥ x) dx

≤ 2

∫ ∞
0

exp

(
−
(
x1/p/K

)1/θ
)

= 2θpKp

∫ ∞
0

exp(−u)uθp−1du

= 2θpΓ (θp)Kp

= 2Γ (θp+ 1)Kp.
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Lemma 6. [155, Prop. 2.5.2(e)] If X is centered and K-sub-Guassian then E [exp(λX)] ≤

exp(λ2K2) ∀λ ∈ R.

Lemma 7. If X is centered and K-sub-Weibull(θ) with θ ∈ (1/2, 1], then

E [exp(λX)] ≤ exp
(
λ2

2 (4θ)2θe2K2
)

for all λ ∈
[
0, 1

(4θ)θeK

]
.

Proof. First, using Lemma 5 and Γ (x + 1) ≤ xx ∀x ≥ 1, we can get ‖X‖p ≤ (2θ)θKpθ for all

p ≥ 1/θ, and so, in particular, for all p ≥ 2. Thus, if λ ∈
[
0, 1

(4θ)θeK

]
, then

E [exp(λX)] = E

1 + λX +

∞∑
p=2

(λX)p

p!


= 1 +

∞∑
p=2

λp‖X‖pp
p!

≤ 1 +
∞∑
p=2

λp(2θ)θpKppθp

p!

≤ 1 +
∞∑
p=2

(
λ(2θ)θeK

p1−θ

)p

≤ 1 +
∞∑
p=2

(
λ(4θ)θ(e/2)K

)p
≤ 1 +

(
λ(4θ)θ(e/2)K

)2
1− λ(4θ)θ(e/2)K

≤ 1 + 2
(
λ(4θ)θ(e/2)K

)2

≤ exp

(
λ2

2
(4θ)2θe2K2

)
,

completing the proof.

Lemma 8. [153, Thm. 1] [154, Lma. 5] Suppose X1, . . . , Xn are sub-Weibull(θ) with respective

parameters K1, . . . ,Kn. Then, for all t ≥ 0,

P

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ t
)
≤ 2 exp

(
−
(

t

v(θ)
∑n

i=1Ki

)1/θ
)
,

where v(θ) = (4e)θ for θ ≤ 1 and v(θ) = 2(2eθ)θ for θ ≥ 1.
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A.8 Proof of Proposition 2

The novel lemmas used in the proof are Lemma 10 and Lemma 14.

Observe that:

P (|ξi| ≥ t | Fi−1) = P
(

exp
(

(|ξi|/Ki−1)1/θ
)
≥ exp

(
(t/Ki−1)1/θ

)
| Fi−1

)
≤ 2 exp

(
−(t/Ki−1)1/θ

)
.

Moreover, observe that:

P (|ξi| ≥ cKi−1) = P
(

exp
(

(|ξi|/Ki−1)1/θ
)
≥ exp

(
c1/θ

))
≤ exp

(
−c1/θ

)
E
[
exp

(
(|ξi|/Ki−1)1/θ

)]
= exp

(
−c1/θ

)
E
[
E
[
exp

(
(|ξi|/Ki−1)1/θ

)
| Fi−1

]]
≤ 2 exp

(
−c1/θ

)
.

We call the first result tail bound 1:

P (|ξi| ≥ t | Fi−1) ≤ 2 exp
(
−(t/Ki−1)1/θ

)
(TB1)

and the second result tail bound 2:

P (|ξi| ≥ cKi−1) ≤ 2 exp
(
−c1/θ

)
(TB2)

The following lemma is not novel, but distills the proof technique of [169], as found in the

proof of Thm. 2.1 of [140], so that we can use it more readily.

Lemma 9. [140, Pf. of Thm. 2.1] Let (Ω,F , (Fi), P ) be a filtered probability space. If (di) is

adapted to (Fi) and (Ak) is a sequence of events; then

P

 ⋃
k∈[n]

Ak

 ≤ sup
k∈[n]

IAk

k∏
i=1

E [di | Fi−1]

di
.

Proof. Define Zk =
∏k
i=1

di
E[di|Fi−1] . Then (Zk) is a martingale.
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Let T be a stopping time. Then the stopped process (Zk∧T ) is a martingale (where a ∧ b

denotes min{a, b}). Moreover, Zk∧T is a probability density so define the conjugate probability

measure dP ′ = Zn∧TdP .

Define the stopping time T (ω) = min{k ∈ [n] | ω ∈ Ak}. Then I∪k∈[n]Ak =
∑n

i=1 I{T=k}.

