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Cheng, Nuojin (Ph.D., Applied Mathematics)

Multi-fidelity Uncertainty Quantification and Optimization

Thesis directed by Prof. Alireza Doostan

This thesis presents four novel bi-fidelity modeling approaches designed to enhance compu-

tational e!ciency and accuracy in uncertainty quantification and optimization. First, Bi-fidelity

Boosting (BFB) introduces an e”ective sketching-based subsampling method, accompanied by the-

oretical analysis of how inter-model correlation impacts performance. Second, the Bi-fidelity Vari-

ational Auto-encoder (BF-VAE) leverages deep generative models and transfer learning to achieve

high performance with minimal high-fidelity data, also revealing connections between multi-fidelity

learning and information bottleneck theory. Third, Langevin Bi-fidelity Importance Sampling (L-

BF-IS) develops an e!cient score-based Metropolis-Hastings importance sampling estimator for

uncertainty quantification, whose e”ectiveness is linked to the discrepancy between model failure

probability measures. Finally, a bi-fidelity zero-order optimization framework employs local multi-

fidelity surrogates and an Armijo-based line search for optimal step sizes, demonstrating strong

empirical performance supported by theoretical convergence guarantees under specific conditions.

Collectively, these contributions advance multi-fidelity modeling by providing e!cient, theoretically

grounded methods for tackling complex computational challenges.1

1 There are more contributed researches addressing optimization under uncertainty, including Bayesian optimiza-
tion, information-theoretic interpretations of expected improvement [97], and exploration strategies [417].

��������������������
�������
�����������������������	�����



Dedication

To my loving parents, Jianwen and Ling, my partner, Wanchen, and all the friends who have

accompanied me on this journey.

��������������������
�������
�����������������������	�����



iv

Acknowledgements

This work was supported by the AFOSR awards FA9550-20-1-0138,FA9550-20-1-0188 with

Dr. Fariba Fahroo as the program manager, and US Department of Energy’s Wind Energy Tech-

nologies O!ce.

��������������������
�������
�����������������������	�����



v

Contents

Chapter

1 Quadrature Sampling of Parametric Models with Bi-fidelity Boosting 1

1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Contributions of this article . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Sketching of least squares problems . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Bi-fidelity problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Bi-fidelity boosting (BFB) in sketched least squares problems . . . . . . . . . . . . . 14

1.4.1 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Pre-asymptotic analysis via optimality coe!cients . . . . . . . . . . . . . . . 16

1.4.3 Asymptotic analysis via probabilistic correlation . . . . . . . . . . . . . . . . 21

1.4.4 Preliminary technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.5 Proof of Theorem 1.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.6 Achieving the (ω, ε) pair condition . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.1 Verification of theoretical results on synthetic data . . . . . . . . . . . . . . . 28

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

��������������������
�������
�����������������������	�����



vi

2 Bi-fidelity Variational Auto-encoder for Uncertainty Quantificaiton 43

2.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Variational Autoencoder (VAE) . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Auto-regressive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Bi-fidelity Variational Auto-encoder (BF-VAE) . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Architecture, Objective Functions, and Algorithm . . . . . . . . . . . . . . . 53

2.4.2 Bi-fidelity Information Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.3 Bi-fidelity Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Priors and Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Choices of Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.2 Hyperparameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.1 Composite Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.2 Cavity Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6.3 Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Langevin Bi-fidelity Importance Sampling 80

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Langevin Bi-fidelity Importance Sampling Estimator and its Properties . . . . . . . 84

3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.2 Biasing Distribution and L-BF-IS Estimator . . . . . . . . . . . . . . . . . . . 86

3.3.3 Statistical Properties of L-BF-IS Estimator . . . . . . . . . . . . . . . . . . . 88

3.3.4 Selection of Lengthscale ϑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

��������������������
�������
�����������������������	�����



vii

3.3.5 Sampling the Biasing Distributions . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.6 Further Discussion on Bi-fidelity Modeling . . . . . . . . . . . . . . . . . . . . 92

3.3.7 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.1 A Simple Bimodal Function for Demonstrating Langevin Algorithm . . . . . 97

3.4.2 Synthetic Examples with Prescribed Functions . . . . . . . . . . . . . . . . . 98

3.4.3 Physics-based Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Bi-fidelity Stochastic Subspace Descent: A Surrogated Line Search Approach 112

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Line Search on Bi-fidelity Surrogate . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.2 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.3 Proof of Theorem 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.4 Examples of Possible Low-Fidelity Functions . . . . . . . . . . . . . . . . . . 123

4.4 Bi-Fidelity Line Search with Stochastic Subspace Descent . . . . . . . . . . . . . . . 125

4.5 Empirical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5.1 Synthetic Problem: Worst Function in the World . . . . . . . . . . . . . . . . 130

4.5.2 Zero-th Order Optimization for Machine Learning Problems . . . . . . . . . . 132

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

��������������������
�������
�����������������������	�����



viii

Bibliography 142

Appendix

A Bi-fidelity Sampling 183

A.1 E!cient leverage score sampling of certain design matrices . . . . . . . . . . . . . . . 183

A.2 Proof of Theorem 1.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.3 Proof of Theorem 1.4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B Bi-fidelity VAE 192

B.1 Proof of Bi-fidelity ELBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.2 Proof of Bi-fidelity Information Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . 193

B.3 A Brief Introduction to KID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C Langevin Bi-fidelity Importance Sampling 197

C.1 Variance Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

C.2 An Upper Bound for the Normalization Constant . . . . . . . . . . . . . . . . . . . . 197

C.3 Simplification for KL Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

D Bi-fidelity Stochastic Subspace Descent 199

D.1 Proof of Lemma 4.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.2 Single-fidelity SSD with Line Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2.1 Assuming Strong-convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2.2 Assuming Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.2.3 No convexity assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

D.3 Worst Function in the World: Additional Data . . . . . . . . . . . . . . . . . . . . . 205

��������������������
�������
�����������������������	�����



ix

Tables

Table

1.1 Empirical correlation between µ2(A, b) and µ2(A, b̃) for four di”erent parameters

setups and two di”erent sketch types. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Correlation coe!cients between µ2(A, b) and µ2(A, b̃) for di”erent sampling methods

under total degree or hyperbolic cross space. The correlation is computed based on

the points shown in Figure 1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 The values of the parameters in the composite cantilever beam model. The center of

the holes are at x = {5, 15, 25, 35, 45}. The parameters f , E1, E2 and E3 are drawn

independently and uniformly at random from the specified intervals. . . . . . . . . . 34

1.4 Correlation coe!cient between µ2(A, b) and µ2(A, b̃) for di”erent sampling methods

under total degree or hyperbolic cross space. The correlation is computed based on

the points shown in Figure 1.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Selected distributions for di”erent components are presented. Here, µφ(x
L) and

ωφ(x
L) are the outputs of the variational encoder. Kψ is the parameterized latent

mapping in Equation (2.14). ϖ → R and ϱ > 0 are hyperparameters. . . . . . . . . . 61

2.2 The values of the parameters in the composite cantilever beam model. The centers

of the holes are at x = {5, 15, 25, 35, 45}. The entries of ε are drawn independently

and uniformly at random from the specified intervals. . . . . . . . . . . . . . . . . . 65

2.3 The relative errors of the first and second moments of HF-VAE/BF-VAE generated

QoI shown in Figure 2.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

��������������������
�������
�����������������������	�����



x

2.4 The relative errors of the first and second moments of HF-VAE/BF-VAE generated

QoI shown in Figure 2.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5 The relative errors of the first and second moments of HF-VAE/BF-VAE generated

QoI shown in Figure 2.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 The stochastic input ranges, distributions, and physical meanings of the Borehole

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 The parameter values in the composite cantilever beam model. The center of the

holes are at x = {5, 15, 25, 35, 45}. The parameters z1, z2, z3 and z4 are drawn

independently and uniformly at random from the specified intervals. . . . . . . . . . 104

4.1 Performance values (mean ± std over 10 runs) showing the objective function for

di”erent optimization methods at various HF function evaluationsN with ϑ = 20, c =

0.99. The minimum values in each column are highlighted in bold. . . . . . . . . . . 131

4.2 Comparison of SSD methods for di”erent values of ϑ (Mean ± Std at N = 20, 000).

Bold values indicate the minimum mean for each SSD method, i.e., across each row. 132

4.3 Black-box kernel ridge regression HF function values (mean ± std) for FS-SSD, HF-

SSD, VR-SSD, and BF-SSD at various combinations of ϑ and c at N = 50, 000.

Considering uncertainties, the minimum values in each row are highlighted in bold. . 134

D.1 Performance values for di”erent optimization methods across various c and ϑ combi-

nations at N = 5,000. The minimum value in each row is highlighted in bold. . . . . 205

��������������������
�������
�����������������������	�����



xi

Figures

Figure

1.1 Scatter plots of µ(b,Sω→)↑ µ(b,Sω→→) based on given values of ς for Gaussian sketch

(red) and leverage score sketch (blue). The green curve is the bound we provide in

Theorem 1.4.2 with ω = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Scatter plots of the square of the optimality coe!cient for high- and low-fidelity data

for each of 100 di”erent sketches. Each point is equal to (µ2(b̃,S), µ2(b,S)) for one

realization of the sketch S. The top and bottom panels correspond to the sketches

constructed using Gaussian and leverage score sampling sketches, respectively. . . . . 38

1.3 A figure of the temperature driven cavity flow problem, reproduced from Figure 5

of [170]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4 Scatter plots of the square of the optimality coe!cient for high- and low-fidelity

data from the cavity fluid flow problem for di”erent polynomial spaces (top: total

degree; bottom: hyperbolic cross) and types of sampling. Each point is equal to

(µ2(b̃,S), µ2(b,S)) for one realization of the sketch S, and each subplot contains

100 points (i.e., is based on 100 sketch realizations). For the total degree space

m = 30 samples are used and for the hyperbolic cross space m = 20 samples are

used. The corresponding correlation coe!cients are presented in Table 1.2. . . . . . 39

��������������������
�������
�����������������������	�����



xii

1.5 Relative error for di”erent sampling methods and polynomial spaces when fitting the

surrogate model to the cavity fluid flow data. Yellow lines show the relative error E in

(1.61) for the unsketched solution in (1.2). Blue lines show E when the coe!cients

x are computed via the QR decomposition-based method in Section 1.3.2.1. The

blue box plots shows the distribution of E based on 1000 trials when x is computed

as in (1.7). The orange box plots shows the same things, but for the solution x̂BFB

computed via Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6 Cantilever beam (left) and the composite cross section (right) adapted from [217]. . 40

1.7 Finite element mesh used to generate high-fidelity solutions. . . . . . . . . . . . . . 41

1.8 Scatter plots of the square of the optimality coe!cient for high- and low-fidelity

data from the composite beam problem for di”erent polynomial spaces (top: total

degree; bottom: hyperbolic cross) and types of sampling. Each point is equal to

(µ2(b̃,S), µ2(b,S)) for one realization of the sketch S, and each subplot contains

100 points (i.e., is based on 100 sketch realizations). For the total degree space

m = 30 samples are used and for the hyperbolic cross space m = 18 samples are

used. The corresponding correlation coe!cients are presented in Table 1.4. . . . . . 41

1.9 Relative error for di”erent sampling methods and polynomial spaces when fitting the

surrogate model to the beam problem data. Yellow lines show the relative error E in

(1.61) for the unsketched solution in (1.2). Blue lines show E when the coe!cients

x are computed via the QR decomposition-based method in Section 1.3.2.1. The

blue box plots shows the distribution of E based on 1000 trials when x is computed

as in (1.7). The orange box plots shows the same things, but for the solution x̂BFB

computed via Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Instead of conducting bi-fidelity regression directly in high-dimensional observation

space (blue path), we introduce an approach via low-dimensional latent space (red

path). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

��������������������
�������
�����������������������	�����



xiii

2.2 The probabilistic encoder qφ(z|x) of a VAE produces two separate vectors, µφ(x)

and ωφ(x), which respectively represent the mean and standard deviation of resulting

latent variable z following a multivariate Gaussian distribution. The random vector

ϑ ↓ N (0, I) provides randomness for the encoder output z and is used for the

reparameterization trick in Equation (2.12). . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Structure of the proposed BF-VAE model. The probabilistic encoder qφ(z
L|xL) pro-

duces two independent vectors, µφ(x
L) and φφ(x

L), which represent the mean and

standard deviation of a resulting multivariate Gaussian. The latent auto-regression

pψ(z
H |zL) is a simplified single-layer neural network Kψ defined in Equation (2.14)

added with a noise ϖϖ. The probabilistic decoder pθ(x
H |zH) is pre-trained by LF

data via the transfer learning technique, with its last layer tuned by LF and HF

data pairs. White circles are random vectors and colored blocks are parameterized

components for training. Blue blocks are solely trained by LF data and green blocks

are trained by both LF and HF data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 The bi-fidelity information bottleneck architecture has an encoder and a decoder,

impacted by the information compression function I(xL, zψ) and information preser-

vation function I(zψ,x
H), respectively. The random vector zψ is designed to disclose

the relation between LF and HF data in the latent space. The bottleneck part is

necessary since only a limited number of HF realizations are available for learning

the relationship between LF and HF data. . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Cantilever beam (left) and the composite cross section (right) adapted from [218]. . 66

2.6 A histogram of the averaged QoI solutions along 128 spatial points from the LF and

HF composite beam models (left), one single realization of LF and HF data from

the same random input (middle), and 1,000 realizations of LF and HF QoIs (right). 67

2.7 Finite element mesh used to generate HF solutions. . . . . . . . . . . . . . . . . . . 67

��������������������
�������
�����������������������	�����



xiv

2.8 The KID results for the composite beam example given di”erent sizes of HF data.

Each circle represents the average KID between test data and the VAEs’ realizations

over 10 separate trials. The shaded area is half the empirical standard deviation of

these 10 trials. The red dashed line represents the KID between HF and LF data. . 69

2.9 Comparison of 1,000 samples generated from the trained HF-VAE (top row), BF-

VAE (bottom row) and the true HF model (right). A di”erent number of HF real-

izations are used in each of the first three columns: n = 10 (left column), n = 100

(middle left column), and n = 1,000 (middle right column). . . . . . . . . . . . . . . 70

2.10 A figure of the temperature-driven cavity flow problem, reproduced from Figure 5

of [170]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.11 A histogram of the QoI solutions averaged across all spatial points from the LF and

HF cavity flow models is shown in the left figure, two single realizations separately

from LF and HF with the same input are demonstrated in the middle figure, and

1,000 LF and HF QoIs are presented in the right figure. . . . . . . . . . . . . . . . . 72

2.12 The KID result for the cavity flow problem given di”erent sizes of HF data. Each

point represents the average KID between test data and the VAEs’ realizations over

10 separate trials. The shaded area corresponds to half the empirical standard

deviation of these 10 trials. The red dashed line is the KID value between LF and

HF data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.13 Comparison of 1,000 samples generated from the trained HF-VAE (top row), BF-

VAE (bottom row) and the true HF model (right). A di”erent number of HF real-

izations are used in each of the first three columns: n = 10 (left column), n = 100

(middle left column), and n = 1,000 (middle right column). . . . . . . . . . . . . . . 75

2.14 Histogram of the QoI values averaged across all spatial points from the LF and HF

viscous Burgers’ models is shown in the left figure, two single realizations separately

from LF and HF models with the same input are presented in the middle figure, and

1,000 LF and HF QoIs are plotted in the right figure. . . . . . . . . . . . . . . . . . . 76

��������������������
�������
�����������������������	�����



xv

2.15 The KID result for the viscous Burgers’ equation given di”erent numbers of HF

realizations. Each point represents the average KID between the test data and the

VAEs’ realizations over 10 separate trials. The shaded area corresponds to half the

empirical standard deviation of these 10 trials. The red dash line is the KID between

LF and HF data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.16 Comparison of 1,000 samples generated from the trained HF-VAE (top row), BF-

VAE (bottom row) and the true HF model (right). A di”erent number of HF real-

izations are used in each of the first three columns: n = 10 (left column), n = 100

(middle left column), and n = 1000 (middle right column). . . . . . . . . . . . . . . . 78

3.1 Illustration of the concept of limit state functions and biasing densities in the inputs

z. The left figure displays the limit state functions that separate the failure region

from the safe region, highlighting the HF limit function in red and the LF surro-

gate in blue. The middle figure shows the optimal biasing density as derived from

Equation (3.4). The right figure displays the proposed biasing density, as defined in

Equation (3.5), which utilizing the LF function. . . . . . . . . . . . . . . . . . . . . . 87

3.2 Illustration of the trade-o” between Pp[AL] and Pp[AH ↔ AC
L ] when D = 2. Case

1 (a) represents the worst scenario, where there is no overlap between AH and AL.

In Case 2 (b), we observe an extreme case where Pp[AH ↔ AC
L ] is zero, but Pp[AL]

becomes excessively large. Case 3 (c) presents a scenario where Pp[AL] is small, but

Pp[AH ↔ AC
L ] is significantly large. Lastly, Case 4 (d) shows a favorable scenario

resulting in a small values for both Pp[AL] and Pp[AH ↔AC
L ]. . . . . . . . . . . . . . 94

3.3 (a) The example function h(z) and the 0 threshold. (b) Densities p(z) and q(z)

with ϑ = 5.0. (c) Histogram of 1, 000 samples of q(z) generated from the Langevin

algorithm described in Algorithm 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

��������������������
�������
�����������������������	�����



xvi

3.4 Estimated variance of L-BF-IS for di”erent ϑ values with 95% confidence interval

using L = 1↗ 102 HF evaluations (approach one) and M = 1↗ 106 LF evaluations

(approach two) for the borehole function in Section 3.4.2.1. Approach one exhibits

higher estimation uncertainty, whereas approach two is more robust. . . . . . . . . . 99

3.5 Convergence behavior of L-BF-IS (dash) for ϑ values of 3.26 (a-b), 5.80 (c-d), and

7.34 (e-f), compared with standard Monte Carlo (solid), MF-IS (dot), and LF failure

probability (dash dot) using 10 Gaussian mixture clusters for the borehole function

in Section 3.4.2.1. The blue dash dotted lines are LF failure probabilities. The

shaded areas represent the 95% confidence interval from 1, 000 trials. . . . . . . . . . 101

3.6 Convergence behavior of L-BF-IS (dash) for ϑ = 3.71 compared with standard Monte

Carlo (solid) and LF failure probability (dash dot) with updated LF and HF functions

for the borehole function in Section 3.4.2.1. The shaded areas represent the 95%

confidence interval from 1, 000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.7 Estimated variance of L-BF-IS across di”erent ϑ values, with uncertainty bars indi-

cating a 95% confidence interval. Estimates are based on L = 1↗102 HF evaluations

(approach one) and M = 1↗ 106 LF evaluations (both approaches). . . . . . . . . . 102

3.8 Convergence of L-BF-IS (dash) for selected ϑ = 2.36 value compared with standard

Monte Carlo (solid) and LF failure probability (dash dot) for the 1000D problem in

Section 3.4.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.9 Top: Cantilever beam (left) and the composite cross section (right) adapted from

[218]. Bottom: Finite element mesh used to generate high-fidelity solutions. . . . . . 104

3.10 Estimated variance of L-BF-IS for di”erent ϑ values, with uncertainty bars repre-

senting the 95% confidence interval. Using L = 100 HF evaluations (approach one)

and M = 1, 000, 000 LF evaluations (both approaches). . . . . . . . . . . . . . . . . . 105

��������������������
�������
�����������������������	�����



xvii

3.11 Convergence behavior of L-BF-IS (dash) for ϑ values of 14.90 (a-b) and 18.57 (c-

d), compared with standard Monte Carlo (solid) and MF-IS (dot) using 10 Gaussian

mixture clusters for the beam problem in Section 3.4.3.1. The shaded areas represent

the 95% confidence interval from 1, 000 trials. . . . . . . . . . . . . . . . . . . . . . . 106

3.12 The estimated variance of L-BF-IS with 95% confidence intervals across varying

values of ϑ is illustrated in the left figure using approach one and in the right figure

using approach two. It is worth noting that the left figure exhibits a minimum point;

however, the uncertainty is su!ciently large to obscure its depiction. . . . . . . . . . 108

3.13 The solutions of the steady-state heat equation in Equation (3.41) given three dif-

ferent realizations of the thermal coe!cient K(x, z) on a 61 ↗ 61 grid over (0, 1)2

sampled from Equation (3.42) (a) or q(z) (b). For both figures, the left column is

the visualization of the thermal coe!cient, the middle column is the LF QoI solu-

tion provided by a pre-trained PINO, and the right column is the HF QoI solution

computed using the finite di”erence method. . . . . . . . . . . . . . . . . . . . . . . 109

3.14 Convergence of the L-BF-IS (dashed) against standard Monte Carlo (solid) and LF

failure probability (dashed dot) with 95% confidence bound computed from 1, 000

trials for the steady-state heat equation problem in Section 3.4.3.2. . . . . . . . . . . 110

4.1 Gradient Descent (GD), Coordinate Descent (CD), and Stochastic Subspace Descent

(SSD), along with their respective backtracking line search (LS) variants for step size

tuning, as well as the proposed Bi-fidelity SSD (BF-SSD), are evaluated on the “worst

function in the world” example, detailed in Section 4.5.1. . . . . . . . . . . . . . . . 114

4.2 Illustration of the bi-fidelity backtracking line search process using the example prob-

lem in Section 4.5.2.1. The blue curve represents the bi-fidelity surrogate model (↼̃k)

approximating the HF function ↼ (red curve). It significantly lowers computational

cost (e.g., reducing 4 HF calls to 1 HF + 6 LF calls). . . . . . . . . . . . . . . . . . . 127

��������������������
�������
�����������������������	�����



xviii

4.3 The convergence performance for di”erent optimizers. The x-axis is the equivalent

number of HF function evaluations, and the y-axis is the HF function evaluation

value at the current stage. We investigate the results when ϑ = 20, 50, 100, 200 with

rL = 2, rH = 100. The corresponding results are presented with their titles indicating

the specific choices. The shadow regions are the area between the best and the worst

behavior by 10 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 The eigenvalues of the kernel matrix implemented in Equation (4.30). . . . . . . . . 133

4.5 Similar with Figure 4.3, we compare the optimizer performances with varying param-

eters ϑ = 10, 50, 100 and c=0.9, 0.95, 0.99. The corresponding results are presented

with their titles indicating the specific choices. The shadow regions are the area

between the best and the worst behavior by 10 trials. . . . . . . . . . . . . . . . . . . 134

4.6 Optimization performances according to di”erent attack targets. The images and

their attack noises are presented in Figure 4.7. . . . . . . . . . . . . . . . . . . . . . 137

4.7 Adversarial examples for idx = 8 (top two rows) and idx = 18 (bottom two rows)

using di”erent methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 Relative errors with respect to Adam optimization using 500 epochs of zero-th order

optimizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

��������������������
�������
�����������������������	�����



Chapter 1

Quadrature Sampling of Parametric Models with Bi-fidelity Boosting

1.1 Abstract

Least squares regression is a ubiquitous tool for building emulators (a.k.a. surrogate models)

of problems across science and engineering for purposes such as design space exploration and uncer-

tainty quantification. When the regression data are generated using an experimental design process

(e.g., a quadrature grid) involving computationally expensive models, or when the data size is large,

sketching techniques have shown promise to reduce the cost of the construction of the regression

model while ensuring accuracy comparable to that of the full data. However, random sketching

strategies, such as those based on leverage scores, lead to regression errors that are random and

may exhibit large variability. To mitigate this issue, we present a novel boosting approach that

leverages cheaper, lower-fidelity data of the problem at hand to identify the best sketch among a

set of candidate sketches. This in turn specifies the sketch of the intended high-fidelity model and

the associated data. We provide theoretical analyses of this bi-fidelity boosting (BFB) approach

and discuss the conditions the low- and high-fidelity data must satisfy for a successful boosting. In

doing so, we derive a bound on the residual norm of the BFB sketched solution relating it to its

ideal, but computationally expensive, high-fidelity boosted counterpart. Empirical results on both

manufactured and PDE data corroborate the theoretical analyses and illustrate the e!cacy of the

BFB solution in reducing the regression error, as compared to the non-boosted solution. 1

1 The original version of this work is presented in [96], co-authored with Y. Xu, O. Malik, S. Becker, A. Doostan,
and A. Narayan.
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1.2 Introduction

Computational models are becoming central tools in analysis, design, and prediction. In these

models, input parameters are often modeled as a random vector p to account for either uncertainty

in precise values of these parameters, or as a means to model variability of parameters in order

to assess robustness of an output [301, 481]. We consider such types of models given a (possibly

non-linear) parameter-to-output map,

b = T (p), T : Rq ↘ R.

A canonical example is when T is a measurement functional (e.g., the spatial average) operating

on the solution to an elliptic partial di”erential equation (PDE) whose formulation contains ran-

dom variables that, e.g., parameterize the di”usion coe!cient. Hence, T is the composition of

a measurement functional with the solution map of a parametric PDE. By placing a probability

distribution on p that reflects a model of uncertainty, the goal of forward uncertainty quantification

(UQ) is to quantify the resulting randomness in b(p), frequently via statistics. Since explicit for-

mulas revealing the dependence of b on p are typically not available, one resorts to approximations.