Observe,

P

 ⋃
k∈[n]

Ak

 = E′
[
Z−1
n∧T

n∑
k=1

I{T=k}

]

=
n∑
k=1

E′
[
k∏
i=1

E [di | Fi−1]

di
I{T=k}

]

≤
(

sup
k∈[n]

IAk

k∏
i=1

E [di | Fi−1]

di

)
n∑
k=1

E′
[
I{T=k}

]
= sup

k∈[n]
IAk

k∏
i=1

E [di | Fi−1]

di
.

We apply Lemma 9 to a particular MGF bound to prove a generalization of the Generalized

Freedman inequality of [149] to allow for up-to sub-exponential random variables. This is a novel

contribution (although not a difficult extension). The extension beyond sub-exponential random

variables is the more technical contribution.

Lemma 10. Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξ̃i) and (Ki) be adapted to (Fi).

Assume 0 ≤ Ki−1 ≤ mi ∀i ∈ [n] and

E
[
exp(λξ̃i) | Fi−1

]
≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
.

Then, for all x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξ̃i + β

} ≤ exp(−λx+ 2λ2β).

Proof. By Claim C.2 of [149], if 0 ≤ λ ≤ 1
2α , then ∃ c ∈ [0, 2] such that 1

2(λ+ αcλ2)2 = cλ2. Define

di = exp
(

(λ+ αcλ2)ξ̃i

)
.
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With 0 ≤ λ ≤ 1
2α , we want λ+ αcλ2 ≤ 1

bKi−1
. This is ensured by α ≥ bmaxi∈[n]mi.

Define

Ak =

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξ̃i + β

}
.

Then ω ∈ Ak implies

k∏
i=1

E [di | Fi−1]

di
≤ exp

(
−(λ+ αcλ2)

k∑
i=1

ξ̃i +
(λ+ αcλ2)2

2
a

k∑
i=1

K2
i−1

)

≤ exp(−λx+ cλ2β)

≤ exp(−λx+ 2λ2β).

The next three lemmas allow us to include previous results as special cases of the theorem.

Lemma 11. [140, Thm. 2.6] Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξ̃i) and (Ki) be

adapted to (Fi). Assume 0 ≤ Ki−1 ≤ mi ∀i ∈ [n] and

E
[
exp(λξ̃i) | Fi−1

]
≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
.

Then, for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[r]mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
.

Proof. Define

di = exp
(
λξ̃i

)
and

Ak =

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ β

}
.

Then ω ∈ Ak implies

k∏
i=1

E [di | Fi−1]

di
≤ exp

(
−λ

k∑
i=1

ξ̃i +
λ2

2
a

k∑
i=1

K2
i−1

)

≤ exp

(
−λx+

λ2

2
β

)
.



124

Lemma 12. [149, Thm. 3.3] Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξ̃i) and (Ki) be

adapted to (Fi). Assume Ki−1 ≥ 0 ∀i ∈ [n] and

E
[
exp(λξ̃i) | Fi−1

]
≤ exp

(
λ2

2
aK2

i−1

)
∀λ ≥ 0.

Then, for all x, β, α ≥ 0, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξ̃i + β

} ≤ exp(−λx+ 2λ2β).

Lemma 13. [169] Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξ̃i) and (Ki) be adapted

to (Fi). Assume Ki−1 ≥ 0 ∀i ∈ [n] and

E
[
exp(λξ̃i) | Fi−1

]
≤ exp

(
λ2

2
aK2

i−1

)
∀λ ≥ 0.

Then, for all x, β ≥ 0, and λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
.

If the ξi’s are sub-Gaussian, that is, if θ = 1/2, then, from Lemma 6,

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
2K2

i−1

)
∀λ ∈ R,

so we can apply Lemma 12 if α > 0 or Lemma 13 if α = 0 and we are finished.

If the ξi’s are at most sub-exponential, that is, if 1/2 < θ ≤ 1, then, from Lemma 7,

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
(4θ)2θe2K2

i−1

)
∀λ ∈

[
0,

1

(4θ)θeKi−1

]
,

so we can apply Lemma 10 if α > 0 or Lemma 11 if α = 0 and we are finished.

On the other hand, if θ > 1, then it may be the case that

E [exp(λξi) | Fi−1] =∞ ∀λ > 0.