One such sampling-based approach that we focus on is that of polynomial chaos (PC) methods

[185, 565] using variants of stochastic collocation [564].

In this paper we consider building emulators for forward UQ via a non-intrusive least squares-

based PC strategy. More precisely, we assume an a priori form for an emulator bV :

b(p) ≃ bV (p) :=

d∑

j=1

x→j↽j(p), V := span{↽1, . . . ,↽d}, (1.1)

where ↽j are fixed, known functions (in PC approaches they are multivariate polynomial functions

of p), and the coe!cients x→j must be determined. We identify these coe!cients through data

collected from evaluating b on a prescribed quadrature rule {(pn, wn)}
N
n=1, with quadrature nodes

pn and positive weights wn. The coe!cients x→j are then chosen as the solution to a quadrature-

based least squares problem,

x→ = argmin
x↑Rd

⇐Ax↑ b⇐22, A(n, j) =
⇒
wn↽j(pn), b(n) =

⇒
wnb(pn), (1.2)
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where A → R
N↓d is referred to as the design matrix of the problem. Once x→ is computed,

the emulator bV is easily manipulated and computationally analyzed to compute (approximate)

statistics for b or the sensitivity of b to each entry of p. The challenge with this approach is that

when dimp = q ⇑ 1, then designing an appropriately accurate quadrature rule requires N ⇑ 1

samples of b, which is prohibitively expensive when such evaluations amount to PDE solutions.

(For example a q-dimensional tensorized Gaussian quadrature rule with n points per dimension

requires N = nq points.)

In this paper, we describe one strategy to mitigate this cost via a procedure that combines

statistical boosting ideas from theoretical computer science (see, e.g., [337, Sec. 7.2] and [557,

Sec. 2.3]) with bi-fidelity strategies in UQ. More precisely, our approach boosts on the randomness

of a sketching operator S → R
m↓N that is used to approximately solve (1.2):

x→→ = argmin
x↑Rd

⇐SAx↑ Sb⇐22. (1.3)

Without a priori knowledge of b, a deterministic sketch with m < N generally is not robust to

adversarial vectors b that result in a large residual for x→→ relative to the residual for x→. However,

in general scenarios one can identify constructive probabilistic models for S where sketches of near-

optimal size, m ↭ d log d/(⇀ε), ensure

⇐Ax→→ ↑ b⇐2 ⇓ (1 + ⇀)⇐Ax→ ↑ b⇐2 with probability ⇔ 1↑ ε.

We provide a more detailed discussion of existing sketching guarantees in section 1.3.2, in particular

for row sketches, for which computing Sb requires knowledge of only m entries of b, rather than

all N entries. While random sketching provides attractive guarantees when m ↖ N , it is still

random and hence is subject to randomness in performance, and “failure” events can occur with

nonzero probability ε. Naive statistical boosting mitigates this issue by generating several (say L)

sketches and choosing the one that yields the smallest residual. However, this requires generating

Lm entries of b, which can be computationally expensive when each evaluation is an expensive

PDE solve. Our approach attacks this problem in the sketch selection boosting phase by replacing
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b with an approximate, low-fidelity version from which collecting Lm samples is computationally

feasible. Once a “good” sketch is identified in the boosting phase, we solve the sketched least

squares problem using the corresponding sketch of the original data b.

Thus, we assume availability of and leverage a low-fidelity model b̃(p). For example, b̃ may

correspond to using a discretized PDE solver with a mesh coarser than the one which produces

accurate realizations of b, or to model approximations such as Reynolds-averaged Navier Stokes

solvers, or to solutions computed with arithmetic in lower precision compared to samples for b.

Although b̃ may be untrusted as a replacement for b, it can be used to extract some useful infor-

mation about b, as is done in by-now standard multi-fidelity approaches [423]. Throughout this

paper, we assume the bi-fidelity setup, i.e., two levels of fidelity, and also that the cost of evaluating

b̃ is much less than the corresponding cost for b; both of these are common practical assumptions

[148, 380, 598, 172, 387].

1.2.1 Contributions of this article

The contributions of this article are as follows:

• We propose a new bi-fidelity boosting (BFB) algorithm to compute an approximation to

x→. The procedure, given in Algorithm 2, computes the solution of a sketched least squares

problem, where the sketch matrix is identified by a boosting procedure on a low-fidelity

data vector b̃. The sketching approach reduces the required sample complexity from N

evaluations of b to ↓ d log d samples of b, which can be a significant saving. The boosting

procedure requires ↓ Ld log d evaluations of the low-fidelity model b̃, where, in the language

of statistical learning, L is the number of weak learners used in the boosting procedure.

When b̃ costs substantially less than b, this cost for collecting the boosting data is negligible.

• We provide a theoretical analysis of BFB under certain assumptions, which provides quanti-

tative bounds on the residual of the BFB solution x̂BFB relative to the full, computationally

expensive solution x→ (see Theorems 1.4.2 and 1.4.4). We also provide some asymptotic
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bounds on the correlation between the low- and high-fidelity solutions in a certain sense

(see Theorem 1.4.5). Finally, we provide concrete computational strategies to ensure that

the required assumptions of BFB hold (see Theorem 1.4.11).

• We investigate the numerical performance of BFB when combined with several di”erent

sampling strategies and compare the performance to the corresponding sampling strategies

without boosting. We also demonstrate using real-world problems that the assumptions

required for BFB’s theoretical analysis frequently hold in practice.

The idea of sketching for least squares solutions has a substantial history in the computer

science and numerical linear algebra communities [337, 557]. Our use of sparse row sketches of size

↓ d is identical to existing methods for leverage score-based [337], Gaussian-sketch based [357], and

volume-maximizing sketching [137, 138]. In addition, boosting for least squares problems is also

not a new idea [206]. However our combination of these approaches in a bi-fidelity setting is new

to our knowledge, and our analysis in this bi-fidelity context provides novel, non-trivial insight into

the algorithm performance.

The rest of this manuscript is organized as follows. Section 1.3 introduces the notation we

use and provides some background material on various sketching approaches in least squares ap-

proximation. Section 1.4 presents the BFB algorithm along with its theoretical analysis. Section

1.5 contains numerical experiments which illustrate various aspects of the BFB approach. We con-

clude the present study in Section 1.6. The paper also contains several appendices. Appendix A.1

provides a brief introduction to the sampling approach that we proposed in [349] and which we

make use of in this paper. Appendices A.2 and A.3 contain some proofs that have been left out of

the main text.

1.3 Preliminaries

For the interest of clarity and completeness, we next introduce the notation used throughout

the manuscript and introduce four sampling strategies to sketch the least squares problem (1.2),
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namely, sampling via column-pivoted QR, leverage scores, volume maximization, and Gaussian

distribution.

1.3.1 Notation

Matrices are denoted by bold upper-case letters (e.g., A), vectors are denoted by bold lower-

case letters (e.g., x) and scalars by lower case regular and Greek letters (e.g., a and ⇁). Entries

of matrices and vectors are indicated in parentheses. For example, A(i, j) is the entry on position

(i, j) in A and a(i) is the ith entry in a. A colon is used to denote all entries along a mode of a

matrix. For example, A(i, :) is the ith row of A represented as a row vector. For a set of indices

J , A(J , :) denotes the submatrix (A(j, :))j↑J and a(J ) denotes the subvector (a(j))j↑J .

The compact SVD of a matrix A takes the form A = UΣV ↔, where U and V have

rank(A) columns and Σ is of size rank(A) ↗ rank(A). The pseudoinverse of A is denoted by

A† := V Σ
↗1U↔. For a matrix U with orthonormal columns, we use U↘ to denote an orthonormal

complement of U , i.e., U↘ is any matrix such that [U , U↘] is square and has orthonormal

columns. We use PA := AA† = UU↔ to denote the orthogonal projection onto range(A),

where U = orth(A) is a(ny) matrix whose columns are an orthonormal basis for range(A), e.g.,

via the compact SVD or QR decomposition of A. The determinant of A is denoted by det(A). For

a positive integer n, we use the notation [n] := {1, 2, . . . , n}. We use aP to denote a vector a ↙= 0

rescaled to unit length:

aP =
a

⇐a⇐2
. (1.4)

We also introduce two notions of correlation: for given deterministic vectors a, b ↙= 0, we

define the correlation between them as the cosine of the angle separating them:

corr(a, b) :=
∝a, b′

⇐a⇐2⇐b⇐2
,

where ∝·, ·′ denotes the Euclidean inner product. We will also require Pearson’s correlation coe!-

cient, which is widely used in statistics. For two (non-constant) random variables X and Y with
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bounded second moments defined on the same probability space, their correlation is defined as

corr(X,Y ) :=
ω[(X ↑ ω[X])(Y ↑ ω[Y ])]√

V[X]V[Y ]
, (1.5)

where ω[·] and V[·] are, respectively, the mathematical expectation and variance operators. Note

that our notation corr(·, ·) is overloaded, operating di”erently on vectors and (random) scalars.

The context of use in what follows should make it clear which definition above is used.

We will use the following notation to denote the minimum of the least squares objective in

(1.2):

r(A, b) := min
x

⇐Ax↑ b⇐2 = ⇐Ax→ ↑ b⇐2, (1.6)

where x→ is defined as in (1.2).

1.3.2 Sketching of least squares problems

Solving the problem (1.2) using standard methods (e.g., via the QR decomposition) costs

O(Nd2)2 . When N is large, this may be prohibitively expensive. A popular approach to address

this issue is to apply a sketch operator S → R
m↓N where m ↖ N to both A and b in (1.2) in

order to reduce the size of the problem:

x̂ := argmin
x↑Rd

⇐SAx↑ Sb⇐2 . (1.7)

This approach has two benefits: (i) If S is a row-sketch, i.e., has only a small number of non-zero

columns, then Sb requires knowledge of only a small number of entries of b, and (ii) the cost

of solving this smaller problem is O(md2), a substantial reduction from O(Nd2) when m ↖ N .

Analogously to (1.6), we will use the following to denote the least squares objective value for the

approximate solution:

rS(A, b) := ⇐Ax̂↑ b⇐2. (1.8)

The goal is for the approximation x̂ to yield a residual “close” to the optimal residual of the full

problem (1.2),

r(A, b) ≃ rS(A, b), (1.9)

2 In our context, we have N > d; see Assumption 1.4.1.

��������������������
�������
�����������������������	�����



8

which is typically achieved if m is “large enough”. The following definition makes this more precise.

Definition 1.3.1 ((ω, ε) pair condition). Let S → R
m↓N be a random matrix. Given A → R

N↓d,

b → R
N , and ω, ε > 0, the distribution of S is said to satisfy an (ω, ε) pair condition for (A, b) if,

with probability at least 1↑ ε, both conditions,

rank(SA) = rank(A) and rS(A, b) ⇓ (1 + ω) r(A, b), (1.10)

hold simultaneously, where r(A, b) and rS(A, b) are defined as in (1.6) and (1.8), respectively.

Note that one can only ask for the above condition with probability less than 1: For any

sketch with m < N , there are vectors b for which the residual bound condition in (1.10) can be

violated. Such a condition can be satisfied with m < N samples; see sections 1.3.2.2, 1.3.2.3, and

1.3.2.4. Sketching operators S that sample a subset of the rows are of particular interest in UQ

since Sb in (1.7) then requires knowledge of only a subset of entries in the vector b, meaning that

fewer samples need to be collected. In this paper, we consider three di”erent sketching operators

of this type, one of which is deterministic and two of which are random. These are described in

Sections 1.3.2.1–1.3.2.3. Another popular sketching operator is the Gaussian sketching operator

whose entries are appropriately scaled i.i.d. normal random variables. Applying such a random

matrix to b requires knowledge of all entries in b. While this makes the Gaussian sketch unsuitable

for use in practice for quadrature sampling, we still consider it in some of our theoretical results

since it is easier to analyze than the sampling-based sketches. Furthermore, since it is known

to have excellent guarantees, it provides a nice baseline. We introduce the Gaussian sketch in

Section 1.3.2.4.

Much research has been conducted over the last two decades on randomized algorithms in

numerical linear algebra, including the problem of solving least squares problems. We only cover

the basics that are relevant for this paper. For a more in-depth discussion, we refer the reader to

the surveys in [208, 337, 557, 357] and the references therein.
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1.3.2.1 Sampling via column-pivoted QR decomposition

Let A↔P = A(J , :)↔ = QR be a column-pivoted QR (CPQR) decomposition where J is

a length-N permutation vector. A simple deterministic heuristic for sampling m rows from A is

to simply choose those rows corresponding to the first m entries in J , i.e., A(J (1 : m), :). This

corresponds to applying a sketch S = (P (:, 1 : m))↔ to A. Such an approach has been used to sub-

sample points from either tensor product quadratures [466] or from random samples (approximate

D-optimal design) [207, 146, 203] in the context of least squares polynomial approximation.

Recall that A is an N ↗d tall-and-skinny matrix. When m ⇓ d, the subsample is straightfor-

ward and just takes the first m entries in J since the list J contains the entries in decreasing order

of importance (as approximated by the column-pivoting algorithm). When m > d, the situation

is more subtle since the remaining entries J (d + 1 : N) have no particular meaning and will not

be useful in our row-sampling procedure. To get around this, we use the heuristic in Algorithm 1

in order to sample m > d rows. The heuristic chooses the first d rows indices to be the entries

in J (1 : m) where J comes from the column-pivoted QR decomposition of A↔. The rows with

indices in J (1 : m) are then removed from A. Another column-pivoted QR decomposition is then

computed for the updated A↔, and the next set of d rows is chosen to be the rows of A corre-

sponding to the top-d entries in the new permutation vector J . Once again, the chosen rows are

removed from A. This procedure is repeated until m rows have been chosen. It is straightforward

to formulate a sampling matrix S such that SA = As, where As is the output of Algorithm 1.

Algorithm 1: Heuristic for sampling via column-pivoted QR decomposition

Input: A: design matrix; m: desired number of row samples
Output: As: matrix containing m rows of A
1: Initialize As to an empty matrix: As = [ ]
2: while m > 0 do
3: Compute column-pivoted QR of A↔: A(J , :)↔ = QR

4: Let k = min(d,m)
5: Append top-k rows from A to As: As = [As; A(J (1 : k), :)]
6: Remove top-k rows from A: A = A(J (k + 1 : end), :)
7: m = m↑ k
8: end while
9: return As
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Since the approach in Algorithm 1 is deterministic, it cannot satisfy guarantees of the form

in Definition 1.3.1. However, for the case m = d it is possible to prove bounds on the condition

number of A(J (1 : d), :); see Lemma 2.1 in [466] for details.

1.3.2.2 Leverage score sampling

Let A = UΣV ↔ be a compact SVD. The leverage scores of A are defined as

ϑi(A) := ⇐U(i, :)⇐22 for i → [N ]. (1.11)

They take values in the range ϑi(A) → [d/N, 1] and indicate how important each row of A is in a

certain sense. The matrix U can be replaced with any matrix whose columns form an orthonormal

basis for range(A) without impacting the definition in (1.11) [557, Sec. 2.4]. The coherence of A

is defined as

ϖ(A) := max
i↑[N ]

ϑi(A). (1.12)

It takes values in the range ϖ(A) → [d/N, 1]; it is maximal when one of the leverage scores is 1 and

minimal when all leverage scores are equal to d/N . Let r :=
∑

i ϑi(A). The leverage score sampling

distribution of A is defined as

pi(A) :=
ϑi(A)

r
for i → [N ], (1.13)

which is indeed a probability distribution as ϑi(A) > 0. Let f : [m] ↘ [N ] be a random map

such that each f(j) is independent and P{f(j) = i} = pi(A) for each j → [m]. The leverage score

sampling sketch S → R
m↓N is defined elementwise via

Sji =
Ind{f(j) = i}√

mpf(j)(A)
for (j, i) → [m]↗ [N ], (1.14)

where Ind{A} is the indicator function which is 1 if the random event A occurs and zero otherwise.

Algorithms and theory for leverage score sampling have been developed in a number of papers; see

e.g., [157, 156, 158, 337, 297] and references therein. The distribution for the leverage score sketch

in (1.14) satisfies an (ω, ε) condition for (A, b) if

m ↭ d log(d/ε) + d/(ωε); (1.15)
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see Theorem 1.4.11 for a more detailed and slightly stronger statement.

Choosing pi(A) = 1/N results in uniform sampling. For general matrices, there are no

useful guarantees when sampling uniformly in this fashion. However, if A has low coherence, then

uniform sampling will be close to the leverage score sampling distribution and guarantees similar to

those for leverage score sampling hold. More precisely, if ϑi(A) ⇓ Cd/N for some constant C ⇔ 1,

then uniform sampling satisfies an (ω, ε) condition for (A, b) if m is chosen as in (1.15) (this is a

direct consequence of, e.g., Theorem 6 in [297]). Notice that the di”erence from sampling according

to the exact leverage scores is that there now is an additional constant C hidden in the lower bound

on m.

In addition to a parsimonious sampling of b, the computational complexity of the sketched

least squares approach in (1.7) is a consideration. Direct sampling of the leverage score distribution

via the formula (1.11) requires a matrix decomposition (e.g., QR or SVD), which costs O(Nd2)

e”ort, the same e”ort required to solve the original least squares problem. (author?) [153] propose

a procedure for computing leverage score estimates with cost O(Nd logN) for any matrix A. When

A has particular structure it is possible to improve this considerably. (author?) [349] propose such

a method for the case when the multivariate basis functions ↽j in (1.1) are certain products of one-

dimensional functions, which corresponds to impose certain structure on the subspace V . In the

polynomial approximation setting, those structural conditions are satisfied by a large family of

subspaces, including the popular tensor product, total degree, and hyperbolic cross spaces. For

example, if the multivariate basis polynomials for q-dimensional inputs correspond to polynomials

of at most degree k in each dimension and use n grid points per dimension (in which case A has

N = nq rows), then the total cost of our method is at most O(qnk2 +mq) for drawing m samples.

This sampling approach is an ingredient in our method, so we describe the key aspects of how this

sampling approach works in Appendix A.1 and refer the reader to [349] for a more comprehensive

treatment.
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1.3.2.3 Leveraged volume sampling

Volume sampling is a technique that samples a set J ∞ [N ] of m row indices of A with

probability proportional to the squared volume of the parallelepiped spanned by the columns of

the submatrix A(J , :), i.e., P(J ) ∈ det
(
A(J , :)↔A(J , :)

)
. This means that, unlike for leverage

score sampling, the rows are not sampled independently. This has several benefits, including that

the sketched least square solution A(J , :)†b(J ) is correct in expectation [136, Prop. 7]: ω[A(J , :

)†b(J )] = A†b. Leverage score sampling, by contrast, may produce a biased estimate of the solution

vector. Despite the apparent issue of sampling from a combinatorial number of subsets of [N ], there

are algorithms for volume sampling that run in polynomial time. (author?) [137] propose two such

algorithms, RegVol and FastRegVol. RegVol runs in O((N↑m+d)Nd) time, and FastRegVol runs

in O((N + log(N/d) log(1/ε))d2) time with probability at least 1 ↑ ε. The dependence on N can

be prohibitive in quadrature sampling since the number of (tensor-product) quadrature points N

is exponential in the number of variables.

(author?) [138] propose leveraged volume sampling which improves on standard volume

sampling in several ways. Importantly, it still retains the correctness in expectation but allows

for more e!cient sampling. In particular, the cost of sampling does not depend on N . Unlike

standard volume sampling, the sketch distribution satisfies an (ω, ε) condition for (A,y) if m ↭

d log(d/ε)+d/(ωε), which is on par with what leverage score sampling requires for such guarantees.

Leveraged volume sampling has two stages. In the first stage, O(d2) rows are chosen from A using

a combination of leverage score sampling and rejection sampling. After that, the O(d2) subset is

further reduced to O(d log(d/ε) + d/(ωε)) via standard volume sampling. In the experiments, we

use FastRegVol from [137] for the second step. When FastRegVol is used, the cost of leveraged

volume sampling is O(((d2+m)d2+mCsamp) log(1/ε)), where Csamp is the cost of drawing one row

index of A using leverage score sampling. As discussed in Section 1.3.2.2, the the cost Csamp of

leverage score sampling can be reduced drastically in our setting by using the structured sampling

techniques from [349].
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1.3.2.4 Gaussian sketching operator

The Gaussian sketching operator S → R
m↓N has entries that are i.i.d. Gaussian random

variables with mean zero and variance 1/m. The Gaussian sketch satisfies an (ω, ε) condition if

m ↭ (d/ω) log(d/ε). These results also extend to the case when the entries of S are sub-Gaussian;

see Theorem 1.4.11 for further details.

The main benefit of the Gaussian sketching operator is that it allows for simple and precise

theoretical analysis of procedures that use sketching as a subroutine [357, Remark 8.2]. This is our

motivation for considering the Gaussian sketch in this paper. Computationally, it is not e!cient

to use Gaussian sketching for least squares problems. The reason is that computing SA costs

O(mNd) which is more than the O(Nd2) cost of solving the original least squares problem (recall

that m > d). As discussed earlier, an additional issue in bi-fidelity estimation is that computing Sb

requires knowledge of all elements of b which is prohibitively expensive when that vector contains

high-fidelity data.

1.3.3 Bi-fidelity problems

The main goal of this paper is to propose a strategy that improves the accuracy of sketching

via a boosting procedure that employs a full vector b̃ corresponding to an inexpensive low-fidelity

approximation to b.

Bi-fidelity frameworks assume the availability of a low-fidelity simulation T̃ ; that is, a map

T̃ : Rq ↘ R such that T̃ is parameterically correlated with T in some sense, but need not be close

to T in terms of sampled values. Such properties arise, for example, in parametric PDE contexts

when T̃ arises as the discretized PDE solution operator on a spatial mesh that is coarser (and

hence less trusted) than the mesh corresponding to T . The decreased accuracy/trustworthiness of

T̃ is balanced by its decreased cost, so that employment of T̃ may not furnish precise high-fidelity

information, but may provide useful knowledge in terms of dependence on the parameter p with

substantially reduced cost.
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In the context of constructing our emulator (1.2), our core assumption is that the low-fidelity

operator T̃ is cheap enough so that full exploration of the response over the sampled parameter set

{pi}i↑[N ] is more computationally feasible, resulting in a vector b̃ → R
N with low-fidelity entries

b̃(n) =
⇒
wnT̃ (pn). (1.16)

Of course, one may propose constructing the emulator T in (1.2) by simply replacing b by b̃, but

this restricts the accuracy of the emulator T to the potentially bad accuracy of T̃ . In this paper, we

propose a more sophisticated use of b̃, in conjunction with a single sparse sketch of b, that retains

some accuracy characteristics of x→.

1.4 Bi-fidelity boosting (BFB) in sketched least squares problems

In practice, one often requires the probability of successfully obtaining a good approximation

x→ associated with a random sketch from section 1.3.2 to be su!ciently close to 1, and one way to

achieve this with fixed sketch size is through a boosting procedure. Assuming the availability of a

collection of sketching matrices {Sω → R
m↓N}ω↑[L], one computes the residual for the Sω-sketched

solution (i.e., ⇐A(SωA)†(Sωb) ↑ b⇐2) for each Sω and then selects the one that yields the smallest

residual for use. Even if each sketch is sparse, this straightforward procedure inflates the required

sampling cost of the forward model T by the factor L, which may be computationally prohibitive.

To ameliorate this boosting cost, we employ a bi-fidelity strategy.

In Section 1.4.1 we present our proposed algorithm for quadrature sampling which leverages

sketching BFB. Sections 1.4.2 and 1.4.3 give our pre-asymptotic and asymptotic analysis results,

respectively. We collect some preliminary technical results in section 1.4.4, and prove our pre-

asymptotic results in section 1.4.5. The asymptotic result is proven in Appendix A.2. We end with

section 1.4.6 that provides results for random sketches achieving the (⇀, ε) condition in Definition

1.3.1.
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1.4.1 Proposed algorithm

A distinguishing feature of the least squares problem in our setup is that full information

of the high-fidelity data b is una”ordable due to computational restrictions; instead, we can only

a”ord to generate a small number of entries of b. Meanwhile, the low-fidelity data vector b̃ → R
N

that exhibits some type of correlation with b is readily available for repeated use. (This correlation-

like condition is quantifying through the parameter ς introduced in Theorem 1.4.2.) We propose a

modified boosting procedure, where the boosting phase of a sketched least squares problem replaces

high-fidelity data with low-fidelity data to find the “best” sketching operator and then employs this

best sketch directly with high-fidelity data to compute an approximate least squares solution. This

procedure is outlined in Algorithm 2.

Algorithm 2: Bi-Fidelity Quadrature Boosting (BFB)

Input: design matrix A, low-fidelity vector b̃, method for computing entries of the
high-fidelity vector b, collection of sketches for boosting {Sω}ω↑[L]

Output: an approximate solution x̂BFB to (1.2)
1: for ϑ → [L] do
2: compute the ϑ-th sketched solution x̂ω using the low-fidelity data:

x̂ω = argmin
x↑Rd

∥∥∥SωAx↑ Sωb̃
∥∥∥
2

(1.17)

3: end for
4: find the best low-fidelity sketch index ϑ→ using boosting:

ϑ→ = argmin
ω↑[L]

⇐Ax̂ω ↑ b̃⇐2 (1.18)

5: use sketch Sω→ to compute an approximate solution to (1.2):

x̂BFB = argmin
x↑Rd

⇐Sω→Ax↑ Sω→b⇐2 // Requires computing m entries of b (1.19)

The oracle sketch in this scenario is the one identified by the boosting strategy operating

directly on the high-fidelity least squares problem, which is computationally una”ordable:

ϑ→→ = argmin
ω↑[L]

⇐Ax→→
ω ↑ b⇐22, where x→→

ω = argmin
x↑Rd

⇐SωAx↑ Sωb⇐2. (1.20)

In the coming sections we will theoretically investigate the sketch transferability between high- and
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low-fidelity boosting, i.e., when the residual associated to x̂BFB, the solution produced by Algorithm

2, is comparable to the residual associated to x̂ω→→ .

We divide our analysis into two cases: Our first analysis frames performance of Algorithm 2 in

terms of an optimality coefficient, defined in (1.21), which measures the quality of the least squares

residual for a particular sketch S; we provide pre-asymptotic analysis with quantitative results that

provides qualitative guidance on how the BFB algorithm behaves in terms of the tradeo” in the

number of sketches L versus the optimality coe!cient (see the discussion following Theorem 1.4.4).

Our second theoretical result is an asymptotic analysis with Gaussian sketches that confirms the

intuition that the probabilistic correlations between the low- and high-fidelity random sketches is

high when b and b̃ have high vector correlations (see the discussion around Theorem 1.4.5).

For analysis purposes we make the following assumption.

Assumption 1.4.1. Assume that neither b̃ nor b lie in range(A), i.e., we assume b̃, b ↙→ range(A).

This is a reasonable assumption. If b → range(A), then it would be possible to solve the

high-fidelity least squares problem exactly by sampling m = d linearly independent rows of A

and the corresponding rows of b. In this case, it is therefore easy to solve (1.2) and only requires

accessing d rows of b. Similarly, if b̃ → range(A) then it would be easy to compute a sketch Sω

which only samples m = d rows and achieves zero error in Line 4 of Algorithm 2, therefore making

the boosting procedure vacuous.

1.4.2 Pre-asymptotic analysis via optimality coefficients

We introduce the following measure of relative error di”erence between the sketched and

optimal solutions:

µA(b,S) :=

√
r2S(A, b)↑ r2(A, b)

r2(A, b)

(→)
=

⇐(SQ)†SQ↘QT
↘b⇐2

⇐Q↘QT
↘b⇐2

, (1.21)

where Q = orth(A), and the second equality marked (∋) is valid if rank(SA) = rank(A), which

we establish in Lemma 1.4.7. For notational simplicity we usually drop the subscript and write

µ(b,S) when A is clear from context, but we emphasize that µ does depend on A. Note that
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r(A, b) = ⇐Q↘QT
↘b⇐2 > 0 due to Assumption 1.4.1, so the denominator in (1.21) is nonzero. We

call µ the optimality coefficient. Smaller values of µ are better in practice: µ = 0 implies the

sketch achieves perfect reconstruction of the data relative to the full least squares solution.

We provide two main theoretical results which shed light on the performance of Algorithm 2

from two di”erent perspectives. The first result shows that with an appropriate choice of the

sketches {Sω}ω↑[L], Algorithm 2 produces a solution whose relative error is close to that of the

oracle sketch solution in (1.20). Note that it would be straightforward to provide such guarantees

if rS(A, b̃) ⇓ rS↑(A, b̃) implied rS(A, b) ⇓ rS↑(A, b), in which case ϑ→ = ϑ→→. This may happen, for

instance, when b̃ and b di”er by a scaling. This monotone property of r when replacing b with b̃ is

unfortunately unlikely to hold in practice. Our result, which appears in Theorem 1.4.2, identifies

alternative conditions that ensure Sω→ is a “good” sketch for the high-fidelity data.

Theorem 1.4.2. Fix a positive integer L and suppose ε, ω → (0, 1]. If {Sω}ω↑[L] is a sequence of

i.i.d. random matrices whose distribution is an (ω, ε
L) pair for (Q,h), where

h :=
(
(PQ↓

b)P ↑ (PQ↓
b̃)P

)
P

and Q := orth(A), (1.22)

then with probability at least 1↑ ε,

µ(b,Sω→) ⇓ µ(b,Sω→→) + 2
√

6(1↑ ς)ω, (1.23)

where ς denotes the absolute correlation coefficient between PQ↓
b and PQ↓

b̃:

ς :=
∣∣∣corr(PQ↓

b,PQ↓
b̃)
∣∣∣ . (1.24)

In addition, on the event where (1.23) is true, we also have that (1.10) holds with S = Sω for every

ϑ → [L].

Theorem 1.4.2 shows that if a sketch satisfies an (ω, ε/L) condition for the pair Q and an

element h of range(Q↘), then we are able to prove bounds on the low-fidelity boosted optimality

coe!cient µ(b,Sω→) relative to the oracle high-fidelity boosted optimality coe!cient µ(b,Sω→→). This

is quite a general statement that accommodates a wide range of sketching operators. The condition
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on the operators {Sω}ω↑[L] is, for example, satisfied by all sketching operators in Sections 1.3.2.2–

1.3.2.4 when the embedding dimension m is su!ciently large. More precise statements for the

leverage score and Gaussian sketches are provided in Theorem 1.4.11.

In order to achieve a good approximate solution when applying sketching techniques in least

squares problems the sketching operator must preserve the relevant geometry of the problem. In

particular, it is key that Q and PQ↓
b remain roughly orthogonal after the sketching operator has

been applied. This importance of preserving PQ↓
b in the sketching phase when b is replaced by

low-fidelity data b̃ manifests in Theorem 1.4.2 through the correlation parameter ς.

Remark 1.4.3. Equation (1.23) suggests that Sω→ is “good” when ς is large. This explicitly

requires high parametric correlation between the portions of b and b̃ that lie orthogonal to the

range of A. A more subtle su!cient condition ensuring large ς is furnished by our discussion

following Proposition 1.4.8, which provides a lower bound for ς in terms of other parameters.

Theorem 1.4.2 does not provide a concrete strategy for how the sketches used in boosting are

chosen or constructed. However, near-optimal sketches (in particular satisfying our required (⇀, ε)

pair condition) are known to be produced through the well-known randomized approaches discussed

in sections 1.3.2.2-1.3.2.4. Precise statements for such sketch estimates are given later in by Theorem

1.4.11 in section 1.4.6, but it is appropriate for us to establish here that combining Theorem 1.4.2

with good sketching techniques results in explicit and illuminating theory for Algorithm 2. In

particular, one expects a tradeo” between the values of ς and L: boosting with a large number L

of sketches should work up to a threshold determined by the amount of correlation between b and

b̃. I.e., any accuracy gained by BFB should be limited by how correlated the low- and high-fidelity

models are, and one expects this to manifest in a relationship between L and ς. The theory we

develop below reveals this tradeo”. We focus on generating the sketches {Sω}ω↑[L] through leverage

score sampling, as described explicitly by (1.14) in section 1.3.2.2. We briefly discuss afterward

that one could generalize the result to more general sketches.
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Theorem 1.4.4. Let ε, ⇀ → (0, 1/2) and L → N be chosen, and assume

d ⇓ ε

4
exp

(
2

35⇀ε

)
. (1.25)

Now consider Algorithm 2, where {Sω}ω↑[L] are iid samples of a leverage score sketching operator

defined in (1.14), with the sampling requirement

m ⇔ 4dL

⇀ε
. (1.26)

Then each Sω satisfies an (⇀/L, ε/2) condition for the pair (Q,h), and with probability at least 1↑ε,

we have

r2Sω→
(A, b) ⇓

[
1 +

⇀

L
τ

r2(A, b), (1.27)

where

τ = τ(⇀, ε, ς, L) = 24L(1↑ ς) +
ε

2

(
1 + 4

√
6(1↑ ς)⇀

)
.

The results above give explicit behavior of the BFB residual via a concrete sketching strategy

for Algorithm 2. Note in particular that the sampling requirement m = O(L/⇀) in (1.26) means

that without boosting and simply generating one sketch S according to (1.26), which requires m

high-fidelity samples (equivalent to the number from BFB), we expect that the residual from this

one sketch behaves like

r2S(A, b) ↓
(
1 +

⇀

L

)
r2(A, b).

Comparing the above to (1.27), note that the only di”erence is the appearance of τ , and hence we

expect BFB to be useful (compared to an equivalent number of high-fidelity samples devoted to a

non-boosting strategy) when τ ⇓ 1, which requires,

L ↫
1

1↑ ς
.

I.e., boosting with L sketches is useful in BFB up to a threshold ↓ 1/(1↑ ς). Boosting with more

than this threshold level of sketches causes the error bound to saturate at a level determined by
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1 ↑ ς. Since ς is the correlation between the range(A)-orthogonal components of b and b̃, we

conclude that highly correlated range-orthogonal residuals (large values of ς very close to 1) are

optimal for BFB in the sense that sketching with large L will be e”ective.

A second observation we make is that the the m ↓ L requirement (1.26) is theoretically

suboptimal. In particular, we show in Theorem 1.4.11 that stronger coherence-like conditions on

the matrix A imply that leverage score sketching with m ↓ logL is su!cient to achieve the requisite

(⇀/L, ε) condition, see (1.57) in Theorem 1.4.11. We also note that Gaussian sketches only require

m ↓ logL samples (see (1.54)), and one can achieve the (⇀, ε) condition on average using m ↓ logL

samples (see, e.g., [349, Equation (2.18)]. Finally, if (1.25) is violated, then indeed m ↓ logL (see

(1.55) and the intermediate computation in (1.28)) for leverage score sketches. Thus, we expect in

practice that m ↓ logL samples are su!cient.

We give the proof of theorem 1.4.4 below to demonstrate how it relies on Theorem 1.4.2; we

will prove Theorem 1.4.2 in the coming sections.

Proof of Theorem 1.4.4. We start by making two conclusions from the conditions (1.25) and (1.26).

First, under these conditions,

35 log

(
4d

ε

)
⇓ 2

⇀ε
=△ m ⇔ dmax


35 log

(
4dL

(ε/2)

)
,

2L

⇀(ε/2)


, (1.28)

implying that condition (1.55) holds, so that result 2 from Theorem 1.4.11 guarantees that the

distribution from which the Sω sketches are drawn satisfies and (⇀, ε
2L) condition. Thus, theorem

1.4.2 states that there is an event E1 such that

Pr(E1) ⇔ 1↑ ε/2, On event E1, then (1.23) holds. (1.29)

The above is our first conclusion. For our second conclusion, we note that (1.26) and (1.25) imply,

m ⇔ 2d[
ϑ
L

(
ε
2

)1↗1/L
 (

ε
2

)1/L ,

so that again we satisfy (1.55) (employing a variation of the argument (1.28)), and so by Theorem
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1.4.11, the distribution from which Sω is drawn satisfies an (⇀̃, ε̃) condition for (A, b), where,

⇀̃ :=
⇀

L

(
ε

2

)1↗1/L

, ε̃ :=

(
ε

2

)1/L

.

Therefore with probability at least 1↑ ε̃,

r2Sω
(A, b) ⇓ (1 + ⇀̃)r2(A, b),

so that a union bound implies that there is an event E2 on which our second conclusion holds:

Pr(E2) ⇔ 1↑
(
ε̃
)L

= 1↑ ε/2 On event E2, then min
ω↑[L]

r2Sω
(A, b) ⇓ (1 + ⇀̃)r2Sω→→

(A, b). (1.30)

We now observe that for any η > 0, the bound

|µ(b,Sω→)↑ µ(b,Sω→→)| ⇓ η (1.31)

implies that

r2Sω→
(A, b) ⇓ r2Sω→→

(A, b) + r2(A, b)
(
η2 + 2ηµ(b,Sω→→)

)
. (1.32)

Thus, E1 ↔ E2 occurs with probability at least 1 ↑ ε, and on this event (1.29) ensures that η is

given by the right-hand side of (1.23). Also, on this event (1.30) implies that µ(b,Sω→→) = ⇀̃, i.e.,

r2Sω→→
(A, b) ⇓ (1 + ⇀̃)r2(A, b). Using these expressions in the above inequality, simplifying, and

using (ε/2)1↗1/L ⇓ ε/2 yields the result (1.27).

We emphasize that the proof above shows how Theorem 1.4.2 can be used to prove results

like Theorem 1.4.4 for more general sketches.

1.4.3 Asymptotic analysis via probabilistic correlation

We provide alternative analysis of Algorithm 2 motivated by the following intuition: If µ(b,S)

and µ(b̃,S) are probabilistically correlated in some sense, then we expect that Algorithm 2 should

produce a sketching operator Sω→ that is close to the oracle sketch Sω→→ . We give a technical

verification of this intuition below in Theorem 1.4.5, providing an asymptotic lower bound on

a certain measure of correlation between the two optimality coe!cients when S is a Gaussian

sketching operator.
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Theorem 1.4.5. If S is a Gaussian sketch, then

lim inf
m≃⇐

corr(µ2(b,S), µ2(b̃,S)) ⇔ ⇐PQ↓
bP⇐22 ↑

⇒
6min{⇐PQ↓

(bP ± b̃P)⇐2}
⇐PQ↓

b̃P⇐22
, (1.33)

where bP , b̃P are normalized versions of b and b̃, respectively, and the minimum is taken over the

two ± options. Moreover, if

↼ :=
|∝b, b̃′|

⇐b⇐2⇐b̃⇐2
⇔ ⇐PQb⇐2

⇐b⇐2
:= ▷, (1.34)

then we further have that

lim inf
m≃⇐

corr(µ2(b,S), µ2(b̃,S)) ⇔ (1↑ ▷2)↑
√

12(1↑ ↼)

(↼↑ ▷)2
. (1.35)

In Theorem 1.4.5 we restrict to Gaussian sketches and consider corr(µ2(b,S), µ2(b̃,S)) (rather

than the more natural quantity corr(µ(b,S), µ(b̃,S))) in order to make analysis tractable. In

general corr(µ(b,S), µ(b̃,S)) and corr(µ2(b,S), µ2(b̃,S)) may have significantly di”erent statistical

properties. However, if either of them is close to 1, then that would indicate a monotonically

increasing (although not necessarily linear) relationship between µ(b,S) and µ(b̃,S), and when

such a relationship holds we expect the boosting procedure in Algorithm 2 to work well. While

we restrict to Gaussian sketches, this probabilistic model is usually a good indicator of how other

sketches perform [357, Remark 8.2]. I.e., we expect the result to carry over to the random sampling-

based sketches (e.g., leverage scores) that we consider. We verify this numerically in Section 1.5.

Remark 1.4.6. The lower bound in (1.35) is useful only when the right-hand side is close to 1,

which roughly requires ↼ to be large and ▷ to be small. See Remark 1.4.9 for how this condition

relates to Theorem 1.4.2.

The rest of this section is organized as follows. Section 1.4.4 derives some preliminary techni-

cal results. Section 1.4.5 then proves Theorem 1.4.2. Section 1.4.6 provides theoretical guarantees

for when various sketches satisfy the (ω, ε) pair condition in Definition 1.3.1 and discuss how this

condition in turn ensures that those sketching operators satisfy the requirements in Theorem 1.4.2.

The proof of Theorem 1.4.5 is given in Appendix A.2.
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1.4.4 Preliminary technical results

Our first task is to understand how the optimal residual r(A, b) compares to rS(A, b).

Throughout this section let Q = orth(A).

Lemma 1.4.7. Given a sketch matrix S, assume ker(S) ↔ range(A) = {0}, or, equivalently,

rank(SA) = rank(A). Then we have,

r2S(A, b) = r2(A, b) + ⇐(SQ)†SQ↘Q
T
↘b⇐22. (1.36)

Proof. Under the assumption ker(S) ↔ range(A) = {0}, the sketched least squares problem repro-

duces elements of range(A): For any c → range(A),

A(SA)†Sc = c. (1.37)

The solution to the sketched least squares problem (1.7) is (SA)†Sb. Combining this fact with

(1.8) and (1.37) yields

r2S(A, b) = ⇐b↑A(SA)†Sb⇐22 = ⇐b↑A(SA)†S(QQT+Q↘Q
T
↘)b⇐22 = r2(A, b)+⇐(SQ)†SQ↘Q

T
↘b⇐22.

(1.38)

We conclude that rS(A, b) is comparable to r(A, b) if and only if ⇐(SQ)†SQ↘QT
↘b⇐22 is small.

The quantities ς, ↼ and ▷ defined in (1.24) and (1.34) are related by the following inequality.

Proposition 1.4.8. Assume ↼ ⇔ ▷. Then we have the two inequalities,

ς ⇔ ↼↑ ▷min

1,
√
2(1↑ ↼+ ▷)


. (1.39)

ς ⇔ ↼↑ (↼▷̃+
√
1↑ ↼2)min


1,

√
2(1↑ ↼+ ↼▷̃+

√
1↑ ↼2)


. (1.40)

where

▷̃ :=
⇐PQb̃⇐2
⇐b̃⇐2

, (1.41)

measures the relative energy of the low-fidelity vector in the range of A.
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Proof. We first prove (1.39). Since correlation coe!cients are scale-invariant, without loss of gener-

ality we assume ⇐b⇐2 = ⇐b̃⇐2 = 1. Write down the orthogonal decomposition of b and b̃ in Q▽Q↘

as follows:

b = PQb
b1

+PQ↓
b  

b2

,

b̃ = PQb̃
b̃1

+PQ↓
b̃  

b̃2

.

(1.42)

Notice that ⇐b1⇐22+⇐b2⇐22 = ⇐b̃1⇐22+⇐b̃2⇐22 = 1. It follows from the Cauchy–Schwarz inequality and

the definitions in (1.24) and (1.34) that

ς =
|∝b2, b̃2′|

⇐b2⇐2⇐b̃2⇐2
⇔ |∝b, b̃′ ↑ ∝b1, b̃1′| ⇔ ↼↑ ⇐b1⇐2⇐b̃1⇐2 = ↼↑ ▷⇐b̃1⇐2 ⇔ ↼↑ ▷. (1.43)

The last inequality can be replaced by a more accurate estimate for ⇐b̃1⇐2:

↼ = |∝b, b̃′| = |∝b1, b̃1′+∝b2, b̃2′| ⇓ ⇐b1⇐2⇐b̃1⇐2+⇐b2⇐2⇐b̃2⇐2 ⇓ ▷+⇐b̃2⇐2 =
√

1↑ ⇐b̃1⇐22+▷, (1.44)

which can be reorganized as

⇐b̃1⇐2 ⇓
√

1↑ (↼↑ ▷)2 =
√
(1↑ ↼+ ▷)(1 + ↼↑ ▷) ⇓

√
2(1↑ ↼+ ▷). (1.45)

Combining (1.43) and (1.45) finishes the proof of (1.39).

To show (1.40), we again assume ⇐b⇐2 = ⇐b̃⇐2 = 1, so that,

▷ = ⇐PQb⇐2 = ⇐PQ(P
b̃
b+ b↑ P

b̃
b)⇐2 ⇓ ↼⇐PQb̃⇐2 + ⇐b↑ P

b̃
b⇐2 = ↼▷̃+

√
1↑ ↼2. (1.46)

Plugging this into (1.39) and noting that the right-hand side of (1.39) is decreasing in ▷ yields

(1.40).

The main appeal of (1.40) is that the quantity ▷̃ involves only low-fidelity data, and hence

can be estimated. I.e., (1.40) gives a more practically computable lower bound for ς, involving one

quantity ▷̃ that depends only on low-fidelity data b̃, and the correlation ↼ between b and b̃.

Remark 1.4.9. Recall that our main convergence result, Theorem 1.4.2, has more attractive

bounds when ς is large. By (1.39), ς is large if ↼ ≃ 1 and ↼ ⇑ ▷, which coincides with su!cient
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conditions to ensure attractive bounds in (1.35) in Theorem 1.4.5. (Cf. Remark 1.4.6.) Thus,

↼ ⇑ ▷ is a unifying condition under which both of our main theoretical results, Theorem 1.4.2 and

Theorem 1.4.5, provide useful bounds. The condition ↼ ⇑ ▷ means that the correlation between

b and b̃ is high and strongly dominates the relative energy of b in range(A). This condition may

seem counterintuitive as it requires the high-fidelity solution to have a relatively large residual.

Since µ is defined relative to r(A, b), a small rSω→
(A, b) may still result in a large µ(b,Sω→) even if

rSω→
(A, b) is small but relatively large compared to r(A, b).

1.4.5 Proof of Theorem 1.4.2

We first consider the case corr(PQ↓
b,PQ↓

b̃) ⇔ 0. Fixing ϑ → [L], S = Sω, consider the event

E of probability at least 1↑ ε/L where the rank condition in (1.10) holds. On this event, this rank

condition with Lemma 1.4.7 implies that,

r2S(A, b)↑ r2(A, b) = ⇐(SQ)†SQ↘Q
T
↘b⇐22,

allowing us to directly estimate the di”erence between µ(b,S) and µ(b̃,S) as follows:

|µ(b,S)↑ µ(b̃,S)| =

∣∣∣∣∣
⇐(SQ)†SQ↘QT

↘b⇐2
⇐Q↘QT

↘b⇐2
↑ ⇐(SQ)†SQ↘QT

↘b̃⇐2
⇐Q↘QT

↘b̃⇐2

∣∣∣∣∣

⇓
∥∥∥(SQ)†S

(
(PQ↓

b)P ↑ (PQ↓
b̃)P

)∥∥∥
2

= ⇐(PQ↓
b)P ↑ (PQ↓

b̃)P⇐2⇐(SQ)†Sh⇐2

=

√
⇐(PQ↓

b)P⇐22 + ⇐(PQ↓
b̃)P⇐22 ↑ 2∝(PQ↓

b)P , (PQ↓
b̃)P′ ⇐(SQ)†Sh⇐2

=
⇒
2↑ 2ς · ⇐(SQ)†Sh⇐2

=
⇒
2↑ 2ς · ⇐Q(SQ)†Sh⇐2,

(1.47)

where the first inequality follows from the reverse triangle inequality, the second to last equality

follows (1.24), and the final equality follows from unitary invariance of the operator norm. The

case corr(PQ↓
b,PQ↓

b̃) < 0 can be treated similarly by noting that the inequality on the second

line of (1.47) still holds if the minus sign on the right-hand side is changed to a plus sign. The rest

of the computation is then done similarly to the case with non-negative correlation.
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Note that (SQ)†Sh is the S-sketched least squares solution to minx ⇐Qx↑ h⇐2. Also, note

that h → range(Q↘). Using the residual bound in (1.10), the following also holds on our probabilistic

event E:

⇐Q(SQ)†Sh⇐22 + ⇐h⇐22 = ⇐Q(SQ)†Sh↑ h⇐22 ⇓ (1 + ω)2 min
x↑Rd

⇐Qx↑ h⇐22 = (1 + ω)2⇐h⇐22. (1.48)

Rearranging terms and noting ⇐h⇐2 = 1 yields ⇐Q(SQ)†Sh⇐ ⇓
⇒
3ω, which is substituted into

(1.47), implying that on an event E with probability at least 1↑ ε/L, we have

|µ(b,S)↑ µ(b̃,S)| ⇓
√
6(1↑ ς)ω. (1.49)

Taking a union bound over ϑ → [L] yields that, with probability at least 1↑ ε,

max
ω↑[L]

|µ(b,Sω)↑ µ(b̃,Sω)| ⇓
√
6(1↑ ς)ω. (1.50)

Conditioning on the probabilistic event in (1.50) and using the definition of ϑ→ and ϑ→→ finishes the

proof:

µ(b,Sω→) ⇓ µ(b̃,Sω→) +
√
6(1↑ ς)ω ⇓ µ(b̃,Sω→→) +

√
6(1↑ ς)ω ⇓ µ(b,Sω→→) + 2

√
6(1↑ ς)ω. (1.51)

1.4.6 Achieving the (ω, ε) pair condition

We next show that, for a variety of random sketches of interest, the (ω, ε
L) pair condition

for (Q,h) in Theorem 1.4.2 holds for su!ciently large m. We begin with a lemma that gives a

su!cient condition for verification of the (ω, ε
L) pair condition for (Q,h), which can be deduced as

a special case from [158, Lemma 1]:

Lemma 1.4.10 ((author?) [158]). Let Q and h be defined as in Theorem 1.4.2. The distribution

of S is an (ω, ε
L) pair for (Q,h) if the following two conditions hold simultaneously with probability

at least 1↑ ε/L:

φ2
min(SQ) ⇔

⇒
2

2
and ⇐QTSTSh⇐22 ⇓

ω

2
, (1.52)

where φmin(·) denotes the smallest singular value of a matrix.
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When the conditions in Lemma 1.4.10 hold, one can directly bound (1.47) using the sub-

multiplicativity of operator norms instead of resorting to an (ω, ε) argument as in the proof of

Theorem 1.4.2, although the latter is more general. Theorem 1.4.11 presents constructive strate-

gies for generating sketch distributions – based on sub-Gaussian random variables and leverage

scores – that achieve appropriate (ω, ε) pair conditions. We recall that a random variable X is

called sub-Gaussian if, for some K > 0 we have ω exp
(
X2/K2

)
⇓ 2 [528, Def. 2.5.6]. The sub-

Gaussian norm of X is defined as ⇐X⇐ϖ2
:= inf


K > 0 : E exp

(
X2/K2

)
⇓ 2


[528]. A proof of

Theorem 1.4.11 is give in Appendix A.3. Variants of these results have appeared previously in the

literature [157, 156, 158, 297].