Thus, to allow for θ > 1, we will truncate the ξi’s. The following lemma is the main contribution of

this proof as it allows us to go beyond the sub-exponential threshold. Note that the result/proof is

essentially an extension of Corollary 2 of [141] from i.i.d. random variables to martingale difference

sequences.
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Lemma 14. Let (Ω,F , (Fi), P ) be a filtered probability space. Assume (ξi) is a martingale difference

sequence. Let (Ki) be adapted to (Fi). Assume 0 ≤ Ki−1 ≤ mi ∀i ∈ [n] and

E
[
exp

(
(|ξi|/Ki−1)1/θ

)
| Fi−1

]
≤ 2 ∀i ∈ [n]

where θ > 1. Let δ ∈ (0, 1). Define

ξ̃i = ξiI{ξi≤Li−1}

with

Li−1 = log(n/δ)θKi−1.

Then

E
[
exp(λξ̃i) | Fi−1

]
≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
where

a = (22θ+1 + 2)Γ (2θ + 1) +
23θΓ (3θ + 1)

3 log(n/δ)θ−1

b = 2 log(n/δ)θ−1.

Proof. Let λ ∈
[
0, 1

bKi−1

]
. That is, λ ≥ 0 and λL

1−1/θ
i−1 K

1/θ
i−1 ≤ 1

2 . Since λ ≥ 0, we have, by Lemma

4 of [141],

E
[
exp(λξ̃i) | Fi−1

]
≤ exp

(
λ2

2

(
E
[
ξ2
i I{ξi<0} | Fi−1

]
+ E

[
ξ2
i exp(λξi)I{0≤ξi≤Li−1} | Fi−1

]))
.

Observe

E
[
ξ2
i I{ξi<0} | Fi−1

]
=

∫ ∞
0

P
(
ξ2
i I{ξi<0} > x | Fi−1

)
dx

=

∫ ∞
0

P
(
ξ2
i > t2, ξi < 0 | Fi−1

)
2tdt

≤
∫ ∞

0
P (|ξi| > t | Fi−1) 2tdt

TB1
≤ 2

∫ ∞
0

exp
(
−(t/Ki−1)1/θ

)
2tdt

= 2Γ (2θ + 1)K2
i−1
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and

E
[
ξ2
i exp(λξi)I{0≤ξi≤Li−1} | Fi−1

]
=

∫ ∞
0

P
(
ξ2
i exp(λξi)I{0≤ξi≤Li−1} > x | Fi−1

)
dx

=

∫ ∞
0

P
(
ξ2
i exp(λξi) > t2 exp(λt), 0 ≤ ξi ≤ Li−1 | Fi−1

)
(2t+ λt2) exp(λt)dt

=

∫ ∞
0

P (|ξi| > t, 0 ≤ ξi ≤ Li−1 | Fi−1) (2t+ λt2) exp(λt)dt

≤
∫ Li−1

0
P (|ξi| > t | Fi−1) (2t+ λt2) exp(λt)dt

TB1
≤ 2

∫ Li−1

0
exp

(
−
(

1− λt1−1/θK
1/θ
i−1

)
(t/Ki−1)1/θ

)
(2t+ λt2)dt

≤ 2

∫ Li−1

0
exp

(
−
(

1− λL1−1/θ
i−1 K

1/θ
i−1

)
(t/Ki−1)1/θ

)
(2t+ λt2)dt

= 2

∫ Li−1

0
exp(−u)

 2K2
i−1θu

2θ−1(
1− λL1−1/θ

i−1 K
1/θ
i−1

)2θ
+

λK3
i−1θu

3θ−1(
1− λL1−1/θ

i−1 K
1/θ
i−1

)3θ

 du

=
2K2

i−1Γ (2θ + 1)(
1− λL1−1/θ

i−1 K
1/θ
i−1

)2θ
+

2λK3
i−1Γ (3θ + 1)

3
(

1− λL1−1/θ
i−1 K

1/θ
i−1

)3θ

≤
(

22θ+1Γ (2θ + 1) +
23θKi−1Γ (3θ + 1)

3L
1−1/θ
i−1 K

1/θ
i−1

)
K2
i−1

=

(
22θ+1Γ (2θ + 1) +

23θΓ (3θ + 1)

3 log(n/δ)θ−1

)
K2
i−1.

We can bound

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and a

k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξi + β

}
by

P

 ⋃
k∈[n]

{ k∑
i=1

ξ̃i ≥ x and a
k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξ̃i + β

}
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and

P

⋃
i∈[n]

{
ξi > log(n/δ)θKi−1

} ≤ n∑
i=1

P
(
ξi > log(n/δ)θKi−1

)
TB2
≤ 2δ

completing the proof.