Theorem 1.4.11. Let Q and h be defined as in Theorem 1.4.2. Write Q and ST as column

vectors:

Q = [q1, · · · , qd], ST = [s1, · · · , sm], (1.53)

and denote by qij := qi(j) and hj := h(j) the j-th component of qi and h, respectively.

(1) Suppose S → R
m↓N is a dense sketch whose entries are i.i.d. sub-Gaussian random variables

with mean 0 and variance 1/m. Assume the sub-Gaussian norm of each entry of
⇒
mS is

bounded by K ⇔ 1. Then the distribution of S is an (ω, ε
L) pair for (Q,h) if

m ⇔ CK4

ω
d log

(
4dL

ε

)
, (1.54)

where C is an absolute constant.

(2) Suppose S → R
m↓N is a row sketch based on the leverage scores of A, and 0 < ω, ε < 1/2;

see Equation (1.14). Then the distribution of S is an (ω, ε
L) pair for (Q,h) if

m ⇔ max


35d log

(
4dL

ε

)
,
2dL

ωε


. (1.55)

Moreover, if

max
i↑[d]

max
j↑[N ]:ωj>0

d|qijhj |

ϑj
⇓ C, ϑj =

∑

k↑[d]
q2kj (1.56)
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for some constant C > 0, then the distribution of S is an (ω, ε
L) pair for (Q,h) if

m ⇔ max


35,

4C2

ω


d log

(
4dL

ε

)
. (1.57)

The scalar ϑj in (1.56) is the leverage score associated to row j of A, and (ϑj)j↑[N ] defines a

(discrete) probability distribution over the row indices [N ] of A; see (1.14).

Remark 1.4.12. When Q is incoherent, i.e., when its leverage scores satisfy ϑi = O(d/N), the

entries qij satisfy qij = O(1/
⇒
N). For any h such that maxj↑[N ] |hj | ↫ O(1/

⇒
N), the condition in

(1.56) is satisfied with C = O(1):

max
i↑[d]

max
j↑[N ]:ωj>0

d|qijhj |

ϑj
↫

d · 1⇒
N

· 1⇒
N

d
N

= 1.

Remark 1.4.13. As noted in Section 1.3.2.3, leveraged volume sampling requires m ↭ d log(d/ε)+

d/(ωε) samples to satisfy the (ω, ε) pair condition. This result appears in Corollary 10 of [138].

1.5 Numerical experiments

In this section we illustrate various aspects of the BFB approach using both manufactured

data as well as data obtained from PDE solutions. The codes used to generate the results of this sec-

tion are available from the GitHub repository https://github.com/CU-UQ/BF-Boosted-Quadrature-Sampling.

1.5.1 Verification of theoretical results on synthetic data

We first verify the theoretical results in Theorems 1.4.2 and 1.4.5. We do this by simulating

di”erent values for S, b and b̃. We generate a design matrix A → R
1000↓50 (i.e., N = 1000 and

d = 50) with i.i.d. standard normal entries and fix it in the rest of the simulations. For sketching

matrices S, we choose the embedding dimension to be m = 100 and consider both the Gaussian

and leverage score sampling sketches. We generate multiple di”erent versions of the vectors b and

b̃ that correspond to di”erent values of ▷ and ↼. Recall that these parameters control how much

of b is in the range of A and the absolute value of the correlation between b and b̃, respectively.
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The vectors are generated via

b = ▷Qz1 +
√
1↑ ▷2Q↘z2,

b̃ = ↼b+
√

1↑ ↼2b↘z3,

(1.58)

where Q = orth(A), and z1 → R
d↗1, z2 → R

N↗d↗1 and z3 → R
N↗2 are generated by normalizing

random vectors of appropriate length whose entries are i.i.d. standard normal. In the experiment,

the vectors z1, z2, z3 are drawn once and then kept fixed for the di”erent choices of ▷ and ↼.

To check the upper bound in Theorem 1.4.2, we generate b and b̃ using 9 equi-spaced values

for ↼ and ▷ between 0 and 1, which will provide 81 plots for each sketching strategy. We use

a sequence of L = 10 independent sketching operators in our BFB approach. After computing

values of ς for every case, we evaluate the optimality coe!cient di”erence µ(b,Sω→) ↑ µ(b,Sω→→).

Figure 1.1 illustrates the relation between µ(b,Sω→)↑ µ(b,Sω→→) and the bound 2
√

6(1↑ ς)ω. Due

to the unknown constants in (1.54) and (1.55), an exact value of ω corresponding to m = 100 is

unavailable. Instead, we choose ω to be 0.01 heuristically. We chose this particular value of ω since

it illustrates how the green curve’s shape, which is independent with the scalar ω, separates most of

the scatter plots from the rest of the area. The result shows our purposed BFB bound in Theorem

1.4.2 is e”ective and non-vacuous for both Gaussian and leverage score sketchings. It is noticeable

that all the dots out of our proposed bound (green) are leverage score sketch spots (blue). The

reason is because we set m = 100 for both sketch strategies, while leverage score sketch requires a

higher m to satisfy the (ω, ε) pair condition, which leads to a higher deviation in µ with fixed m;

see details in Theorem 1.4.11.

To further validate our theoretical results in Theorem 1.4.5, we consider four combinations

of ▷ and ↼ as listed in Table 1.1. For both the Gaussian and leverage score sketches we draw

100 sketches randomly. The same set of sketches are used for each pair of the vectors b and b̃.

Figure 1.2 shows scatter plots of the squared optimality coe!cients for the four di”erent pairs of b

and b̃ and two di”erent sketch types.

Table 1.1 provides the estimated correlations between µ2(b,S) and µ2(b̃,S) for each of the

eight setups based on the data points in Figure 1.2. For both sketches, a small value of ▷ and a
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Figure 1.1: Scatter plots of µ(b,Sω→) ↑ µ(b,Sω→→) based on given values of ς for Gaussian sketch
(red) and leverage score sketch (blue). The green curve is the bound we provide in Theorem 1.4.2
with ω = 0.01.

large value of ↼ together yield the highest positive correlation between µ2(b,S) and µ2(b̃,S). In

this case, the sketch that attains the smallest residual on the low-fidelity data also attains a near-

minimal residual on the high-fidelity data. This is indicative of the desired sketch transferability

between the low- and high-fidelity regression problems. These observations are consistent with the

upper bound in (1.23) and the lower bound in (1.35), supporting the idea of BFB.

In this section we verify the accuracy of Algorithm 2 on two PDE problems: Thermally-driven

cavity fluid flow (Section 1.5.1.1) and simulation of a composite beam (Section 1.5.1.2). In doing so,

we consider three random sketching strategies based on uniform, leverage score (Section 1.3.2.2),

and leveraged volume (Section 1.3.2.3) sampling. As a baseline, we also present results based on

deterministic sketching via column-pivoted QR decomposition (Section 1.3.2.1).

In both experiments, the high-fidelity solution operator takes uniformly distributed inputs

p → [↑1, 1]q. We therefore consider approximations of the form in (1.1) with ↽j : [↑1, 1]q ̸↘ R

chosen to be products of q univariate (normalized) Legendre polynomials. Specifically, let j =

(j1, . . . , jq), jk → N ∪ {0}, be a vector of non-negative indices and ↽jk(pk) denote the Legendre

polynomial of degree jk in pk such that E[↽2
jk
(pk)] = 1. The multivariate Legendre polynomials are
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Table 1.1: Empirical correlation between µ2(A, b) and µ2(A, b̃) for four di”erent parameters setups
and two di”erent sketch types.

▷ ↼ Sketch type Correlation

0.2 0.3 Gaussian 0.21
0.2 0.95 Gaussian 0.88
0.95 0.3 Gaussian 0.17
0.95 0.95 Gaussian 0.48

0.2 0.3 Leverage score 0.19
0.2 0.95 Leverage score 0.91
0.95 0.3 Leverage score 0.08
0.95 0.95 Leverage score 0.56

given by

↽j(p) =

q

k=1

↽jk(pk). (1.59)

The set of polynomials {↽j} is chosen so that it spans either a total degree or hyperbolic cross

space. In the former case this means all polynomials satisfying
∑q

k=1 jk ⇓ ◁, while in the latter

case j is limited to multi-indices with
q

k=1(jk + 1) ⇓ ◁ + 1, for some predefined ◁ → N ∪ {0}.

In order to construct a design matrix A as in (1.2), and data vectors b and b̃ in (1.2) and

(1.16), respectively, we also need to choose pairs of quadrature points and weights (pn, wn)n↑[N ].

While both deterministic and random rules are possible, we here choose these quantities to be

deterministic and of the form

pn = (p1,n1
, p2,n2

, . . . , pq,nq),

wn =

q

k=1

wk,nk
,

(1.60)

where each sequence (pk,nk
, wk,nk

)nk↑[Nk] consists of node-weight pairs in the Nk-point Gauss–

Legendre quadrature on [↑1, 1]. The resulting sequence (pn, wn)n↑[N ] contains N =
q

k=1Nk

pairs. When A is constructed in this fashion, it is possible to sample rows of that matrix according

to the exact leverage score using the e!cient method by [349]. Please see Appendix A.1 for details

on how this is done.
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To measure the final performance, we use the relative error defined as

E :=
⇐Ax̂BFB ↑ b⇐2

⇐b⇐2
, (1.61)

where x̂BFB is the output from Algorithm 2.

1.5.1.1 Cavity fluid flow

Here we consider the case of temperature-driven fluid flow in a 2D cavity [29, 429, 212, 210,

170, 214], with the quantity of interest being the heat flux averaged along the hot wall as Figure

1.3 shows. The wall on the left hand side is the hot wall with random temperature Th, and the

cold wall at the right hand side has temperature Tc < Th. T̄c is the constant mean of Tc. The

horizontal walls are adiabatic. The reference temperature and the temperature di”erence are given

by Tref = (Th + T̄c)/2 and #Tref = Th ↑ T̄c, respectively. The normalized governing equations are

given by
0u

0t
+ u ·∀u = ↑∀p+

Pr⇒
Ra

∀2u+ Pr$ey,

∀ · u = 0,

0$

0t
+∀ · (u$) =

1⇒
Ra

∀2
$,

(1.62)

where ey is the unit vector (0, 1), u = (u, v) is the velocity vector field, $ = (T ↑ Tref)/#Tref

is normalized temperature, p is pressure, and t is time. We assume no-slip boundary conditions

on the walls. The dimensionless Prandtl and Rayleigh numbers are defined as Pr = ςvisc/⇁ and

Ra = gτ#TrefW
3/(ςvisc⇁), respectively, where W is the width of the cavity, g is gravitational

acceleration, ςvisc is kinematic viscosity, ⇁ is thermal di”usivity, and τ is the coe!cient of thermal

expansion. We set g = 10, W = 1, τ = 0.5, #Tref = 100, Ra = 106, and Pr = 0.71. On the cold

wall, we apply a temperature distribution with stochastic fluctuations as

T (x = 1, y) = T̄c + φT

q∑

i=1

√
1i2i(y)µi, (1.63)

where T̄c = 100 is a constant, {1i}i↑[q] and {2i(y)}i↑[q] are the q largest eigenvalues and corre-

sponding eigenfunctions of the kernel k(y1, y2) = exp(↑|y1 ↑ y2|/0.15), and each µi
i.i.d.↓ U [↑1, 1].
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We let q = 2 (though in general, this does not need to match the physical dimension) and φT = 2.

The vector p = (µ1, µ2) is the uncertain input of the model.

In order to solve (1.62) we use the finite volume method with two di”erent grid resolutions:

a finer grid of size 128↗ 128 to produce the high-fidelity solution and a coarser grid of size 16↗ 16

to produce the low-fidelity solution. For our surrogate model, we choose the basis set {↽j}j↑[d]

based on the total degree and hyperbolic cross spaces of maximum order ◁ = 4. The corresponding

spaces have d = 15 and d = 10 basis functions, respectively. The quadrature pairs (pn, wn) used

to construct A, b, and b̃ are defined as in (1.60) and are based on the nodes and weights from a

10-point Gauss–Legendre rule, i.e., N1 = N2 = 10.

We first repeat the test we ran on synthetic data in Section 1.5.1. Figure 1.4 shows the scatter

plots of (µ2(b̃,S), µ2(b,S)) for the two di”erent polynomial spaces and three di”erent random

sampling approaches. Each plot is based on 100 sketches with m = 30 and m = 20 samples used

for the total degree and hyperbolic cross spaces, respectively. Table 1.2 presents the correlation

coe!cients between µ2(b,S) and µ2(b̃,S) based on the points in Figure 1.4. There is a discrepancy

between the correlation observed for the total degree and hyperbolic cross spaces. One possible

explanation for this is that a greater portion of b is in the range of A for the total degree space

than for the hyperbolic cross space, i.e., ▷ (see (1.34)) is larger for the former space. Theorem 1.4.5

indicates that a larger ▷ should be associated with lower correlation.

Next, we run Algorithm 2 with L = 10 sketches and the number of samples m = 1.2d and

m = 2d. Figure 1.5 shows the relative error E in (1.61) from running the algorithm 1000 times for

each of the di”erent choices of polynomial space, sketch size m, and random sampling approach.

We observe that in all cases the BFB approach improves the error as compared to the non-boosted

case. In particular, the improvement is more considerable in the case of the hyperbolic cross

basis, which is explained by the higher correlation between µ2(A, b) and µ2(A, b̃), as reported in

Table 1.2. Additionally, for the case of hyperbolic space, the BFB results is comparable or better

performance as compared to the column-pivoted QR decomposition (blue line in Figure 1.5). Note

that the computational cost of column-pivoted QR is higher than the BFB as it requires the QR
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decomposition of the entire matrix A.

Table 1.2: Correlation coe!cients between µ2(A, b) and µ2(A, b̃) for di”erent sampling methods
under total degree or hyperbolic cross space. The correlation is computed based on the points
shown in Figure 1.4.

Polynomial Space Uniform Sampling Leverage Score Sampling Leveraged Volume Sampling

Total Degree 0.66 0.57 0.18
Hyperbolic Cross 0.99 0.98 0.98

1.5.1.2 Composite beam

Following [219, 123, 124], we consider a plane-stress, cantilever beam with composite cross

section and hollow web as shown in Figure 1.6. The quantity of interest in this case is the maximum

displacement of the top cord. The uncertain parameters of the model are E1, E2, E3, f , where E1,

E2 and E3 are the Young’s moduli of the three components of the cross section and f is the intensity

of the applied distributed force on the beam; see Figure 1.6. These are assumed to be statistically

independent and uniformly distributed. The dimension of the input parameter is therefore q = 4.

Table 1.3 shows the range of the input parameters as well as the other deterministic parameters.

Table 1.3: The values of the parameters in the composite cantilever beam model. The center of
the holes are at x = {5, 15, 25, 35, 45}. The parameters f , E1, E2 and E3 are drawn independently
and uniformly at random from the specified intervals.

H h1 h2 h3 w r f E1 E2 E3

50 0.1 0.1 5 1 1.5 [9, 11] [0.9e6, 1.1e6] [0.9e6, 1.1e6] [0.9e4, 1.1e4]

For the cavity fluid flow problem in Section 1.5.1.1, we created high- and low-fidelity solutions

by changing the resolution of the grid used in the numerical solver. For the present problem, we

instead use two di”erent models. The high-fidelity model is based on a finite element discretization

of the beam using a triangle mesh, as Figure 1.7 shows. The low-fidelity model is derived from

Euler–Bernoulli beam theory in which the vertical cross sections are assumed to remain planes

throughout the deformation. The low-fidelity model ignores the shear deformation of the web and
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does not take the circular holes into account. Considering the Euler-Bernoulli theorem, the vertical

displacement u is

EI
d4u(x)

dx4
= ↑f, (1.64)

where E and I are, respectively, the Young’s modulus and the moment of inertia of an equivalent

cross section consisting of a single material. We let E = E3, and the width of the top and bottom

sections are w1 = (E1/E3)w and w2 = (E2/E3)w, while all other dimensions are the same, as

Figure 1.6 shows. The solution of (1.64) is

u(x) = ↑ qH4

24EI

(( x

H

)4
↑ 4

( x

H

)3
+ 6

( x

H

)2
)
. (1.65)

The surrogate model is based on multivariate Legendre polynomials of maximum degree

◁ = 2 with total degree and hyperbolic cross truncation. The corresponding spaces have d = 15

and d = 9 basis functions, respectively. As in the case of the cavity flow problem, the quadrature

pairs (pn, wn) used to construct A, b and b̃ are based on the nodes and weights from 10-point

Gauss–Legendre rule appropriately mapped into the ranges given in Table 1.3.

Figure 1.8 shows the scatter plots of (µ2(b̃,S), µ2(b,S)) when repeating the experiment in

Section 1.5.1 for the two di”erent polynomial spaces and three di”erent random sampling ap-

proaches. Each plot is based on 100 sketches with m = 2d, i.e., m = 30 and m = 18 samples used

for the total degree and hyperbolic cross spaces, respectively. Table 1.4 reports the correlation

coe!cient between µ2(b,S) and µ2(b̃,S), indicating an overall high correlation in all cases.

Table 1.4: Correlation coe!cient between µ2(A, b) and µ2(A, b̃) for di”erent sampling methods
under total degree or hyperbolic cross space. The correlation is computed based on the points
shown in Figure 1.8.

Polynomial Space Uniform Sampling Leverage Score Sampling Leveraged Volume Sampling

Total Degree 0.77 0.69 0.84
Hyperbolic Cross 0.72 0.73 0.82

Next, we run Algorithm 2 with L = 10 sketches and m chosen to be m = 1.2d and m = 2d.

Figure 1.9 shows the results from running the algorithm 1000 times for each of the di”erent choices
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of polynomial space, number of samples m, and random sampling approach. We observe that the

BFB performance is superior to that of the non-boosted implementation as it leads to smaller

variance of the error and fewer outliers with smaller deviation from the mean performance. In

this example, the BFB leads to comparable accuracy as the column-pivoted QR sketch, but with

smaller sketching cost. As in the case of the cavity flow, the results corroborate the discussion below

Theorem 1.4.5, in that the BFB improves the regression accuracy when corr(µ2(b,S), µ(b̃,S)) is

large.

1.6 Conclusion

This work was concerned with the construction of (polynomial) emulators of parameter-to-

solution maps of PDE problems via sketched least-squares regression. Sketching is a design of

experiments approach that aims to improve the cost of building a least squares solution in terms

of reducing the number of samples needed — when the cost of generating data is high — or the

cost of generating a least squares solution —- when data size is substantial. Focusing on the former

case, we have proposed a new boosting algorithm to compute a sketched least squares solution.

The procedure consisted in identifying the best sketch from a set of candidates used to

construct least squares regression of the low-fidelity data and applying this optimal sketch to the

regression of high-fidelity data. The bi-fidelity boosting (BFB) approach limits the required sample

complexity to ↓ d log d high-fidelity data, where d is the size of the (polynomial) basis. We have

provided theoretical analysis of the BFB approach identifying assumptions on the low- and high-

fidelity data under which the BFB leads to improvement of the solution relative to non-boosted

regression of the high-fidelity data. We have also provided quantitative bounds on the residual of

the BFB solution relative to the full, computationally expensive solution. We have investigated the

performance of BFB on manufactured and PDE data from fluid and solid mechanics. These cover

sketching strategies based on leverage score and leveraged volume sampling, for truncated Legendre

polynomials of both total degree and hyperbolic cross type. All tests illustrated the e!cacy of BFB

in reducing the residual — as compared to the non-boosted implementation —- and validate the
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theoretical results.

The present study was focused on the case of (weighted) least squares polynomial regression.

When the regression coe!cients are sparse, methods based on compressive sampling have proven

e!cient in reducing the sample complexity below the size of the polynomial basis; see, e.g., [150, 6].

As interesting future research direction is to extend the BFB strategy to such under-determined

cases, for instance, using the approach of [146].
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Figure 1.2: Scatter plots of the square of the optimality coe!cient for high- and low-fidelity data
for each of 100 di”erent sketches. Each point is equal to (µ2(b̃,S), µ2(b,S)) for one realization of
the sketch S. The top and bottom panels correspond to the sketches constructed using Gaussian
and leverage score sampling sketches, respectively.
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Figure 1.3: A figure of the temperature driven cavity flow problem, reproduced from Figure 5 of
[170].
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Figure 1.4: Scatter plots of the square of the optimality coe!cient for high- and low-fidelity data
from the cavity fluid flow problem for di”erent polynomial spaces (top: total degree; bottom: hy-
perbolic cross) and types of sampling. Each point is equal to (µ2(b̃,S), µ2(b,S)) for one realization
of the sketch S, and each subplot contains 100 points (i.e., is based on 100 sketch realizations). For
the total degree space m = 30 samples are used and for the hyperbolic cross space m = 20 samples
are used. The corresponding correlation coe!cients are presented in Table 1.2.
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Figure 1.5: Relative error for di”erent sampling methods and polynomial spaces when fitting the
surrogate model to the cavity fluid flow data. Yellow lines show the relative error E in (1.61) for
the unsketched solution in (1.2). Blue lines show E when the coe!cients x are computed via the
QR decomposition-based method in Section 1.3.2.1. The blue box plots shows the distribution of E
based on 1000 trials when x is computed as in (1.7). The orange box plots shows the same things,
but for the solution x̂BFB computed via Algorithm 2.
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Figure 1.6: Cantilever beam (left) and the composite cross section (right) adapted from [217].
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Figure 1.7: Finite element mesh used to generate high-fidelity solutions.

Figure 1.8: Scatter plots of the square of the optimality coe!cient for high- and low-fidelity data
from the composite beam problem for di”erent polynomial spaces (top: total degree; bottom: hy-
perbolic cross) and types of sampling. Each point is equal to (µ2(b̃,S), µ2(b,S)) for one realization
of the sketch S, and each subplot contains 100 points (i.e., is based on 100 sketch realizations). For
the total degree space m = 30 samples are used and for the hyperbolic cross space m = 18 samples
are used. The corresponding correlation coe!cients are presented in Table 1.4.
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Figure 1.9: Relative error for di”erent sampling methods and polynomial spaces when fitting the
surrogate model to the beam problem data. Yellow lines show the relative error E in (1.61) for the
unsketched solution in (1.2). Blue lines show E when the coe!cients x are computed via the QR
decomposition-based method in Section 1.3.2.1. The blue box plots shows the distribution of E
based on 1000 trials when x is computed as in (1.7). The orange box plots shows the same things,
but for the solution x̂BFB computed via Algorithm 2.
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Chapter 2

Bi-fidelity Variational Auto-encoder for Uncertainty Quantificaiton

2.1 Abstraction

Quantifying the uncertainty of quantities of interest (QoIs) from physical systems is a pri-

mary objective in model validation. However, achieving this goal entails balancing the need for

computational e!ciency with the requirement for numerical accuracy. To address this trade-o”, we

propose a novel bi-fidelity formulation of variational auto-encoders (BF-VAE) designed to estimate

the uncertainty associated with a QoI from low-fidelity (LF) and high-fidelity (HF) samples of the

QoI. This model allows for the approximation of the statistics of the HF QoI by leveraging infor-

mation derived from its LF counterpart. Specifically, we design a bi-fidelity auto-regressive model

in the latent space that is integrated within the VAE’s probabilistic encoder-decoder structure. An

e”ective algorithm is proposed to maximize the variational lower bound of the HF log-likelihood

in the presence of limited HF data, resulting in the synthesis of HF realizations with a reduced

computational cost. Additionally, we introduce the concept of the bi-fidelity information bottle-

neck (BF-IB) to provide an information-theoretic interpretation of the proposed BF-VAE model.

Our numerical results demonstrate that the BF-VAE leads to considerably improved accuracy, as

compared to a VAE trained using only HF data, when limited HF data is available. 1

1 The original version of this work is presented in [94], co-authored with O. Malik, S. De, S. Becker, and A.
Doostan.
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2.2 Introduction

Uncertainty pervades numerous engineering applications due to various factors, such as ma-

terial properties, operating environments, and boundary conditions, which impact the prediction of

a performance metric or quantity of interest (QoI), denoted as x → R
D, following an unknown prob-

ability density function (pdf) p(x). The quantification of uncertainty in x through the estimation

of its moments or distribution has been an active area of research within the field of uncertainty

quantification (UQ). One approach to accomplish this involves collecting independent and identi-

cally distributed (i.i.d.) realizations of x to estimate its empirical properties. However, when the

realizations of x are obtained through the solution of computationally intensive models, generating

a large enough set of realizations to ensure statistical convergence becomes infeasible. To address

this challenge, a surrogate model of the forward map between uncertain inputs ε → R
M and x can

be constructed. This approach has been demonstrated through a range of techniques, including

polynomial chaos expansion [185, 430, 213, 477], Gaussian process regression [556, 49], and deep

neural networks [516, 601, 410, 477]. Once established, the surrogate model can be employed, often

at a negligible cost, to generate realizations of the QoI and estimate its statistics. However, it

should be noted that the complexity of constructing these surrogate models often increases rapidly

with the number of uncertain variables, M , a phenomenon referred to as the curse of dimensionality.

To mitigate the problem caused by high-dimensional uncertainty, one remedy is to build a

reduced-order model (ROM), [227], where the solution to the governing equations is approximated

in a basis of size possibly independent of M . One widely adopted technique for identifying such

a reduced basis is proper orthogonal decomposition (POD), often also referred to as principle

component analysis (PCA) or Karhunen–Loéve expansion [86]. POD is commonly employed on a

collection of forward problem simulations, known as snapshots, to determine the optimal subspace

via the solution of a singular value decomposition problem.

The utility of ROMs has been extensively investigated for problems that exhibit a small Kol-

mogorov n-width [436], e.g., di”usion-dominated flows. However, for advection-dominated problems

��������������������
�������
�����������������������	�����



45

where solutions do not align closely with any linear subspace, conventional ROMs may yield inac-

curate approximations. This has resulted in the development of non-linear (manifold-based) ROM

formulations, including kernel principal component analysis [597, 445], tangent space alignment

[587], and auto-encoders (AEs) [305, 359, 392, 271]. Among these manifold-based ROMs, AEs have

gained significant attention due to their expressive neural-network-based encoder-decoder struc-

ture, enabling them to capture the underlying patterns of the input data by learning a latent

representation. The latent variable, denoted by z, is of much lower dimension than the input data

and is learned through a non-linear encoder function. The decoder function, which typically has a

structure mirroring the encoder, takes z and maps it back to the original data space.

While AE-based UQ models [305, 359, 392] have demonstrated success, they are intrinsically

deterministic as they do not automatically produce new samples of p(x) and, therefore, are not

generative. Furthermore, as shown in [493], the lack of regularization in the fully-connected AE

architecture can lead to overfitting, hindering the discovery of meaningful latent representations.

To address these limitations, several probabilistic frameworks have been proposed to regularize

the problem and, more importantly, enable uncertainty estimation. These include Bayesian con-

volutional AE [600] designed specifically for flow-based problems and the auto-regressive encoder-

decoder model for turbulent flows [182].

In this study, we consider the use of variational autoencoders (VAEs) and present a novel

training strategy aimed at reducing the training cost in terms of the number of high-fidelity re-

alizations required. VAEs belong to a class of machine learning models that seek to approximate

the unknown underlying distribution p(x) from which the QoI is derived and generate new realiza-

tions from it. Deep generative models, including VAEs [273, 450], generative adversarial networks

(GANs) [191], normalizing flows [449], and di”usion models [233, 486], have achieved significant

success in various applications in computer vision and natural language processing [551, 433, 441].

VAEs, in particular, o”er a well-suited solution for UQ problems owing to their ability to encode

a low-dimensional representation of the QoI, regularized via the probabilistic formulation, and

generate new realizations of the QoI. Further details on the VAE methodology can be found in
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Section 2.3.1.

Despite their benefits, training deep generative models, such as VAEs, typically requires

access to a substantial amount of high-fidelity (HF) data, which may be di!cult to obtain in large-

scale scientific applications. One way to address this issue is to apply the bi-fidelity approach,

in which a larger set of cheaper, possibly less accurate, low-fidelity (LF) realizations of the QoI,

xL → R
D along with a relatively small set of HF realizations of the QoI, xH → R

D, are leveraged

to jointly build the model. There have been rich studies of bi-fidelity modeling for UQ, including

Monte-Carlo-based [194, 171], graph-based [437], and ROM-based [218, 445]. In this work, we

follow the ROM-based approaches and propose a bi-fidelity VAE (BF-VAE) training method by

constructing a VAE model that captures the underlying distribution of the HF QoI. These low-

dimensional mappings are key in reducing the number of HF realizations required for training. In

more detail, we train a VAE, with the same architecture and activation functions as in the intended

HF model, but using LF data. Let zL and qφ(z
L|xL) denote the latent variable and encoder of

this model. The BF-VAE adapts this VAE using HF data in two ways. Firstly, we assume an

auto-regressive model with pdf pψ(z
H |zL), parameterized by ϱ, to set the latent variable of the

HF model, zH . As depicted in Figure 2.1, such a regression is performed in the d-dimensional

latent space, instead of the observation space of dimension D ⇑ d. Secondly, the subset of the

decoder parameters ς corresponding to the last layer of the decoder pθ(x
H |zH) are updated (with

warm start) to adjust the map between the latent and observation space of the HF data. We note

that the latter update also involves a relatively small set of parameters.

To summarize, the core contributions of this work are:

• We introduce a novel approach — dubbed the BF-VAE — for training a VAE model,

utilizing primarily LF data and a small set of HF data. While trained using both low- and

high-fidelity data, the BF-VAE aims at approximating the pdf of the HF QoI xH . This, in

turn, enables the generation of approximate samples of xH .

• The BF-VAE model is theoretically motivated as the maximizer of a training objective
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Figure 2.1: Instead of conducting bi-fidelity regression directly in high-dimensional observation
space (blue path), we introduce an approach via low-dimensional latent space (red path).

criterion we call BF evidence lower bound (BF-ELBO), an extension of the original ELBO

formulation introduced in [273]. We then extend the information bottleneck theory of

Tishby et al. [513] to formulate the bi-fidelity information bottleneck (BF-IB) theory and

provide an interpretation of BF-ELBO from an information-theoretic perspective.

• We conduct an empirical evaluation of the BF-VAE model through three numerical exper-

iments, comparing its performance with a VAE trained only on HF data. The numerical

results indicate that the BF-VAE improves the accuracy of learned HF QoI pdf when the

number of HF data is small.

The rest of the paper is structured as follows. In Section 2.3, we provide an overview of the

VAE and linear auto-regressive methods for bi-fidelity regression. Section 2.4 elaborates on the

proposed BF-VAE model, along with a theoretical interpretation. The implementation details of

the BF-VAE model, including prior density selection and hyperparameter tuning, are presented in

Section 2.5. Section 2.6 showcases three numerical examples that demonstrate the performance of

the BF-VAE. Our conclusions are summarized in Section 2.7. The proof of our main statements

and an introduction to an evaluation metric used to assess the quality of data generated from the
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VAE models are presented in the appendix.

For consistency with other VAE-related papers, we do not di”erentiate random vectors and

their realizations in this work. Additionally, we simplify density functions by omitting their sub-

scripts. For example, we use p(x|y) instead of px|y(x|y). As such, the densities p(xH) and p(xL)

may not be the same.

2.3 Motivation and Background

Forward UQ is concerned with quantifying the uncertainty of QoIs from a physical system due

to intrinsic variations or limited knowledge about model inputs (or structure). Within a BF setting,

an HF model generates xH → R
D with pdf p(xH) and an LF model generates an approximation to

xH denoted by xL → R
D and following pdf p(xL). One goal of forward UQ is to estimate p(xH).

With a random input vector ε → R
M and its pdf p(ε), the widely-adopted surrogate modeling

approaches seek to approximate p(xH |ε) and estimate p(xH) as

p(xH) =



RM

p(xH |ε)p(ε)dε. (2.1)

This formulation, however, su”ers from two major issues: the complexity of building p(xH |ε) when

the dimension of ε is high and the expensive cost of collecting HF QoI realizations xH for estimating

p(xH |ε). The Bayesian multi-fidelity approach of [281, 393], summarized next, provides a solution

to tackle these aforementioned issues. To alleviate the first issue, bi-fidelity approaches usually

introduce an LF pdf p(xL) with cheaper sampling cost, approximate p(xH |xL) instead of p(xH |ε)

due to a closer relation between xH and xL, and marginalize the random input ε to mitigate the

e”ect of its high-dimensionality,

p(xH) =



RD



RM

p(xH ,xL, ε)dεdxL introduce LF model

=



RD



RM

p(xH , ε |xL)p(xL)dεdxL condition on LF model

=



RD

p(xH |xL)p(xL)dxL. marginalization

(2.2)
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For the second issue, ROMs introduce a low-dimensional latent variable z → R
d with d ↖ D to

establish a connection between the LF and HF models via p(xH |xL),

p(xH) =



RD

p(xH |xL)p(xL)dxL (2.3)

=



RD



Rd

p(xH |z,xL)p(z|xL)p(xL)dzdxL. (2.4)

The latent variable z determines a low-dimensional representation of x that captures the relation-

ship between the LF and HF QoIs, possibly with considerably less HF data for training [281, 393].

In this work, we assume that the condition p(xH |z,xL) = p(xH |z) holds, which leads to an

AE model for p(xH), given by

p(xH) =



RD



Rd

p(xH |z)  
decoder

p(z|xL)  
encoder

p(xL)dzdxL. (2.5)

Once the AE model is built, the HF QoI can be estimated following

p(xH) =



Rd

p(xH |z)p(z)dz. (2.6)

This work aims at generating new (approximate) samples from p(xH) – rather than deriving

an explicit representation p(xH) — which allows us to estimate statistical properties of xH , e.g.,

E[xH ] and Cov[xH ]. This involves three key components, namely, an encoder p(z|xL), the latent

variable p(z), and a decoder p(xH |z). In the remaining of this section, we discuss two main

ingredients to construct these components. In Section 2.3.1, we introduce a VAE approach to

building the encoder and decoder in a Bayesian setting. In Section 2.3.2, we discuss an option to

the structure of the latent variable z.

2.3.1 Variational Autoencoder (VAE)

This section introduces the VAE [273, 450], a widely-used deep generative model capable of

using samples of x to construct an estimate of p(x) from which new samples of x can be drawn. As

a deep Bayesian model, the VAE compresses and reconstructs data in a non-linear and probabilistic

manner, while regularizing the model via a Kullback–Leibler (KL) divergence term (Equation (2.9),
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which distinguishes it from regular AE models. The VAE is composed of two distinct probabilistic

components, namely the encoder and the decoder as depicted in Figure 2.2. In contrast to AEs, the

encoder and decoder of a VAE map data to random vectors, rather than deterministic values. The

probabilistic encoder produces two separate vectors, representing the mean and standard deviation

of a resulting multivariate Gaussian random vector z. In this context, the covariance matrix of

z is assumed to be diagonal. The probabilistic decoder maps the latent variable z back to the

observation space by sampling from the decoder’s output distribution. When the expected output

is a continuous random variable, which is the primary focus of this work, the decoder result is

traditionally assumed to be deterministic and returns the mean value of the decoder distribution

[273]. In other words, the decoder p(x|z) becomes a Dirac distribution located at D(z), where D

is the deterministic decoder function. By enforcing a prior on the latent variable z, the VAE can

synthesize new samples of x by sampling the latent variable and evaluating the decoder.

Figure 2.2: The probabilistic encoder qφ(z|x) of a VAE produces two separate vectors, µφ(x) and
ωφ(x), which respectively represent the mean and standard deviation of resulting latent variable z
following a multivariate Gaussian distribution. The random vector ϑ ↓ N (0, I) provides random-
ness for the encoder output z and is used for the reparameterization trick in Equation (2.12).

In detail, the VAE introduces a latent variable z with its prior p(z) in a low-dimensional
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latent space and parameterizes a probabilistic decoder pθ(x|z) with parameters ς to establish a

joint pdf pθ(x, z). According to the Bayes’ rule, the posterior density is given by

pθ(z|x) =
p(z)pθ(x|z)
pθ(x, z)dz

. (2.7)

In practice, computing pθ(z|x) is intractable due to the unknown marginal density

pθ(x, z)dz.

To address this issue, the VAE employs a variational inference approach [59] and approximates

the posterior density with a pdf qφ(z|x) parameterized by φ. By introducing the variational

replacement qφ, the log-likelihood of x can be decomposed as

log(pθ(x)) = KL
(
qφ(z|x)||pθ(z|x))

)
+ Eqφ log

(
pθ(x, z)

qφ(z|x)

)

  
ELBO

, (2.8)

where KL(·⇐·) is the Kullback-Leibler (KL) divergence and Eqφ is the expectation over qφ(z|x).

The KL divergence term in Equation (2.8) measures the discrepancy between the true posterior

pθ(z|x) and the variational posterior qφ(z|x) and is unknown in practice. The second term in

Equation (2.8) is known as the evidence lower bound (ELBO), which is a lower bound of the log-

likelihood due to the non-negativity of the KL divergence. In variational inference, the ELBO

is maximized instead of the log-likelihood due to its tractable form. By maximizing the ELBO,

the VAE model enhances a lower bound value of the log-likelihood and mitigates the discrepancy

between the variational and true posteriors.

The VAE objective function, ELBO, can be further decomposed into two parts

ELBO(φ,ς) = Eqφ log

(
pθ(x, z)

qφ(z|x)

)
(2.9)

= ↑KL(qφ(z|x)||p(z))  
regularization term

+Eqφ log(pθ(x|z))  
reconstruction term

. (2.10)

The first part is the KL divergence between the prior p(z) and the variational posterior qφ(z|x)

measuring the distance between the two densities. The second term, Eqφ log(pθ(x|z)), is the log-

conditional-probability of x that is averaged over the variational posterior z ↓ qφ. This component

is often perceived as a negative reconstruction error. For example, when the conditional density
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pθ(x|z) is Gaussian centered at the decoder output Dθ(z), where Dθ(z) is a neural-network-based

decoder function, log(pθ(x|z)) becomes the negative 2-norm reconstruction error ↑⇐x↑Dθ(z)⇐2.

In order to estimate ς and φ, gradient ascent is applied to maximize ELBO with gradients

∀φELBO and ∀θELBO. However, the gradient of ELBO with respect to φ, i.e.,

∀φELBO = ∀φEqφ log

(
pθ(x, z)

qφ(z|x)

)
(2.11)

cannot be computed directly since the expectation Eqφ depends on φ. Instead,the VAE uses a new

random vector ϑ ↓ N (0, I) and represents latent samples as zε = ωφ(x)∃ ϑ+ µφ(x), where ∃ is

the Hadamard (element-wise) product. Stochastic gradient ascent (or its variants) is performed for

each mini-batch of samples {xi}
B
i=1 by passing them through the encoder and obtaining φφ(xi) and

µφ(xi), and generating new zεi by sampling ϑi. An unbiased estimate of the gradient is generated

via

∀φELBO = ∀φEε log

(
pθ(x|zε)p(zε)

qφ(zε|x)

)

= Eε∀φ log

(
pθ(x|zε)p(zε)

qφ(zε|x)

)

≃ 1

B

B∑

i=1

∀φ log

(
pθ(x = xi|z = zεi)p(z = zεi)

qφ(z = zεi |x = xi)

)
.

(2.12)

The method for estimating the gradient in Equation (2.12), known as the reparametrization trick

[273], can be applied to any form of qφ(z|x), provided that it is associated with an easy-to-sample

distribution. It further allows for decoupling of the expectation from φ in Equation (2.12), thereby

enabling the optimization of the objective function.

2.3.2 Auto-regressive Method

The central challenge of bi-fidelity modeling is to establish a connection between LF and

HF model outputs. The VAE in Section 2.3.1 presents a methodology for building the encoder

and decoder, which involves the exploration of an appropriate latent space. When using bi-fidelity

data, we additionally require a suitable architecture for the latent variable z to model the relation

between the LF and HF solutions. This architecture must be relatively simple as we assume only
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limited HF data is available. For example, in [90], the authors use an encoder-decoder structure in

conjunction with a latent bi-fidelity modeling approach that minimizes the distance between the

reduced basis coe!cients. We extend this method to a more general form.

For the case of the probabilistic encoder and decoder, we split the latent random vector z

into two parts, zL and zH , and apply a linear auto-regression from zL to zH , inspired by the well-

known Gaussian process (GP) based linear auto-regressive method [261, 262, 300]. This approach

incorporates multivariate Gaussian priors for both fidelity models and postulates a linear, element-

wise relationship between the models. The HF latent random vector zH can be represented as a

transformation of the LF latent random vector zL through

zHi = aiz
L
i + bi, ¬i = 1, 2, . . . , d (2.13)

where ai serves as a scaling factor and bi is a Gaussian random variable. In some works, e.g.,

[262, 261], zHi and zLi are indexed with a spatial variable, which has been omitted here for clarity.

The model assumes that no knowledge of zHi can be extracted from zLj if zLi is known and i ↙= j,

which implies Cov(zHi , zLj |z
L
i ) = 0, ¬i ↙= j.

2.4 Bi-fidelity Variational Auto-encoder (BF-VAE)

In this section, we present the BF-VAE model. Section 2.4.1 outlines the architecture of the

BF-VAE, a bi-fidelity extension of the ELBO objective function, and an algorithm designed to train

the BF-VAE. The bi-fidelity information bottleneck (BF-IB) theory is introduced in Section 2.4.2,

providing an interpretation of the BF-VAE from the perspective of information theory. Section 2.4.3

delves into the analysis of an error stemming from the probabilistic encoder trained by LF data.

2.4.1 Architecture, Objective Functions, and Algorithm

The principle behind the BF-VAE involves maximizing a lower bound of the HF log-likelihood,

as the VAE does, but primarily utilizing LF data. To achieve this, a VAE-based structure is devised

to leverage a latent space to model the relationship between the LF and HF data. The BF-VAE
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model is comprised of three probabilistic components: an encoder, a latent auto-regression, and

a decoder. The probabilistic encoder qφ(z
L|xL), parameterized with φ and trained using LF

data, maps LF observations into LF latent representations. The latent auto-regression pψ(z
H |zL),

parameterized with ϱ and specifically designed for a bi-fidelity regression in the latent space, as

shown in Equation (2.14), significantly reduces the amount of HF data required for training due

to its low-dimensionality. The probabilistic decoder pθ(x
H |zH), parameterized with ς, is first pre-

trained with LF data and then refined with HF data, mapping the HF latent representations back

into the observation space by returning the mean of the resulting HF distribution. A schematic

illustration of the proposed BF-VAE model is depicted in Figure 2.3.

A crucial part of the BF-VAE is building a connection from the LF latent variable zL to

the HF latent variable zH . As presented in Section 2.3.2, we specify the latent conditional den-

sity pψ(z
H |zL) to be a linear auto-regressive model, assumed to follow the Gaussian distribu-

tion N (Kψ(z
L), ϖ2I) with parameters ϱ. The dimensions of zL and zH are assumed to be the

same in order to enforce the symmetric structure between the encoder qφ(z
L|xL) and the decoder

pθ(x
H |xH). Note that in practical scenarios, HF and LF QoIs may inherently possess di”erent

latent dimensions. For the sake of simplicity and computational convenience, their dimensions are

constrained to be equal within this study. The mapping Kψ consists of two parameterized vector

components, aψ and bψ, defined by the a!ne transformation

Kψ(z
L) = aψ ∃ zL + bψ. (2.14)

In this work, Kψ is implemented as a simplified single-layer neural network with a diagonal weight

matrix and a bias vector. The hyperparameter ϖ is fixed for all entries for simplicity. When ϖ ↘ 0,

pψ(z
H |zL) converges in distribution to the Dirac distribution εKψ(zL), which makes the latent auto-

regression a deterministic map. The hyperparameter ϖ represents our confidence on how accurately

Kψ captures the relation between the LF and HF latent variables; see more discussion about ϖ in

Section 2.5.2.

The objective function of the BF-VAE is a variational lower bound of the HF log-likelihood
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Figure 2.3: Structure of the proposed BF-VAE model. The probabilistic encoder qφ(z
L|xL) pro-

duces two independent vectors, µφ(x
L) and φφ(x

L), which represent the mean and standard de-
viation of a resulting multivariate Gaussian. The latent auto-regression pψ(z

H |zL) is a simplified
single-layer neural network Kψ defined in Equation (2.14) added with a noise ϖϖ. The probabilis-
tic decoder pθ(x

H |zH) is pre-trained by LF data via the transfer learning technique, with its last
layer tuned by LF and HF data pairs. White circles are random vectors and colored blocks are
parameterized components for training. Blue blocks are solely trained by LF data and green blocks
are trained by both LF and HF data.

as follows

log pθ,ψ(x
H) = KL

(
qφ(zψ|x

L)⇐pθ(zψ|xH)
)
+ Eqφ(zψ |xL)


log

(
pθ(x

H , zψ)

qφ(zψ|xL)

)

⇔ Eqφ(zψ |xL)


log

(
pθ(x

H , zψ)

qφ(zψ|xL)

)
= ELBOBF(φ,ϱ,ς),

(2.15)

where the pdf of zψ := (zL, zH) is determined by the latent conditional density pψ(z
H |zL) and the

prior p(zL). The above inequality follows from the non-negativity property of KL divergence. The

lower bound of the HF log-likelihood in Equation (2.15) is called the bi-fidelity ELBO (BF-ELBO),
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and denoted as ELBOBF(φ,ϱ,ς). The BF-ELBO consists of two terms, namely

ELBOBF(φ,ϱ,ς) = ↑KL
(
qφ(z

L|xL)⇐p(zL)
)

  
regularization term

+Eqφ(zψ |xL)


log pθ(x

H |zψ)


  
HF reconstruction term

. (2.16)

The first term regularizes the encoder training by enforcing the encoder output to be close to the

prior p(zL). The second term is the HF log-likelihood conditioned on the latent variable zψ and

perceived as the HF reconstruction term. For example, when pθ(x
H |zψ) is a Gaussian centered at

the decoder output Dθ(z
H) with covariance ϱI, the HF reconstruction term is a negative 2-norm

↑ϱ↗1⇐xH ↑Dθ(z
H)⇐2 with zH drawn from the encoder and the latent auto-regression with input

xL. Note that by the condition, p(xH |zψ) is equivalent to p(xH |zH). We use zψ as the conditional

variable for pθ(x
H |zψ) so that it is consistent with the expectation Eqφ(zψ |xL). A detailed derivation

of Equations (2.15) and (2.16) are presented in B.1.

Optimizing BF-ELBO requires a large amount of both LF and HF data from their joint

distribution p(xL,xH) for convergence. However, the scarcity of HF data presents a challenge

under the bi-fidelity setting. To address this issue, we apply a transfer learning technique, in which

we opt to train the encoder and decoder using a large set of LF data, considering that the parameter

spaces of φ and ς are significantly larger than that of ϱ. The small parameter space of ϱ as a

single layer in the low-dimensional latent space allows it to be trained solely with pairs of LF and

HF data. As a result, we optimize the BF-ELBO in two steps, with two separate objectives,

ELBOLF(φ,ς) = ↑KL
(
qφ(z

L|xL)⇐p(zL)
)
+ Eqφ(zL|xL)


log

(
pθ(x

L|zL)
)
, (2.17)

ELBOHF(ϱ,ς) = Eq
φL→ (zψ |xL)


log pθ(x

H |zψ)

, (2.18)

where φL→ in ELBOHF is the optimal φ for maximizing ELBOLF. The first objective function

ELBOLF(φ,ς) is equivalent to a regular ELBO function discussed in Equation (2.9), as it trains

a low-fidelity VAE (LF-VAE) solely using LF data. The trained LF-VAE returns the optimal

LF encoder parameters φL→ and LF decoder parameters ςL→. We assume the optimal HF decoder

parameters ςH→ is close to ςL→ in the parameter space. Furthermore, we fix the decoder’s parameters

except for the last layer and set ςL→ as the initial value for further optimizing ELBOHF using both
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LF and HF data to obtain optimal HF parameters ϱH→,ςH→. Note that ςH→ and ςL→ are the same

except for entries corresponding to the decoder’s last layer, due to this transfer learning technique.