A.9 Full Version and Proof of Theorem 15 and Proof of Theorem 16

Theorem 19 (Non-convex case, full version). Assume f is L-smooth and that, conditioned on the

previous iterates, et is centered and ‖et‖ is K-sub-Weibull(θ) with θ ≥ 1/2. If θ > 1/2, assume f is

ρ-Lipschitz. Let δ1, δ2, δ3 ∈ (0, 1) and δ = max{δ1, δ2, δ3}. Let

cθ = (22θ+1 + 2)Γ (2θ + 1) +
23θΓ (3θ + 1)

3
, and

c? =

√
f(x0)− f?

K (4eθ log(2/δ1))θ
√
L log(T + 1)

.

Then, for T iterations of SGD with ηt = c/
√
t+ 1 where c ≤ 1/L, we have:

if θ = 1/2, then, w.p. ≥ 1− δ1 − δ3,

1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 ≤
4(f(x0)− f?)

c
√
T

+
64K2 log(1/δ3)√

T
+

8eLK2 log(2/δ1) log(T + 1)√
T/c

and, in particular, if c? ≤ 1/L and c = c?, the right-hand side equals

4
√

2eLK2 log(2/δ1)(f(x0)− f?) log(T + 1)√
T

+
64K2 log(1/δ3)√

T

= O

(√
log(T ) log(2/δ) + log(1/δ)√

T

)
;

(A.5)

if 1/2 < θ ≤ 1, then w.p. ≥ 1− δ1 − δ3

1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 ≤
4(f(x0)− f?)

c
√
T

+
8 max{(4θ)θeKρ, 4(4θ)2θe2K2} log(1/δ3)√

T

+
4LK2(4eθ log(2/δ1))2θ log(T + 1)√

T/c

(A.6)
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and, in particular, if c? ≤ 1/L and c = c?, the right-hand side equals

4K(4eθ log(2/δ1))θ
√

2L(f(x0)− f?) log(T + 1)√
T

+
8 max{(4θ)θeKρ, 4(4θ)2θe2K2} log(1/δ3)√

T

= O

(√
log(T ) log(2/δ)θ + log(1/δ)√

T

)
;

(A.7)

if θ > 1, then w.p. ≥ 1− δ1 − δ2 − δ3,

1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 ≤
4(f(x0)− f?)

c
√
T

+
8 max{2 log(2T/δ2)θ−1Kρ, 4cθK

2} log(1/δ3)√
T

+
4LK2(4eθ log(2/δ1))2θ log(T + 1)√

T/c

(A.8)

and, in particular, for c? ≤ 1/L and c = c?, the right-hand side equals

2
√

2K(4eθ log(2/δ1))θ
√

2L(f(x0)− f?) log(T + 1)√
T

+
8 max{2 log(2T/δ2)θ−1Kρ, 4cθK

2} log(1/δ3)√
T

= O

(√
log(T ) log(2/δ)θ + log(2T/δ)θ−1 log(1/δ)√

T

)
.

Proof. We have

T−1∑
t=0

ηt

(
1− Lηt

2

)
‖∇f(xt)‖2 ≤ f(x0)− f? +

T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉+
L

2

T−1∑
t=0

η2
t ‖et‖2.

Using the law of total expectation,

E

[
exp

((
η2
t ‖et‖2
η2
tK

2

)1/2θ
)]
≤ 2.

Applying Lemma 8, we have, w.p. ≥ 1− δ1,

L

2

T−1∑
t=0

η2
t ‖et‖2 ≤

LK2v(2θ) log(2/δ1)2θ

2

T−1∑
t=0

η2
t

=
LK2c2v(2θ) log(2/δ1)2θ log(T + 1)

2
.



129

Applying Proposition 2 with

ξt = ηt(1− Lηt)〈∇f(xt), et〉

Kt−1 = ηt(1− Lηt)K‖∇f(xt)‖

mt = ηt(1− Lηt)Kρ

δ = δ2

β = 0

λ =
1

2α

x = 2α log(1/δ3)

(where we set ρ = 1 if θ = 1/2), we have, for all α ≥ bKρc, w.p. ≥ 1− 2δ2 − δ3,

T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉 ≤ 2α log(1/δ3) +
aK2

α

T−1∑
t=0

η2
t (1− Lηt)2‖∇f(xt)‖2.

So, for all α ≥ bKρc, we have, w.p. ≥ 1− δ1 − 2δ2 − δ3,

T−1∑
t=0

ηtνt‖∇f(xt)‖2 ≤ f(x0)− f? + 2α log(1/δ3) +
LK2c2v(2θ) log(2/δ1)2θ log(T + 1)

2

where

νt = 1− Lηt
2
− aK2

α
ηt(1− Lηt)2.

We want to bound νt away from zero. To do so, assume c ≤ 1
L and α ≥ 4aK2c. Then νt ≥ 1

4 .