The presence of the parameter ϱ in the expectation term in Equation (2.18) poses a challenge

for the estimation of the gradients with respect to ϱ. To address this, we leverage the reparameter-

ization trick outlined in Equation (2.12). Specifically, we introduce an auxiliary vector ϖ ↓ N (0, I)

and set

zH
η = ϖϖ +Kψ(z

L). (2.19)

With mini-batch bi-fidelity samples {xL
i ,x

H
i }Bi=1, the gradient w.r.t. ϱ is estimated as

∀ψELBO
HF(ϱ,ς) = Ep

φL→ (zL|xL)[∀ψEpψ(zH |zL)[log pθ(x
H |zH)]]

= Ep
φL→ (zL|xL)[Eη[∀ψ log pθ(x

H |zH
η )]]

≃ 1

B

B∑

i=1

∀ψ log pθ(x
H = xH

i |zH = zH
ηi
),

(2.20)

where B is batch size and zH
ηi

is the i-th sample from xL
i and ϖi as shown in Equation (2.19). Using

the estimated gradients, we maximize ELBOLF(φ,ς) and ELBOHF(ϱ,ς) via stochastic gradient

ascent (or its variants). To synthesize HF QoI samples, we sample from p(zL) and subsequently

propagate the samples through the trained latent auto-regressor with parameters ϱH→ and subse-

quently the decoder with parameters ςH→. A summary of the steps in the BF-VAE is provided in

Algorithm 3.

2.4.2 Bi-fidelity Information Bottleneck

One of the core ideas of bi-fidelity modeling is to fully exploit information from LF data for

building HF results with limited HF data. However, to the best of the authors’ knowledge, there is

no previous work that explicitly models the bi-fidelity information transfer process incorporating

information theory. In this work, we apply the information bottleneck (IB) principle [513, 478] to

the BF-VAE model. The IB principle aims to define the essence of a “good” latent representation

of data by finding a balance between information preservation and compression. According to
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Algorithm 3: Bi-Fidelity Variational Auto-Encoder (BF-VAE)

Input: LF training set {x̃L
i }

N
i=1, LF-HF joint training set {(xL

i ,x
H
i )}ni=1

Output: Parameters ϱH→,ςH→ for a HF pdf pθ,ψ(x
H)

1: Train a LF-VAE by maximizing ELBOLF(φ,ς) in Equation (2.17) with LF realizations
{x̃L

i }
N
i=1 to attain maximizers φL→,ςL→ = argmaxφ,θ ELBO

LF(φ,ς).
2: Build a BF-VAE as shown in Figure 2.3 with parameters of the encoder and the decoder

assigned to be φL→,ςL→, and the latent auto-regression map Kψ(·) in Equation (2.14) being
initialized as an identity map.

3: Fix all the parameters of the BF-VAE except the decoder’s last layer and the latent
auto-regression’s parameters.

4: Train the BF-VAE by maximizing ELBOHF(ϱ,ς) in Equation (2.18) with sample pairs
{(xL

i ,x
H
i )}ni=1 and find maximizers ϱH→,ςH→ = argmaxψ,θ ELBO

HF(ϱ,ς).

IB, an optimal latent representation of data is maximally informative about the output while

simultaneously compressive with respect to a given input.

In this section, we propose an interpretation of the BF-VAE model through the lens of the bi-

fidelity IB (BF-IB) theory. We show that maximizing ELBOBF in Equation (2.16) is equivalent to

maximizing the BF-IB objective function in Equation (2.22) with ϱ = 1 using (xL,xH) data. Our

analysis in this section builds a bridge between information theory and log-likelihood maximization

in the bi-fidelity setting and presents a novel information-theoretic perspective on the BF-VAE

model.

The mutual information, which is a non-negative, symmetric function, reflects the information

that can be obtained about one random vector by observing another random vector. The definition

of mutual information is as follows.

Definition 2.4.1. The mutual information [113] between random vectors x and y is

I(x,y) := KL
(
p(x,y)⇐p(x)p(y)

)
= Ep(x,y) log

(
p(x,y)

p(x)p(y)

)
, (2.21)

where p(x,y) is the joint distribution of x and y.

In the BF-VAE, our goal is to find a latent representative random vector zψ corresponding

to xL for re-building HF QoI xH . According to the formula (15) in [513] or formula (5.164) in
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[378], the bi-fidelity information bottleneck (BF-IB) objective function that we will maximize is

IBBF
ϱ (φ,ϱ,ς) := I(zψ,x

H)↑ ϱI(xL, zψ), (2.22)

where ϱ is a non-negative hyperparameter, and φ,ς are parameters of the encoder and decoder,

respectively. The first term I(zψ,x
H) represents the preserved information from zψ to xH by the

decoder, while the second term I(xL, zϖ) represents the information compressed by the encoder.

The hyperparameter ϱ is adjusted to balance the tradeo” between the information compression

and the preservation. By maximizing the BF-IB objective function, we aim to find an optimal

latent random vector zψ as well as its relation with xL,xH , which are parameterized by ϱ,φ, and

ς. Note that when the mutual information between xL and xH is zero, which means LF and HF

data are independent, the searching for latent variable zψ is vacuous. The schematic in Figure 2.4

describes the concept of BF-IB.

Figure 2.4: The bi-fidelity information bottleneck architecture has an encoder and a decoder,
impacted by the information compression function I(xL, zψ) and information preservation function
I(zψ,x

H), respectively. The random vector zψ is designed to disclose the relation between LF and
HF data in the latent space. The bottleneck part is necessary since only a limited number of HF
realizations are available for learning the relationship between LF and HF data.

The BF-IB objective function can be decomposed as follows,

IBBF
ϱ (φ,ϱ,ς) ∅ Ep(xL,xH)


Eqφ(zψ |xL)


log pθ(x

H |zψ)

↑ ϱKL

(
qφ(z

L|xL)⇐p(zL)
)
. (2.23)
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When ϱ = 1, the BF-IB objective function becomes

IBBF
ϱ=1(φ,ϱ,ς) ∅ Ep(xL,xH)


Eqφ(zψ |xL)


log pθ(x

H |zψ)

↑KL

(
qφ(z

L|xL)⇐p(zL)
)

= Ep(xL,xH)[ELBO
BF(φ,ϱ,ς)].

(2.24)

This proves that the BF-IB function with ϱ = 1 is equivalent to BF-ELBO in Equation (2.16) aver-

aged with respect to the true joint distribution p(xL,xH). The proof of (2.23) is presented in B.2.

In Section 2.5.2, we incorporate the hyperparameter ϱ into a prior of the decoder pdf pθ(x
H |zH),

yielding an equivalent objective function containing ϱ. Because the BF-VAE Algorithm 3 approx-

imately maximizes BF-ELBO using joint realizations from p(xL,xH), it produces an output that

not only maximizes a variational lower bound of the HF log-likelihood but also the IB-BF objective

function.

2.4.3 Bi-fidelity Approximation Error

Similar tothe VAE in Section 2.3.1, the BF-VAE model introduces an encoder to approximate

the posterior pθ(zψ|x
H), which produces an approximation error stemming from its variational

form. Moreover, since we employ LF data as the input of the encoder, the error also depends on

the similarity between LF and HF data. In this section, we give the form of this error and provide

insight into a measurement of similarity between LF and HF data under the current Bayesian

framework.

Specifically, this error, denoted by E , is the gap between HF log-likelihood and BF-ELBO

averaged with respect to the true data distribution p(xL,xH). The BF-VAE model assigns a

multivariate Gaussian distribution qφ to the encoder without any guarantee that the given family

includes the true HF posterior. The error E ,

E(ϱ,ς) := min
φ

Ep(xL,xH)


log pθ,ψ(x

H)↑ ELBOBF (φ,ϱ,ς)


(2.25)

= min
φ

Ep(xL,xH)


KL

(
qφ(zψ|x

L)⇐pθ(zψ|xH)
)
, (2.26)

is directly derived from Equation (2.15). Since the error is a function of ϱ and ς, the final perfor-

mance of the trained BF-VAE model is determined by E(ϱH→,ςH→), where ϱH→ and ςH→ are the
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trained parameters. As a KL divergence averaged on the bi-fidelity data p(xL,xH), the error E

can be interpreted as the average di”erence between the latent representations from LF and HF,

which depends on the similarity between the LF and HF data.

To improve the BF-ELBO’s proximity to the HF log-likelihood, it is helpful to identify a

form of qφ(zψ|x
L) that is potentially close to pθ(zψ|x

H). However, in practice, determining such

a form is often infeasible [470]. Alternatively, bringing LF data closer to HF data can also reduce

the error by making their latent representations more similar.

2.5 Priors and Hyperparameters

In the previous section, we introduced the principle concept of the BF-VAE model. In this

section, we show two practical components of the BF-VAE model. We discuss the prior distribution

selection in Section 2.5.1. An introduction to the hyperparameters and their e”ects on the BF-VAE

performance is given in Section 2.5.2.

2.5.1 Choices of Prior Distributions

Prior distribution, a crucial aspect of Bayesian modeling, is chosen to reflect our prior belief

of the parameter or facilitate computation. All the prior distributions utilized in the BF-VAE

model are outlined in Table 2.1.

Table 2.1: Selected distributions for di”erent components are presented. Here, µφ(x
L) and ωφ(x

L)
are the outputs of the variational encoder. Kψ is the parameterized latent mapping in Equa-
tion (2.14). ϖ → R and ϱ > 0 are hyperparameters.

Component Notation VAE Model(s) Prior Distribution

LF Latent Variable p(zL) LF-VAE, BF-VAE N (0, I)
Variational Encoder qφ(z

L|xL) LF-VAE, BF-VAE N (µφ(x
L),ωφ(x

L))
Latent Auto-regression pψ(z

H |zL) BF-VAE N (Kψ(z
L), ϖ2I)

LF Decoder pθ(x
L|zL) LF-VAE N (Dθ(z

L),ϱI)
HF Decoder pθ(x

H |zH) BF-VAE N (Dθ(z
H),ϱI)

Let {x̃L
i }

N
i=1 ↓ p(xL) and {xL

j ,x
H
j }nj=1 ↓ p(xL,xH) denote the LF and BF training datasets,
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respectively. When using the priors in Table 2.1, the LF-ELBO in Equation (2.17) becomes

ELBOLF
ϱ (φ,ς) = ↑1

2

(
⇐µφ(x̃

L
i )⇐22 + ⇐ωφ(x̃

L
i )⇐22 ↑ 1T logω2

φ(x̃
L
i )
)

  
regularization

(2.27)

+
1

N

N∑

i=1


ϱ↗1

Eqφ(zL|xL=x̃L
i )
⇐Dθ(z

L)↑ xL
i ⇐22  

LF reconstruction


. (2.28)

Similarly, the HF-ELBO in Equation (2.18) becomes

ELBOHF
ϱ (ϱ,ς) =

1

n

n∑

i=1


ϱ↗1

Ep
φL→ (zL|xL=xL

i )


⇐Dθ(z

H
ηi
)↑ xH

i ⇐22


  
BF reconstruction


, (2.29)

where zH
ηi

is computed as in Equation (2.19) with ϖi ↓ N (0, I).

2.5.2 Hyperparameter Setting

The BF-VAE consists of two primary hyperparameters, namely ϱ in Equation (2.23) and Ta-

ble 2.1 and ϖ in Equation (2.19), which must be specified prior to training. Note that ELBOBF(φ,ϱ,ς)

in Equation (2.16) with priors outlined in Table 2.1 is

ELBOBF(φ,ϱ,ς) = ↑KL
(
qφ(z

L|xL)⇐p(zL)
)
+ ϱ↗1

Eqφ(zψ |xL)


⇐xH ↑Dθ(z

H)⇐2


(2.30)

∅ ↑ϱKL
(
qφ(z

L|xL)⇐p(zL)
)
+ Eqφ(zψ |xL)


⇐xH ↑Dθ(z

H)⇐2

, (2.31)

where ϱ is a hyperparameter adjusting the contribution of the KL regularization term and also

aligns with the ϱ in Equation (2.23). Thus, the parameter ϱ in the decoder prior of Table 2.1 is

analogous to the one in the BF-IB objective function in Equation (2.22), which also plays a similar

role to the ϱ parameter in ϱ-VAE [229]. As discussed in Section 2.4.2, the value of ϱ balances the

tradeo” between the information compression and preservation from the perspective of IB and may

be derived from prior knowledge or may be tuned using the validation error of the LF-VAE model.

Following the discussion of Section 2.4.1, the hyperparameter ϖ serves as the variance of the

latent auto-regressive model. It indicates the degree of confidence in the accuracy of Kψ (defined

in Equation (2.14)) when modeling the latent variables of the LF and HF models. A larger value

of ϖ allows the auto-regression output to deviate further from Kψ but also increases the variance
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of the ELBO gradients due to a more noisy reparameterized zH
ε , as shown in Equation (2.19). In

our numerical experiments, we observe that linear auto-regression in the latent space is capable of

accurately capturing the relationship between the LF and HF latent representations, which means

that we are able to choose ϖ to be small. Since a smaller ϖ ensures faster convergence when

optimizing the HF-ELBO, we therefore choose ϖ = 0.

2.6 Empirical Results

In this section, we present empirical results obtained by applying the BF-VAE to three PDE-

based forward UQ problems. In more details, we first simulate a composite beam in Section 2.6.1,

then we discuss studying a thermally-driven cavity fluid flow with a high-dimensional uncertain

input in Section 2.6.2. Finally, we consider a 1D viscous Burgers’ equation in Section 2.6.3. For

each problem, we present the computational cost ratio between the HF and LF models. The

outcomes of the BF-VAE model are then compared with the HF-VAE, a standard VAE model

trained exclusively with high-fidelity data. These two models have the same architecture and

activation functions.

Our primary objective is to showcase the e!cacy of the BF-VAE in improving the accuracy

of VAE models trained using high-fidelity training data only, particularly when limited high-fidelity

data is available.2

To examine the quality of data produced by a generative model, it is crucial to use an

appropriate evaluation metric. While human evaluation may be adequate for determining the

quality of outputs from models generating images and text, such an approach is not generally

appropriate for evaluating the quality generated data corresponding to PDE solutions. Therefore,

we seek to identify a statistical distance that allows us to compare the di”erence between the true

p(xH) and the VAE surrogates pψ,θ(x
H) without incurring excessive computational cost. For deep

generative models, there are two major evaluation options: Frechet inception distance (FID) [228]

and kernel inception distance (KID) [54]. FID is most appropriate for evaluating image-based

2 The Python code implementation is available at https://github.com/CU-UQ/Bi-fidelity-VAE.
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generative models as it uses a pre-trained convolutional neural network [508]. In this study, we

employ KID, which stems from a statistical distance named maximum mean discrepancy (MMD)

[196]. KID represents the deviation of the distribution of the generated realizations from the

distribution of the true test data, and can be conveniently computed when data is high-dimensional.

A smaller KID value indicates a closer distance between two empirical distributions. Given a non-

negative and symmetric kernel function k : RD ↗ R
D ↘ R and data {xi}

T
i=1 and {yi}

T
i=1, the KID

is defined as

KID({xi}
T
i=1, {yj}

T
j=1) =

1

T (T ↑ 1)

T∑

i,j=1
i ⇑=j

k(xi,xj)↑
2

T 2

T∑

i=1

T∑

j=1

k(xi,yj)

+
1

T (T ↑ 1)

T∑

i,j=1
i ⇑=j

k(yi,yj).

(2.32)

Following [54], the kernel function we choose is the rational quadratic kernel

krq(xi,yj) :=
∑

ω↑I

(
1 +

⇐xi ↑ yj⇐2
2ϑ

)↗ω

, (2.33)

where I = {0.2, 0.5, 1.0, 2.0, 5.0} is a mixture of length scales to balance the bias e”ects from the

di”erent values. In order to evaluate the e!cacy of the BF-VAE and HF-VAE models, we generated

new realizations from the trained BF-VAE and HF-VAE models, denoted by {xBF
i }Ti=1, {x

HF
j }Tj=1,

respectively, where T is the test data size. The KIDs between the generated realizations and the

actual data for testing {xH
l }

T

l=1 are computed as

KIDBF := KID({xH
l }Tl=1, {x

BF
i }Ti=1), (2.34)

KIDHF := KID({xH
l }Tl=1, {x

HF
j }Tj=1). (2.35)

We also compute the KID value between LF data {xL
m}

T
m=1 and true test data as a baseline

KIDLF := KID({xH
l }Tl=1, {x

L
m}Tm=1). (2.36)

Further discussion and technical details regarding KID are presented in B.3. In addition to KID,

we provide 1,000 synthesized QoI realizations generated by both the trained HF-VAE and BF-

VAE models, along with their corresponding true HF counterparts. Their statistics including the
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relative errors of the first and the second moments generated from both models are also reported.

These additional results serve to further validate the KID outcomes. The hyperparameter ϱ in

Equation (2.23) is tuned to reduce the KID value of the LF-VAE and, as discussed in Section 2.5.2,

ϖ in Equation (2.19) is assumed to be zero. The neural network architecture outlined in this

section is determined based on the performance of VAEs trained using LF data. The evaluation of

VAE performance is measured using KID and ELBO values. Our experiments indicate that VAE

performance is not highly sensitive to architectural details, such as layer width and latent space size.

The results presented with the chosen architecture serve demonstration purposes. In applications,

the specific architecture should be determined by practical constraints, such as the budget for high-

fidelity evaluations, the size of LF data for training, available computational resources, and other

relevant considerations.

2.6.1 Composite Beam

Following [218, 123, 124, 95], we consider a plane stress, cantilever beam with composite

cross section and hollow web, as shown in Figure 2.5. The quantities of interest, in this case, are

the displacements of the top cord at 128 equi-spaced points and represented as a vector with 128

entries. The uncertain inputs of the model are denoted as ε = (31, 32, 33, 34), where 31, 32 and

33 are the Young’s moduli of the three components of the cross section and 34 is the intensity of

the applied distributed force on the beam; see Figure 2.5. These are assumed to be statistically

independent and uniformly distributed. The range of the input parameters, as well as the other

deterministic parameters, are provided in Table 2.2.

Table 2.2: The values of the parameters in the composite cantilever beam model. The centers of
the holes are at x = {5, 15, 25, 35, 45}. The entries of ε are drawn independently and uniformly at
random from the specified intervals.

L h1 h2 h3 w r 31 32 33 34

50 0.1 0.1 5 1 1.5 [0.9e6, 1.1e6] [0.9e6, 1.1e6] [0.9e4, 1.1e4] [9, 11]

The HF QoI xH is based on a finite element discretization of the beam using a triangular
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Figure 2.5: Cantilever beam (left) and the composite cross section (right) adapted from [218].

mesh, as Figure 2.7 shows. The LF QoI xL is derived from the Euler–Bernoulli beam theory in

which the vertical cross sections are assumed to remain planes throughout the deformation. The LF

model ignores the shear deformation of the web and does not take the circular holes into account,

which makes the LF results smoother than their HF counterparts, as displayed in Figure 2.6.

Considering the Euler–Bernoulli theorem, the vertical displacement u is

EIn
d4u(x)

dx4
= ↑34, (2.37)

where E and In are, respectively, the Young’s modulus and the moment of inertia of an equivalent

cross section consisting of a single material. We let E = 33, and the width of the top and bottom

sections are w1 = (31/33)w and w2 = (32/33)w, while all other dimensions are the same, as Figure

2.5 shows. The solution of (2.37) is

u(x) = ↑ qL4

24EIn

((x

L

)4
↑ 4

(x

L

)3
+ 6

(x

L

)2
)
. (2.38)

Since the LF data are directly obtained through an explicit formula in Equation (2.38), its compu-

tational cost is negligible.

The VAE models are implemented using fully-connected neural networks for both the encoder

and decoder, each with two hidden layers and widths of 64 and 16 units, and GeLU activation

functions. The latent space dimension is fixed at 4. The optimization of the VAE models is

performed using the Adam optimizer with a learning rate of 1↗ 10↗3 and Adam-betas of 0.9 and
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Figure 2.6: A histogram of the averaged QoI solutions along 128 spatial points from the LF and
HF composite beam models (left), one single realization of LF and HF data from the same random
input (middle), and 1,000 realizations of LF and HF QoIs (right).

Figure 2.7: Finite element mesh used to generate HF solutions.
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0.99. The batch size is set to 64, and the number of epochs for the initial training of the LF-VAE

(line 1 in Algorithm 3) is 2,000, followed by 1,000 for the BF-VAEs (line 4 in Algorithm 3). The

hyperparameter ϱ is 0.04.

A LF-VAE model is first trained with N = 4,000 samples drawn from p(xL). Since LF data

are directly generated from Equation (2.38), the cost of LF data is trivial and can be ignored. A BF-

VAE is built with parameters φ and ς initialized from the trained LF-VAE following Algorithm 3.

We examine the performance of the BF-VAE as a function of the number of HF training samples,

with HF-VAE trained solely on the same HF data as a baseline. The KID performance is evaluated

using 1,000 test data and 1,000 samples from each of the trained VAEs across 10 trials, with the

results averaged over the trials.

Figure 2.8 illustrates the KID performance of both the BF-VAE and HF-VAE, with the x-

axis representing the number of HF data used for training and y-axis being KID values evaluated

following Equation (2.32). The results show that KIDBF begins to converge with a small number

of HF data, while KIDHF only starts to converge when the number of HF data exceeds 100. Both

model outputs are better than simply using LF data for inferring uncertainty statistics. Given the

practical limitations on the acquisition of HF data, the superiority of the BF-VAE model is thus

evident. We also observe that when the size of HF data is large, e.g., more than 1,000, KIDHF

surpasses KIDBF and achieves a better accuracy level. This is typical of multi-fidelity strategies

and explanations are available in [123]. Figure 2.9 presents 1,000 realizations drawn from the

trained HF-VAE and BF-VAE. We expect the displacement as a function of horizontal distance to

be smooth, but the HF-VAE samples fail to present these properties when n < 1,000. It shows that

the BF-VAE is able to provide a reliable result with only a small number of HF training samples,

while the HF-VAE requires more HF data to converge. In Table 2.3, we show the relative errors

of first (mean value) and element-wise second moments estimated by the corresponding generated

results shown in Figure 2.9. We observe that the BF-VAE generated smaller statistical errors

compared to the HF-VAE. Both figures and the table demonstrate the e”ectiveness of the BF-VAE

algorithm in utilizing the information from LF data to estimate the distribution of the HF QoI.
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Figure 2.8: The KID results for the composite beam example given di”erent sizes of HF data. Each
circle represents the average KID between test data and the VAEs’ realizations over 10 separate
trials. The shaded area is half the empirical standard deviation of these 10 trials. The red dashed
line represents the KID between HF and LF data.

Table 2.3: The relative errors of the first and second moments of HF-VAE/BF-VAE generated QoI
shown in Figure 2.9.

n = 10 n = 100 n = 1, 000

First moment (HF-VAE) 7.41e-1 6.50e-1 8.18e-2
First moment (BF-VAE) 1.13e-2 6.64e-3 4.88e-3
Second moment (HF-VAE) 8.99e-1 8.05e-1 1.01e-1
Second moment (BF-VAE) 1.77e-2 9.33e-3 1.40e-2
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Figure 2.9: Comparison of 1,000 samples generated from the trained HF-VAE (top row), BF-VAE
(bottom row) and the true HF model (right). A di”erent number of HF realizations are used in
each of the first three columns: n = 10 (left column), n = 100 (middle left column), and n = 1,000
(middle right column).
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2.6.2 Cavity Flow

Here we consider the case of the temperature-driven fluid flow in a 2D cavity, with the

quantity of interest being the heat flux along the hot wall as Figure 2.10 shows. The left-hand wall

is considered as the hot wall with a random temperature Th, while the right-hand wall, referred to

as the cold wall, has a smaller random temperature Tc with a constant mean of T̄c. The horizontal

walls are treated as adiabatic. The reference temperature and the temperature di”erence are given

by Tref = (Th + T̄c)/2 and #Tref = Th ↑ T̄c, respectively. The normalized governing equations are

given by
0u

0t
+ u ·∀u = ↑∀p+

Pr⇒
Ra

∀2u+ Pr$ey,

∀ · u = 0,

0$

0t
+∀ · (u$) =

1⇒
Ra

∀2
$,

(2.39)

where ey is the unit vector (0, 1), u = (u, v) is the velocity vector field, $ = (T ↑ Tref)/#Tref is

normalized temperature, p is pressure, and t is time. The hot wall at x = 0, the cold wall at x = 1,

and two other walls at y = 0 and y = 1 are subject to no-slip boundary conditions. The dimen-

sionless Prandtl and Rayleigh numbers are defined as Pr = ςvisc/⇁ and Ra = gτ#TrefW
3/(ςvisc⇁),

respectively, where W is the width of the cavity, g is gravitational acceleration, ςvisc is kinematic

viscosity, ⇁ is thermal di”usivity, and τ is the coe!cient of thermal expansion. We set g = 10,

W = 1, τ = 0.5, #Tref = 100, Ra = 106, and Pr = 0.71. On the cold wall, we apply a temperature

distribution with stochastic fluctuations as

T (x = 1, y) = T̄c + φT

M∑

i=1

√
1i↼i(y)3i, (2.40)

where T̄c = 100 is a constant, {1i}i↑[M ] and {↼i(y)}i↑[M ] are the M largest eigenvalues and cor-

responding eigenfunctions of the kernel k(y1, y2) = exp(↑|y1 ↑ y2|/0.15), and each 3i
i.i.d.↓ U [↑1, 1].

We let the input dimension M = 52 and φT = 2. The vector ε = (31, . . . , 352) is the uncertain

input of the model. These considerations align with previous works in [29, 430, 212, 210, 214, 95].

Unlike the composite beam problem, the low-fidelity model is based on a coarser spatial

discretization of the governing equation. Specifically, we employ the finite volume method with a
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Figure 2.10: A figure of the temperature-driven cavity flow problem, reproduced from Figure 5 of
[170].
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Figure 2.11: A histogram of the QoI solutions averaged across all spatial points from the LF and
HF cavity flow models is shown in the left figure, two single realizations separately from LF and
HF with the same input are demonstrated in the middle figure, and 1,000 LF and HF QoIs are
presented in the right figure.
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grid of size 256↗ 256 to produce the HF QoI xH and a coarser grid of size 16↗ 16 to produce the

LF QoI xL. A comparison of LF and HF estimates of the QoI is presented in Figure 2.11. Based

on the analysis from [170], the HF/LF ratio of the computational cost for this problem is 9410.14,

which means the time for computing one HF realization is equivalent to the time for computing

approximately 9410 LF realizations. Since the auto-encoder structure requires both LF and HF

input data to have the same dimension, we interpolate the LF data linearly on the fine grid and

let the QoI be the (interpolated) steady-state heat flux along the hot wall at 221 equispaced points

over [0.067, 0.933], including the endpoints. For the VAE models, we use fully connected neural

networks to model the encoder and decoder with ReLU activation functions, three hidden layers,

and internal widths 221–128–64–16 determined by some preliminary tests. The dimension of the

latent space is 4. The number of LF samples used for training the LF-VAE is N = 4,000. The cost

of generating these 4,000 samples is equal to 42% of the cost of generating a single HF realization.

As this equivalent cost is su!ciently small compared to the number of HF realizations we used for

testing, we ignore the cost of generating the LF data. The optimizer is Adam with a learning rate

1 ↗ 10↗3 and Adam-betas 0.9, 0.99. The batch size for the optimization is set to 64. The epoch

number is 2,000 for the initial LF-VAE training (line 1 in Algorithm 3) followed by 1,000 epochs

for the BF-VAE training (line 4 in Algorithm 3). The value of the hyperparameter ϱ is set to 4.5.

The average KID between HF data and data generated by the HF-VAE and BF-VAE, for

di”erent numbers of HF training samples sizes, are shown in Figure 2.12. The averages are computed

over 10 trials between 1,000 real samples and 1,000 VAE-simulated realizations. Newly generated

realizations of HF-VAEs and BF-VAEs based on di”erent HF training sample sizes are shown in

Figure 2.13, with their first moments’ (mean value) and element-wise second moments’ relative

errors collected in Table 2.4. The result of Figure 2.12 indicates that KIDBF is consistently lower

than KIDHF but gets closer when more HF data is available, which is further validated by the

results of moments’ relative errors. Figure 2.13 suggests that the BF-VAE returns smoother and

more reliable predictions compared to those of HF-VAEs, especially with limited HF training data,

which means the BF-VAE produces more realistic results. Both figures and the table reveal that
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the BF-VAE has better performance than the HF-VAE when the two models are given the same

amount of HF training data.

Table 2.4: The relative errors of the first and second moments of HF-VAE/BF-VAE generated QoI
shown in Figure 2.13.

n = 10 n = 100 n = 1, 000

First moment (HF-VAE) 2.57e-2 5.60e-3 3.57e-3
First moment (BF-VAE) 1.49e-2 4.60e-3 1.10e-3
Second moment (HF-VAE) 9.32e-2 6.02e-2 4.61e-2
Second moment (BF-VAE) 8.67e-2 5.83e-2 7.13e-2

2.6.3 Burgers’ Equation

The last example is a one-dimensional unsteady viscous Burgers’ equation with uncertain

initial conditions and viscosity. The random velocity field u(x, t, ε) with parameters ε is governed

by

0u(x, t, ε)

0t
+ u(x, t, ε)

0u(x, t, ε)

0x
=

0

0x

(
ς
0u(x, t, ε)

0x

)
, (x, t) → [0, 1]↗ [0, 2],

u(0, t, ε) = u(1, t, ε) = 0, t → [0, 2]

u(x, 0, ε) = g(x, ε), x → [0, 1],

(2.41)

where the viscosity ς is modeled by a shifted beta random variable Beta(0.5, 5) over [0.01, 0.05].

The initial condition g(x, ε) is a stochastic field given by

g(x, ε) = sin(4x) + φg

M∑

k=2

1

k
sin(4kx)3k↗1, (2.42)

where φg = 1.2840 ↗ 10↗1 and M = 6. The random inputs 31, 32, . . . , 3M↗1 are i.i.d. uniformly

distributed between ↑1 and 1, resulting in a random input vector ε = (31, 32, . . . , 3M↗1, ς). The

QoIs are the values of u(x, t = 2, ε) at 254 equi-spaced x nodes between 0 and 1, excluding the

boundary points. To generate bi-fidelity data, the discretization of the Equation (2.41) is carried out

using two space/time grid sizes. The LF data is obtained using the semi-implicit, two-step Adam-

Bashforth solver with a spatial grid of size #x = 1.176↗ 10↗2 and time step size of #t = 2↗ 10↗2.
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Figure 2.12: The KID result for the cavity flow problem given di”erent sizes of HF data. Each
point represents the average KID between test data and the VAEs’ realizations over 10 separate
trials. The shaded area corresponds to half the empirical standard deviation of these 10 trials. The
red dashed line is the KID value between LF and HF data.
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Figure 2.13: Comparison of 1,000 samples generated from the trained HF-VAE (top row), BF-VAE
(bottom row) and the true HF model (right). A di”erent number of HF realizations are used in
each of the first three columns: n = 10 (left column), n = 100 (middle left column), and n = 1,000
(middle right column).
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The same solver is applied for HF data, but with smaller space/time grid sizes, #x = 3.922↗ 10↗3

and #t = 2↗ 10↗4. The LF data is interpolated linearly on the finer grid so the dimensions of the

LF and HF data are the same. The ratio of HF/LF computational cost is 98.07. A comparison

between LF and HF data is presented in Figure 2.14.
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Figure 2.14: Histogram of the QoI values averaged across all spatial points from the LF and HF
viscous Burgers’ models is shown in the left figure, two single realizations separately from LF and
HF models with the same input are presented in the middle figure, and 1,000 LF and HF QoIs are
plotted in the right figure.

For the VAE implementations, we use fully connected neural networks to model the encoder

and decoder, with four hidden layers as 254–256–128–64–16–4 with GeLU as activation functions.

The dimension of the latent space is 4. As before, the Adam optimizer with a learning rate 1↗10↗3

and Adam-betas 0.9, 0.99 is applied. The batch size for the optimization is 64. The epoch number

is 2,000 for the initial LF-VAE training (line 1 in Algorithm 3) with an additional 1,000 epochs for

the BF-VAE training (line 4 in Algorithm 3). We use N = 400 LF samples to train the LF-VAE,

whose cost is equivalent to 4.08 HF realizations and su!ciently small to be ignored in the following

presented results. The value of the hyperparameter ϱ is set to 5↗ 10↗4.

To validate the performance of the BF-VAE model, we compare its results with those of the

HF-VAE using KID. The BF and HF KID results in Figure 2.15 are computed as the average over ten

trials consisting of 1,000 test samples and 1,000 VAE-generated samples, with the KIDLF presented

as the baseline. Additionally, we demonstrate the validity of the BF-VAE model by generating

realizations and comparing them with the HF-VAE counterparts, as shown in Figure 2.16. The

relative errors of the first moments (mean values) and element-wise second moments from HF-
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VAE/BF-VAE generated QoI are presented in Table 2.5. Based on our evaluation, we observe that

the BF-VAE model achieves better accuracy in estimating the HF QoI when n is small (< 100).

We also observe that when the size of HF data is large, e.g., more than 600, KIDHF surpasses

KIDBF and achieves a better accuracy. Similar with the case in Section 2.6.1, this is typical of

multi-fidelity strategies and explanations are available in [123].

Table 2.5: The relative errors of the first and second moments of HF-VAE/BF-VAE generated QoI
shown in Figure 2.16.

n = 10 n = 100 n = 1, 000

First moment (HF-VAE) 6.83e-2 3.49e-2 3.63e-3
First moment (BF-VAE) 7.72e-3 3.82e-3 7.20e-3
Second moment (HF-VAE) 1.07e-1 5.60e-2 1.45e-2
Second moment (BF-VAE) 1.34e-2 8.58e-3 1.39e-2

2.7 Conclusion

This paper presents a novel deep generative model, the bi-fidelity variational auto-encoder

(BF-VAE), for generating synthetic realizations of spatio and/or temporal QoIs from paramet-

ric/stochastic PDEs through bi-fidelity data. With an autoencoder architecture, the BF-VAE

exploits a low-dimensional latent space for bi-fidelity auto-regression, which significantly reduces

the number of high-fidelity (HF) samples required for training. As such, the construction of the

BF-VAE model is largely independent of the dimension of the stochastic input and applicable to

QoIs that do not admit low-rank representations. A training criterion for the BF-VAE is proposed

and analyzed using information bottleneck theory [513]. The empirical experiments demonstrate

the e!cacy of the proposed algorithm in scenarios when the amount of HF data is limited.

VAE-based approaches, including the BF-VAE, typically impose a multivariate Gaussian

distribution on the encoder. As discussed in Section 2.4.3, this results in approximation errors.

An interesting future research direction is to try using other deep generative models that do not

su”er from this shortcoming in bi-fidelity UQ applications. Examples of promising models that
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Figure 2.15: The KID result for the viscous Burgers’ equation given di”erent numbers of HF real-
izations. Each point represents the average KID between the test data and the VAEs’ realizations
over 10 separate trials. The shaded area corresponds to half the empirical standard deviation of
these 10 trials. The red dash line is the KID between LF and HF data.
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Figure 2.16: Comparison of 1,000 samples generated from the trained HF-VAE (top row), BF-VAE
(bottom row) and the true HF model (right). A di”erent number of HF realizations are used in
each of the first three columns: n = 10 (left column), n = 100 (middle left column), and n = 1000
(middle right column).
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have achieved state-of-the-art results in other domains include normalizing flows and di”usion

models.
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Chapter 3

Langevin Bi-fidelity Importance Sampling

3.1 Abstract

Estimating failure probability is a key task in the field of uncertainty quantification. In this

domain, importance sampling has proven to be an e”ective estimation strategy; however, its e!-

ciency heavily depends on the choice of the biasing distribution. An improperly selected biasing

distribution can significantly increase estimation error. One approach to address this challenge

is to leverage a less expensive, lower-fidelity surrogate. Building on the accessibility to such a

model and its derivative on the random uncertain inputs, we introduce an importance sampling-

based estimator, termed the Langevin bi-fidelity importance sampling (L-BF-IS), which uses score-

function-based sampling algorithms to generate new samples and substantially reduces the mean

square error (MSE) of failure probability estimation. The proposed method demonstrates lower

estimation error, especially in high-dimensional input spaces and when limited high-fidelity evalu-

ations are available. The L-BF-IS estimator’s e”ectiveness is validated through experiments with

two synthetic functions and two real-world applications governed by partial di”erential equations.

These real-world applications involve a composite beam, which is represented using a simplified

Euler-Bernoulli equation as a low-fidelity surrogate, and a steady-state stochastic heat equation,

for which a pre-trained neural operator serves as the low-fidelity surrogate. 1

1 The original version of this work is presented in [93], co-authored with A. Doostan.
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3.2 Introduction

Uncertainty ubiquitously appears in many real-world applications, such as weather forecast-

ing, financial modeling, healthcare decision-making, and engineering design. In computational

modeling, uncertainty is often represented by a random vector, defined within a specific probability

distribution based on prior knowledge or observation data. One of the key goals of uncertainty

quantification (UQ) is to estimate the probability of a device or system failure based on model

outputs, also known as the quantity of interest (QoI). There are many methods to solve this prob-

lem, including the first-order reliability method (FORM) [221, 133] and its extension to the second

order [175]. Other works involve the Monte Carlo sampling method [24]. However, the standard

Monte Carlo method faces the challenge of slow convergence relative to sample size, especially

when the probability of the failure event is small. In practical scenarios, model evaluation demands

substantial computational resources, limiting the Monte Carlo method’s feasibility. Consequently,

there is significant interest in enhancing the convergence of the Monte Carlo method by reducing

the number of model evaluations, primarily achieved by reducing the variance of estimators.

Variance reduction in Monte Carlo estimators can be primarily approached in two ways.

The first method involves control variates [21, 171, 194], which uses correlated random variables

to adjust the original estimator based on the covariance between the control and target variables.

This adjustment yields a new estimator with reduced variance, provided the appropriately chosen

control variable is well-correlated with the target variable. Despite its widespread application in

UQ, the e!cient control variate method is contingent on the availability of highly correlated control

variables with known (or cheap to evaluate) mean and accurate covariance estimation, limiting its

applicability. The second method is importance sampling (IS), which is the focus of this work.

IS samples the input random variables following a di”erent probability distribution (referred to

as biasing distribution) to emphasize the regions that significantly impact the estimation. This

approach e”ectively reduces the estimator variance and focuses on crucial input space areas, proving

particularly useful in scenarios involving rare events or tail probability estimations. The critical
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challenge in IS is constructing a suitable biasing distribution, a task complicated by limited access

to model outputs under the UQ setting.

Several studies have examined the construction of biasing distributions specifically tailored

for failure probability estimation. Adaptive importance sampling techniques, such as those in

[72, 293, 184, 426], tune the biasing density within a parameterized family by adaptively finding the

optimal density under the cross entropy criteria. Papaioannou et al. [415] discuss the application

of sequential importance sampling (SIS) for estimating the probability of failure in structural relia-

bility analysis. Initially developed for exploring posterior distributions and estimating normalizing

constants in Bayesian inference, SIS involves a sequential reweighting operation that progressively

shifts samples from the prior to the posterior distribution. This work was later adapted using the

ensemble Kalman filter [538] and consensus sampling [17]. However, these methods may require

extensive forward model computations, limiting their practical applicability.

To mitigate the computational burdens associated with high-fidelity (HF) models, adopting

a “low-fidelity” (LF) model proves advantageous. This model, for instance, derived from the

same solver but employing a coarser grid or an approximate surrogate function—either based on

fixed basis functions or data-driven—o”ers reduced accuracy in exchange for significantly lower

computational cost. This approach, often named bi-fidelity or multi-fidelity, has been integrated

into many of the aforementioned methods. For instance, Li et al. [311] utilized surrogates of the

limit state function as low-fidelity models to enhance adaptive importance sampling [310]. Similarly,

Wagner et al. [537] extended sequential importance sampling to multi-level cases where coarse

grid solutions serve as low-fidelity models. Peherstorfer et al. [424] proposed the multi-fidelity

importance sampling method (MF-IS), which constructs the biasing distribution by applying a

Gaussian mixture model to inputs whose LF evaluations indicate potential failures, suggesting that

inputs failing under LF conditions are likely to fail under HF conditions as well. This strategy

preserves the unbiased nature of the importance sampling estimator and does not confine the

format of the LF model. Subsequent extensions of this framework [425, 287, 16] have integrated

a collection of di”erent estimators and explored the balance between computation and accuracy.
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However, the aforementioned multi-fidelity methods using polynomial chaos surrogates or based on

Gaussian mixture models are known for their rapidly growing complexity with the increase in the

dimension of the inputs, denoted as D. Moreover, identifying the number of failure clusters for the

Gaussian mixture model poses challenges without prior knowledge. In response to the identified

challenges, a recent work by Cui et al. [115] introduced a deep importance sampling method. This

method is notable for its biasing distribution construction with linear complexity O(D). This was

achieved through the push-forward of a reference distribution under a series of order-preserving

transformations, each shaped by a squared tensor-train decomposition. While this method o”ers

theoretical and numerical advancements over [424], challenges related to the training of neural

networks and its associated optimization error persist.

In practical applications, low-fidelity models often possess additional properties and infor-

mation that can be leveraged. For instance, when a low-fidelity model is a simplified model, such

as the Euler-Bernoulli equation for beam deflections [96, 94], its explicit formulation facilitates

simple forward evaluation at minimal cost and provides derivative information. Similarly, when the

low-fidelity model is a data-driven surrogate model, the recent development of auto-di”erentiation-

enabled libraries [4, 421] produces derivatives of the forward surrogate map. These examples

highlight the potential of utilizing additional knowledge from low-fidelity models to construct more

e”ective biasing distributions for importance sampling estimators.

In this work, we introduce a new importance sampling estimator, named Langevin Bi-fidelity

Importance Sampling (L-BF-IS). By leveraging a new parameterization of the biasing density func-

tion and the Metropolis-adjusted Langevin algorithm (MALA) [457, 455], this estimator scales

favorably in high-dimensioned scenarios (D ⇔ 100). Specifically, the required number of iterations

for this algorithm depends on O(D1/3) [177]. The contributions of this work are threefold:

(1) We introduce a new parameterization of the biasing density function leveraging a low-

fidelity model; see Equation (3.5). Two approaches are proposed to tune the only hyper-

parameter ϑ;
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(2) We analyze the L-BF-IS estimator’s statistical properties and estimation performance based

on the relation between low-fidelity and high-fidelity models;

(3) We empirically demonstrate the e”ectiveness of the MALA on a multimodal biasing density

function and the L-BF-IS performance through synthetic and real-world problems governed

by di”erential equations with high-dimensional random inputs.

The structure of this work is as follows. Section 3.3 details the construction and implementation of

L-BF-IS, presents a discussion on its error analysis. Section 3.4 demonstrates the performance of

L-BF-IS using three numerical examples. 2 Finally, Section 1.6 concludes the paper and discusses

avenues for future research.

3.3 Langevin Bi-fidelity Importance Sampling Estimator and its Properties

In this section, a detailed motivation, construction, and theoretical analysis of the proposed

L-BF-IS estimator is presented. Section 3.3.1 introduces the concepts of Monte Carlo method

and importance sampling. Section 3.3.2 presents the groundwork of L-BF-IS: the designed bias-

ing distribution q(z) and the formulation of L-BF-IS estimator. In Section 3.3.3, the statistical

properties of the proposed L-BF-IS estimator, including its unbiasedness, variance, and consistency

are discussed. Section 3.3.4 includes two approaches to estimate the most important parameter

in our estimator, ϑ. Section 3.3.5 presents the MALA-based technique employed to sample the

biasing distribution. A discussion on the influence of the relation between low-fidelity and high-

fidelity models on the performance of L-BF-IS estimation is presented in Section 3.3.6. Section 3.3.7

provides insights on the potential sources of errors in L-BF-IS.

3.3.1 Background

We consider an input-output system encompassing an input random vector of dimension

D → N and an output random variable, named the quantity of interest (QoI), of dimension d → N.

2 The codes are available at https://github.com/CU-UQ/L-BF-IS.
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A probability space (%,F ,P) is embedded in the input space so that % ∞ R
D. The system is

represented as a F-measurable function that is equipped with two distinct levels of fidelity: a high-

fidelity (HF) QoI function fHF : % ↘ R
d and a low-fidelity (LF) QoI function fLF : % ↘ R

d, with

% ∞ R
D. The inputs are random variables z that are assumed to obey an absolutely continuous

(with respect to Lebesgue measure) probability distribution, yielding a density function p(z) with

associated law Pp. Additionally, for the failure probability, we define Borel-measurable performance

functions gHF : Rd ↘ R and gLF : Rd ↘ R. These two functions evaluate the failure result given

a QoI and provide a value reflecting the outputs. For simplicity, we define hHF := gHF ℜ fHF and

hLF := gLF ℜ fLF. If hHF, hLF(z) < 0, the result represents failures. In the following contexts, we

call hHF and hLF as HF and LF functions, respectively. In the literature [311, 310], limit state

function that describes {z | hHF(z) = 0} is also discussed. The existence of such a limit state

function is based on certain continuity of the function hHF, which is not assumed in this work. We

also define failure regions AL := (hLF)↗1((↑ℑ, 0)) and AH := (hHF)↗1((↑ℑ, 0)). Both AH and

AL belong to F due to the measurable-function assumption and can be multi-modal. We let Ep

and Vp denote the expectation and variance associated with the density p(z), respectively.

Under the multi-fidelity scheme, we aim to evaluate the expected HF failure probability,

Pf := Pp[h
HF(z) < 0] = Ep[ hHF(z)<0] =



Ω

hHF(z)<0p(z)dz =



AH

p(z)dz = Pp[AH ], (3.1)

where is the indicator function. The Monte Carlo estimator, with N samples, is

PMC
N :=

1

N

N∑

i=1

hHF(zi)<0, {zi}
N
i=1

iid↓ p(z). (3.2)

In this work, we use the hat notation to denote estimators. The mean square error (MSE) of

Monte Carlo estimation Ep[( PMC
N ↑Pf )

2] is Vp[ hHF(z)<0]/N . In applications like failure probability

estimation, when the failure probability is small, the aforementioned variance becomes large, which

requires more HF evaluations to reduce the MSE. Importance sampling (IS) [428] is one of the

methods that e”ectively reduces the estimator variance by re-weighting the samples with a carefully

chosen alternative density function q(z), named biasing density function. By building q(z) to
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replace p(z), the IS estimator is then defined as

P IS
N :=

1

N

N∑

i=1

hHF(z̃i)<0

p(z̃i)

q(z̃i)
, {z̃i}

N
i=1

iid↓ q(z). (3.3)

Note that the IS estimator in Equation (3.3) is unbiased, i.e., Eq[ P IS
N ] = Pf .

3.3.2 Biasing Distribution and L-BF-IS Estimator

It is known that the optimal biasing density for failure probability estimation is (see [428])

q→(z) :=
1

Pf
hHF(z)<0p(z). (3.4)

However, we cannot simply use the LF indicator function hLF(·)<0 to replace its counterpart

hHF(·)<0 due to singularity issue on the IS weight p(z)/q(z). Instead, we aim to design a “soft

version” for the conceptually optimal biasing density while providing it with flexibility to adjust

for unmatching support between hHF(·)<0 and hLF(·)<0.

Similar to the smoothing strategy in [414, 522], we propose the biasing distribution

q(z) :=
1

Z(ϑ)
exp

(
↑ϑ tanh ℜhLF(z)

)
p(z), (3.5)

where ϑ is a length scale and Z(ϑ), a function of ϑ, is the normalisation constant. The value of Z(ϑ)

is given by

Z(ϑ) =



Ω

exp
(
↑ϑ tanh ℜhLF(z)

)
p(z)dz = Ep


exp

(
↑ϑ tanh ℜhLF(z)

)
. (3.6)

Note that q(z) is strictly positive when the input is in the support of p(z), which guarantees that

p(z) is absolutely continuous with respect to q(z) and the weight p(z)/q(z) is well-defined. Based

on the initial density p(z), the formulation of q(z) in Equation (3.5) prioritizes higher probability

weights for samples z whose LF counterparts indicate a failure outcome. This approach is based

on an assumed connection between the HF function hHF and its LF counterpart hLF, which will be

discussed in more details in Section 3.3.6. Figure 3.1 illustrates this concept with a two-dimensional

(D = 2) example, demonstrating the application of our proposed method. Similar to the strategy

employed by [310], the tanh function facilitates a “bu”er” region within the importance sampling
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framework. However, unlike the method above, our approach does not aim to directly approximate

limit state functions due to its complexities in high-dimensional space.

Figure 3.1: Illustration of the concept of limit state functions and biasing densities in the inputs
z. The left figure displays the limit state functions that separate the failure region from the safe
region, highlighting the HF limit function in red and the LF surrogate in blue. The middle figure
shows the optimal biasing density as derived from Equation (3.4). The right figure displays the
proposed biasing density, as defined in Equation (3.5), which utilizing the LF function.

Given q(z) in Equation (3.5) and p(z), the importance sampling weight function is

p(z)

q(z)
= Z(ϑ) exp

(
ϑ tanh ℜhLF(z)

)
. (3.7)

We approximate Z(ϑ) using Monte Carlo estimation

ZM (ϑ) =
1

M

M∑

m=1

exp
(
↑ϑ tanh ℜhLF(zm)

)
, (3.8)

where {zm}Mm=1
iid↓ p(z). Since the estimation of Z(ϑ) only involves evaluating the inexpensive LF

function, M can be su!ciently large so that Z(ϑ) can be estimated with high accuracy.

According to the definition of importance sampling estimator in Equation (3.3), and given

our q(z), we define the L-BF-IS estimator as follows

PBF
M,N =

(
1

M

M∑

m=1

exp
(
↑ϑ tanh ℜhLF(zm)

)
)(

1

N

N∑

i=1

hHF(z̃i)<0 exp
(
ϑ tanh ℜhLF(z̃i)

)
)
, (3.9)

where {zm}Mm=1
iid↓ p(z) and {z̃i}

N
i=1

iid↓ q(z).
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3.3.3 Statistical Properties of L-BF-IS Estimator

Analyzing biased, variance, and consistency, is crucial for evaluating the performance of an

estimator. Firstly, due to the independence between samples from p(z) and q(z), the L-BF-IS

estimator in Equation (3.9) is unbiased, i.e.,

Ep⇓q

[
PBF
M,N


= Ep


exp

(
↑ϑ tanh ℜhLF(z)

)
Eq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)

= Z(ϑ)Eq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)
= Pf .