Setting

α = max{bKρ, 4aK2}c

and plugging in a and b completes the proof.

To prove Theorem 16, we need the following lemma.

Lemma 15. Let Z = t ∈ [T ] with probability pt where
∑T

t=1 pt = 1. Let Z1, . . . , Zn be independent

copies of Z. Let Y = (Z1, . . . , Zn). Let X be an RT+-valued random variable independent of Z. Then

P

(
min
t∈Y

Xt > eη

)
≤ exp(−n) + P

(
T∑
t=1

ptXt > η

)
∀η > 0.
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Proof. First, letting η > 0 and x ∈ RT+,

P

(
min
t∈Y

xt > η

)
= P

(
n⋂
i=1

{xZi > η}
)

(i)
=

n∏
i=1

P (xZi > η)

= P (xZ > η)n

(ii)

≤
(

1

η
E [xZ ]

)n
=

(
1

η

T∑
t=1

ptxt

)n
,

where (i) follows by the independence of the Zi and (ii) follows by Markov’s inequality since xZ is

non-negative almost surely. Next, define

A =

{
x ∈ RT+

∣∣∣∣ T∑
t=1

ptxt ≤ η
}

B =

{
(x, y) ∈ RT+ × [T ]n

∣∣∣∣ xyi > eη ∀i ∈ [n]

}
.

Observe,

P ((X,Y ) ∈ B)
(i)
= P (X ∈ A, (X,Y ) ∈ B) + P (X ∈ Ac, (X,Y ) ∈ B)

(ii)
=

∫
A
P ((x, Y ) ∈ B)µ(dx) +

∫
Ac
P ((x, Y ) ∈ B)µ(dx)

≤
∫
A

(
1

eη

T∑
t=1

ptxt

)n
µ(dx) +

∫
Ac
µ(dx)

≤ exp(−n)

∫
A
µ(dx) + P (X ∈ Ac)

≤ exp(−n) + P

(
T∑
t=1

ptXt > η

)

where (i) follows from the law of total probability and (ii) follows from Thm. 20.3 of [173] since X

and Y are independent.

Remark 10. Under the conditions of Lemma 15, [135] uses that E [XZ ] = E
[∑T

t=1 ptXt

]
. Lemma 15

essentially extends this to high probability.
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Now, to prove Theorem 16, we apply Lemma 15 with Xt = ‖∇f(xt)‖2 and

pt =
1/
√
t+ 1∑T−1

t=0 1/
√
t+ 1

;

and use that ∑T−1
t=0 1/

√
t+ 1√

T
≥ 1.

A.10 Non-convex Projected SGD

Consider xt+1 = P (xt − ηtgt) = P (xt − ηt(∇f(xt)− et)). Define

Gt =
xt − P (xt − ηt∇f(xt))

ηt

Et =
xt+1 − P (xt − ηt∇f(xt))

ηt
.

Note that if P = I, then Gt = ∇f(xt) and Et = et. Moreover, xt = Pxt and xt+1 = Pxt+1 so, by

the non-expansiveness of P , ‖Gt‖ ≤ ‖∇f(xt)‖ and ‖Et‖ ≤ ‖et‖. We can get even tighter bounds

using the second prox theorem [12, Thm. 6.39]: ‖Gt‖2 ≤ 〈∇f(xt), Gt〉 and 〈Gt, Et〉 ≤ 〈∇f(xt), Et〉.

It is easy to come up with an example where ‖∇f(xt)‖ does not go to zero, so we would like

to bound ‖Gt‖ instead. We start as usual:

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2.

Focusing on the norm term,

L

2
‖xt+1 − xt‖2 =

Lη2
t

2
‖Gt‖2 − Lη2

t 〈Gt, Et〉+
Lη2

t

2
‖Et‖2.

Focusing on the inner product term,

〈∇f(xt), xt+1 − xt〉 = ηt〈∇f(xt), Et −Gt〉

= ηt〈∇f(xt), Et〉 − ηt〈∇f(xt), Gt〉

� ηt〈Gt, Et〉 − ηt‖Gt‖2.
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Unfortuantely, we cannot procede any further. [176] is able to get around this but at the cost

of getting
∑T−1

t=0 ηt‖et‖2 = O(
√
T ) instead of

∑T−1
t=0 η2

t ‖et‖2 = O(log(T )). To mitigate this, they

require an increasing batch-size. [177] is able to remove this requirement, but only for non-convex

projected SVRG not non-convex projected SGD. Thus, we leave the analysis of non-convex projected

SGD as an open problem.
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