(3.10)

Here, p⊤q represents the Cartesian product of the two densities, indicating their independence and

the last equality is from the unbiasedness of the important sampling estimator. Secondly, following

the relation

V[XY ] = V[X]V[Y ] + E
2[X]V[Y ] + V[X]E2[Y ], (3.11)

for two independent variables X and Y the variance of L-BF-IS estimator is given by

Vp⇓q[ PBF
M,N ] =

1

MN
Vp


exp

(
↑ϑ tanh ℜhLF(z)

)
Vq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)

+
Z2(ϑ)

N
Vq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)

+
1

M
Vp


exp

(
↑ϑ tanh ℜhLF(z)

)
(Pf )

2.

(3.12)

With the results from Equation (3.10) and Equation (3.12), the consistency of the L-BF-IS can be

shown by applying the Chebyshev’s inequality,

Pp⇓q

(
| PBF

M,N ↑ Pf | ⇔ ⇀
)
⇓

Vp⇓q

[
PBF
M,N



⇀2
, ¬⇀ > 0. (3.13)

Notice that the variance Vp⇓q

[
PBF
M,N


decays when both M and N increase. Additionally, if we

assume the value of M is su!ciently large so that 1/M is small enough to be ignored, the variance

in Equation (3.12) can be approximated as

Vp⇓q[ PBF
M,N ] ≃ Z2(ϑ)

N
Vq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)
. (3.14)

3.3.4 Selection of Lengthscale ϑ

The value of the parameter ϑ in Equation (3.5) plays a key role in determining the performance

of the L-BF-IS estimator. Given that the estimator is unbiased as shown in Equation (3.10)

��������������������
�������
�����������������������	�����



89

and the values of M and N are held fixed, the goal is to find an optimal value of ϑ so that the

variance of the L-BF-IS estimator is minimized. Leveraging the variance approximation presented in

Equation (3.14) and acknowledging the dependency of q(z) on ϑ, we re-formulate the approximated

variance as

Vp⇓q

[
PBF
M,N


≃ Z(ϑ)

N
Ep

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)
↑ (Pf )

2

N
. (3.15)

For the interest of brevity, more detils on the derivation of Equation (3.15) are presented in C.1.

Focusing solely on the relationship between the variance in Equation (3.15) and ϑ,

Vp⇓q

[
PBF
M,N


≃ Z(ϑ)

N  
ω⇔

Ep

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)

  
ω↖

+O(1). (3.16)

Upon examining Equation (3.16) closely, it is clear that the value of Z(ϑ), as defined in Equa-

tion (3.6), decreases monotonically with ϑ while the expectation component exhibits a monotonic

increase with the value of ϑ. This dichotomy highlights a trade-o” between larger and smaller ϑ

values, underscoring the importance of designing an algorithm to optimally determine ϑ.

Since estimating the expectation term requires evaluating the HF function hHF, two practical

approaches are next introduced to choose an optimal value for ϑ.

3.3.4.1 Approach One: Using Pilot HF Evaluations

In the first approach, one consider a small sample approximation of the variance in (3.16)

VL(ϑ) =
ZM (ϑ)

NL

L∑

j=1

hHF(zj)<0 exp
(
ϑ tanh ℜhLF(zj)

)
, {zj}

L
j=1 ↓ p(z) (3.17)

using L ↖ M HF function hHF(·) evaluations. We then choose the optimal ϑ→ such that

ϑ→ = argmin
ω

VL(ϑ), (3.18)

which, as a 1D optimization problem, can be solved using a simple grid search or a first/second

order method. However, when the failure probability is small, e.g. Pf ⇓ O(1/L), a risk of this

approach is that hHF(zj)<0 can be 0 for all zj , thus making it invalid. Indeed, since the HF function

is evaluated only L times, the probability that no failure case is sampled is (1 ↑ Pf )
L and can be

non-trivial.
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3.3.4.2 Approach Two: Only Using LF Evaluations

An alternative approach is to replace hHF(zj)<0 with hLF(zj)<0, which produces the variance

estimator

V ↙
M (ϑ) =

ZM (ϑ)

NM

M∑

m=1

hLF(zm)<0 exp
(
ϑ tanh ℜhLF(zj)

)
, (3.19)

with samples {zm}Mm=1
iid↓ p(z). We choose the optimal ϑ→ as

ϑ→ = argmin
ω

V ↙
M (ϑ). (3.20)

This approach provides a less accurate estimation for the variance in exchange for avoiding directly

evaluating the HF function. We suggest applying this approach when the value of (1 ↑ Pf )
L is

large, where Pf can be replaced by some prior knowledge of the failure probability and, L ↖ M , is

an a”ordable number of HF function evaluations.

3.3.5 Sampling the Biasing Distributions

The formulation of the biasing density q(z) in Equation (3.5), as well as the availability of the

LF function derivative ∀zh
LF(z) facilitates the evaluation of the score function ∀z log q(z). This

capability significantly enhances the selection of sampling methods that utilize the score function,

which includes, but are not limited to, Langevin Monte Carlo, Hamiltonian Monte Carlo, and Stein

Variational Gradient Descent [325].

Among the various options, we opt for the Metropolis-adjusted Langevin algorithm (MALA),

a variant Langevin Monte Carlo, to generate samples from the biasing distribution. This choice is

made because of its simplicity and widely-used implementation. However, it is important to note

that any score-based sampling method is compatible with the importance sampling framework

proposed in this work. MALA e”ectively integrates the discretization of Langevin dynamics with

the Metropolis-Hastings algorithm [455], o”ering a robust framework for sampling.

Assuming the score function ∀z log p(z) exists and is bounded, and the LF function hLF is

��������������������
�������
�����������������������	�����



91

di”erentiable and Lipschitz, the biasing density q(z) can be written as

q(z) =
1

Z(ϑ)
exp(↑U(z)), (3.21)

where the potential function U(z) is given by

U(z) := ϑ tanh ℜhLF(z)↑ log p(z). (3.22)

According to [455], the density q(z) is the unique invariant distribution of the Langevin stochastic

di”erential equation (SDE)

dz = ↑∀U(z) +
⇒
2dWt, (3.23)

where Wt is the Brownian motion. Therefore, by simulating the SDE in Equation (3.23) via

Euler-Maruyama method,

z(t+ς) = z(t) ↑ τ∀U(z(t)) +
⇒
2(Wt+ς ↑Wt), (3.24)

where z(t) represents the discretized z and τ is the step size. The property of Brownian motion,

Wt+ς ↑Wt ↓ N (0, τID) with the identity matrix ID → R
D↓D, allows to re-write Equation (3.24)

as

z(t+1) = z(t) ↑ τ∀U(z(t)) +
⇒
2τ↼, ↼ ↓ N (0, ID). (3.25)

Following Equations (3.21) and (3.22), ∀zU(z) is given by

∀zU(z) = ↑∀z log q(z) = ϑ∀z tanh ℜhLF(z)↑∀z log p(z). (3.26)

Besides sampling z(t) iteratively, MALA implements a Metropolis-Hastings accept-reject mecha-

nism to reject proposals in low-density regions [456]. The rejection of the new proposed sample

z(t+1) is triggered if

u ⇔ exp
(
U(z(t)) + 4(z(t), z(t+1))↑ U(z(t+1))↑ 4(z(t+1), z(t))

)
, (3.27)
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where u is a random variable sampled from uniform distribution U [0, 1] and 4 is a function defined

as

4(z1, z2) := ↑ 1

4τ
⇐z1 ↑ z2 ↑ τ∀U(z2)⇐22. (3.28)

Numerically, we discard the first B samples of the Markov chain, referred to as burn-in samples,

with B varying depending on the problem scale. The sampling algorithm is detailed in Algorithm 4.

Notice that, once ϑ is set, Algorithm 4 requires only O(T + B) LF evaluations. The construction

of the L-BF-IS estimator is concluded in Algorithm 5.

Algorithm 4: Langevin Algorithm for Sampling from Biasing Distribution
O(T +B) LF evaluations

Input: Length scale ϑ, burn-in number B, LF function hLF, its gradient ∀hLF, step size τ ,
iteration number T , and initial state z(0) (Optional)

Output: A collection of samples {z̃i}
N
i=1 ↓ q(z)

1: Sample initial state z(0) iid↓ p(x) if z(0) is not given
2: for t = 1 : T +B do
3: update z(t) following Equation (3.25) and Equation (3.26)
4: reject the step if Equation (3.27) satisfied.
5: end for
6: {z̃t}

T
t=1 ⊥ {z(t)}T+B

t=B+1

Remark 3.3.1. When implementing Algorithm 4 on a bounded domain %, we introduce a penalty

value q(z) ⇑ 0 for all z /→ % to discourage the chain from moving outside the domain.

3.3.6 Further Discussion on Bi-fidelity Modeling

A crucial aspect of any bi-fidelity modeling is understanding how the similarity between LF

and HF models a”ects the performance of the proposed bi-fidelity algorithm, while we investi-

gate from two perspectives: the variance of the L-BF-IS estimator and the Kullback-Leibler (KL)

divergence between the optimal and the proposed biasing distributions.

Recall that in Section 3.3.1 we define subsets AH ∞ % and AL ∞ % such that z → AH if

and only if hHF(z) < 0, and z → AL if and only if hLF(z) < 0. Note that under this definition,
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Algorithm 5: L-BF-IS Method
O(M + T +B) LF evaluations O(N + L) HF evaluations

Input: LF sample size M , HF sample size N , LF function hLF, HF function hHF, and
additional HF sample size L (optional)

Output: A value of L-BF-IS estimator PBF
M,N

1: Determine Langevin dynamics step size τ , burn-in number B, and iteration number T based
on available computational resource (T > N)

2: if L is provided then
3: Determine ϑ that minimizes the variance estimator in Equation (3.17);
4: else
5: Determine ϑ that minimizes the variance estimator in Equation (3.19);
6: end if
7: Build estimator ZM (ϑ) using {zm}Mm=1

iid↓ p(z) following Equation (3.8);
8: {z̃t}

T
t=1 ⊥ Langevin algorithm(ϑ, B, hLF,∀hLF, τ, T ) in Algorithm 4;

9: Uniformly select subset {z̃i}
N
i=1 ℵ {z̃t}

T
t=1

10: Evaluate PBF
M,N as in Equation (3.9) using {z̃i}

N
i=1 and ZM (ϑ).

Pf = Pp[AH ]. The analysis in this section assumes ϑ is already fixed. Based on the approximated

variance in Equation (3.15), we decompose the expectation term into two parts:

Ep

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)
=



AH

exp
(
ϑ tanh ℜhLF(z)

)
p(z)dz

=



AH∝AL

exp
(
ϑ tanh ℜhLF(z)

)
p(z)dz +



AH∝AC
L

exp
(
ϑ tanh ℜhLF(z)

)
p(z)dz,

(3.29)

where AC
L := % \ AL is the complement. For the first term in Equation (3.29), since z → AL, we

have hLF(z) < 0 and thus tanh ℜhLF(z) < 0, making this term upper bounded by Pp[AH ↔ AL],

which is equivalent to Pf ↑ Pp[AH ↔ AC
L ]. The second term, since tanh ℜhLF(z) < 1 for all z, is

thereby bounded above by eωPp[AH ↔AC
L ].

Applying a similar methodology, we also bound Z(ϑ) < 1 + (eω ↑ 1)Pp[AL]; see C.2.1 for

detailed proofs. Thus, assuming M is su!ciently large, the variance of the L-BF-IS estimator in

Equation (3.14) is upper bounded as:

Vp⇓q[ PBF
M,N ] ↫

1 + (eω ↑ 1)Pp[AL]

N
(Pf + (eω ↑ 1)Pp[AH ↔AC

L ])↑
(Pf )

2

N
. (3.30)

The terms Pp[AL] and eωPp[AH ↔AC
L ] represent penalties arising from mismatches between the HF

and LF models. Should the LF model perfectly align with the HF model, these terms vanish; see
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Figure 3.2. This bound elucidates that the performance of L-BF-IS is contingent on Pp[AH ↔AC
L ],

and further analysis of the KL divergence will verify this observation.

In addition to the variance analysis, we examine the KL divergence between the proposed

biasing distribution in Equation (3.5) and the optimal distribution in Equation (3.4), given by

KL(q→⇐q) = Eq→


log

Z(ϑ) hHF(z)<0

Pf exp (↑ϑ tanh ℜhLF(z))


, (3.31)

or its simplification

KL(q→⇐q) = log
Z(ϑ)

Pf
+ ϑ



AH∝AL

tanh ℜhLF(z)p(z)dz + ϑ



AH∝AC
L

tanh ℜhLF(z)p(z)dz. (3.32)

Here, the integrals represent contributions from the regions where high-fidelity and low-fidelity

models coincide and where they do not, respectively. Consequently, the KL divergence can be

bounded by

KL(q→⇐q) < log
1 + (eω ↑ 1)Pp[AL]

Pf
+ ϑPp[AH ↔AC

L ]. (3.33)

The expression in Equation (3.33) indicates that the optimality of the proposed biasing distribution

depends significantly on Pp[AH ↔ AC
L ]. The proofs supporting these claims are provided in C.3.

Note that since the optimal biasing distribution q→ is fixed, the KL divergence is equivalent to the

cross entropy criteria presented in [293, 184].

(a) (b) (c)

HF Failure Region A
H

LF Failure Region A
L

Overlap Region A
H

∩ A
L

(d)

Figure 3.2: Illustration of the trade-o” between Pp[AL] and Pp[AH ↔AC
L ] when D = 2. Case 1 (a)

represents the worst scenario, where there is no overlap between AH and AL. In Case 2 (b), we
observe an extreme case where Pp[AH ↔AC

L ] is zero, but Pp[AL] becomes excessively large. Case 3
(c) presents a scenario where Pp[AL] is small, but Pp[AH ↔AC

L ] is significantly large. Lastly, Case
4 (d) shows a favorable scenario resulting in a small values for both Pp[AL] and Pp[AH ↔AC

L ].

While Pp[AH ↔ AC
L ] is a key in describing the alignment between the HF and LF models,

computing it requires many HF model evaluations, which is inpractical. One possible way to
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address this problem is to use a small number of pilot HF samples to evaluate the KL divergence

in Equaiton (3.31). A systematic framework of the alignment between the LF and HF models is

out of the scope of this work but can be the focus of the future works.

3.3.7 Error Analysis

Two principal types of errors are identified as contributing to an increase in the MSE: bias-

inducing error and variance-inducing error. This section delves into both those error types.

The bias-inducing error arises from inaccuracies in MALA, as outlined in Section 3.3.5. A

series of studies have investigated the convergence behavior of Langevin Monte Carlo, especially

under the convexity assumption of the potential function U(z) in Equation (3.22). These studies

have shown that Langevin algorithm’s output tends to converge to the target distribution q(z)

across several metrics, including total variation [120, 163], Wasserstein-2 distance [162], and KL

divergence [98]. However, the convexity of U(z) may not always hold, particularly for target

densities q(z) with multimodal features. The inaccurate sampling of q(z) lead to biases in L-BF-IS

estimations. A mitigation strategy involves launching multiple Langevin dynamics chains from

di”erent initial states.

The variance-inducing error originates from two sources. The first is the discrepancy between

LF and HF functions. According to the analysis in Section 3.3.6, this discrepancy is quantified by

the probabilities Pp[AH ↔ AC
L ] and Pp[AL]. Lower values of these probabilities suggest a smaller

estimation variance, hence smaller MSE. The second source of variance-inducing error relates to

the selection of the parameter ϑ, as described in Equations (3.17) and (3.19). Given the limited

access to HF function evaluations in one approach (Section 3.3.4.1) or the complete avoidance of HF

samples for selecting ϑ in another approach (Section 3.3.4.2), a deviation between the chosen ϑ→ and

the true optimal ϑ that minimized Equation (3.15) inevitably arises. This deviation contributes to

an increase in the variance of L-BF-IS estimator and, consequently, its MSE. We acknowledge that

fully addressing these challenges, particularly in mitigating bias-inducing and variance-inducing

errors, remains an open problem that forms the basis of a future work.
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3.4 Empirical Results

In this section, empirical results are presented to illustrate the e”ectiveness of the L-BF-IS

estimator. In Section 3.4.1, a simple 1D function demonstrates the applicability of the MALA on

sampling a multi-modal biasing distribution. Then, in Section 3.4.2, the L-BF-IS is applied to two

di”erent cases: an 8-dimensional Borehole function (detailed in 3.4.2.1) and a 1000-dimensional

synthetic function (detailed in 3.4.2.2). The application of the L-BF-IS is shown on two real-

world failure probability estimation problems in Section 3.4.3, including a composite beam problem

(explained in Section 3.4.3.1) that uses the Euler-Bernoulli equation as an LF model and a steady-

state stochastic heat equation (explained in Section 3.4.3.2) with a data-driven LF model based on

a pre-trained physics-informed neural operator.

To evaluate the accuracy of our estimations, we use the relative root mean square error

(rRMSE),

rRMSE(N) :=

√√√√E

[
( PN ↑ Pf )2

P 2
f

]
, (3.34)

where PN is the estimator using N iid HF samples. The performance of the L-BF-IS estimator

PBF
N (formulated in Equation (3.9)) is compared with the standard Monte Carlo estimator PMC

N

(defined in Equation (3.2)) across all problems. We also produce the LF failure probability, denoted

as PLF
f , which is solely generated from 1↗ 106 hLF evaluations. For the problems where the input

dimension D ⇓ 10, we also consider the results from the Multi-fidelity Importance Sampling (MF-

IS) estimator [424], which uses a biasing distribution created by a Gaussian mixture model. The

number of clusters for MF-IS is chosen from k = {1, 3, 5, 10}, so that the chosen k yields the

best performance. We assume the computational costs of HF models are substantially higher than

those of the LF models so that the costs of LF forward and derivative evaluations can be ignored.

The initial point z(0) of the MALA is typically chosen as the center of the input space. The

proposed method requires O(M+T +B) forward LF model evaluations (typically around ↓ 1↗106

evaluations) and O(N + L) forward HF model evaluations, usually between 1 and ↓ 1↗ 104.
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The experimental component of this study is primarily concerned with scenarios exhibiting

a failure probability between 1% and 5%. For the purpose of identifying an appropriate LF failure

threshold, 1000 LF QoIs are generated to establish a tentative threshold, ensuring its inducing

failure probability is also between 1% and 5% and potentially closed to Pf . This procedure is

adopted because, for certain LF/HF models (such as the 1000-dimensional problem discussed in

Section 3.4.2.2), there is a notable discrepancy between the ranges of LF and HF QoIs. Conse-

quently, applying the same threshold to both models may result in inaccurate probability estimates.

In practice, while the HF failure probability Pf is the goal of estimation, a prior knowledge on a

range of values is available. Such an estimate is instrumental in establishing a valid criterion for

the assessment of LF QoIs within L-BF-IS.

3.4.1 A Simple Bimodal Function for Demonstrating Langevin Algorithm

In failure probability estimation, the multimodal issue occurs when multiple sub-areas in %

correspond to failure. The goal of this example is to empirically show that the MALA is capable

to address this issue through a 1D example, where

h(z) = ↑(sin(4z) + 0.95)(sin(4z)↑ 0.95). (3.35)

The density p(z) is assumed to be uniform between ↑1 and 1. We choose ϑ = 5.0. The function

h(z) in Figure 3.3a and the densities p(z), q(z) in Figure 3.3b are provided. The biasing density

q→(z) shows the bimodal property and we will show that the Langevin algorithm is possible to

generate samples from it.

We implement the Langevin algorithm described in Algorithm 4, where we set the starting

point at z = 0. The step size τ = 0.05 and burn-in number B = 200. We initiate the Langevin

algorithm 100 times and for each chain, we collect 10 samples after the burn-in number. The

collected samples are shown in Figure 3.3c. As we can see, the bimodal shape of the biasing density

q(z) is captured by the Langevin algorithm.
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(a) (b) (c)

Figure 3.3: (a) The example function h(z) and the 0 threshold. (b) Densities p(z) and q(z) with
ϑ = 5.0. (c) Histogram of 1, 000 samples of q(z) generated from the Langevin algorithm described
in Algorithm 4.

3.4.2 Synthetic Examples with Prescribed Functions

3.4.2.1 Borehole Function

We applied the borehole function described in [374], which is extended to a multi-fidelity set-

ting in [563]. It is an 8-dimensional problem that models water flow through a borehole. Following

[563], the HF QoI function is

fHF(z) =
24z3(z4 ↑ z5)

(z2 ↑ log z1)
(
1 + 2z7z3

(z2↗log z1)z21z8
+ z3

z5

) , (3.36)

and the LF QoI function is

fLF(z) =
5z3(z4 ↑ z5)

(z2 ↑ log z1)
(
1.5 + 2z7z3

(z2↗log z1)z21z8
+ z3

z5

) . (3.37)

The random inputs z and their distributions are presented in Table 3.1. We define the HF function

hHF(z) as 800↑ fHF(z). To empirically prevent the Langevin Markov chain from moving outside

the domain %, we introduce an additional penalty term of 100⇐z⇐2 when z is outside %. Similarly,

the LF function hLF(z) is defined as 1000↑ fLF(z) within the specified domain; otherwise, it takes

the penalty term 100⇐z⇐2.

In Figure 3.4, the estimated variance of L-BF-IS estimator using two di”erent approaches for

tuning ϑ are demonstrated with L = 1↗ 102 HF trials and M = 1↗ 106 LF evaluations for length

scale selection. The uncertainty of the variance estimate is notably higher in the first approach
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Table 3.1: The stochastic input ranges, distributions, and physical meanings of the Borehole func-
tion.

Range Distribution Physical Meaning

z1 → [0.05, 0.15] N (0.10, 0.016) radius of borehole (m)
z2 → [4.605, 10.820] N (7.71, 1.0056) radius of influence (m)
z3 → [63070, 115600] U [63070, 115600] transmissivity of upper aquifer (m2/yr)
z4 → [990, 1110] U [990, 1110] potentiometric head of upper aquifer (m)
z5 → [63.1, 116] U [63.1, 116] transmissivity of lower aquifer (m2/yr)
z6 → [700, 820] U [700, 820] potentiometric head of lower aquifer (m)
z7 → [1120, 1680] U [1120, 1680] length of borehole (m)
z8 → [9855, 12045] U [9855, 12045] hydraulic conductivity of borehole (m/yr)

compared to the second, primarily due to the limited number of HF function evaluations available

for choosing ϑ, which significantly raises the likelihood of estimating the variance as zero.

Figure 3.4: Estimated variance of L-BF-IS for di”erent ϑ values with 95% confidence interval using
L = 1↗102 HF evaluations (approach one) and M = 1↗106 LF evaluations (approach two) for the
borehole function in Section 3.4.2.1. Approach one exhibits higher estimation uncertainty, whereas
approach two is more robust.

To demonstrate the robustness of L-BF-IS with respect to the choice of ϑ, we compare the

convergence results of L-BF-IS with standard Monte Carlo and MF-IS across three di”erent ϑ values

in Figure 3.5. The MALA step size τ is set to 1↗ 10↗4, with a burn-in value of B = 1 ↗ 103 and

an iteration number T = 1↗ 104. For the convergence analysis, the estimates are computed for HF

sample size N as 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, and 10000 across 1000 trials to determine
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the 95% confidence intervals. In this example, the LF model produces similar results to the HF

model, with 5% relative error in estimating Pf . When ϑ is set to 3.26 (following approach two), the

L-BF-IS successfully reduces the relative RMSE to 0.3%. However, when ϑ is not optimally chosen,

as shown in Figure 3.5d with ϑ = 5.80 or Figure 3.5f with ϑ = 7.34, the improvements are limited

to 5% ↓ 8%.

We also investigate the performance of L-BF-IS when the value of Pf is smaller and the LF

model is less accurate. We choose the new LF and HF functions as hLF(z) = 1100 ↑ fLF(z) and

hHF(z) = 900↑fHF(z), respectively. With a smaller value of failure probability, the region that the

biasing distribution should place more probabilities becomes smaller. With updated LF and HF

functions, the value of ϑ is chosen as 3.71 using approach two, and the corresponding convergence

results are presented in Figure 3.6. The relative RMSE of the LF model is 36%, which is significantly

larger than the previous case. We notice that the relative RMSE of L-BF-IS maintains its quality

and is 1%, which is one order of magnitude better than the standard Monte Carlo method on the

HF function.

3.4.2.2 1000 Dimensional Synthetic Function

To evaluate the performance of L-BF-IS on high-dimensional problems, we examine a 1000-

dimensional problem following [215]. The HF QoI function is defined as

fHF(z) = exp

(
2↑

1000∑

k=1

sin(k)zk
k

)
(3.38)

and the LF QoI function is established based on the truncated Taylor series expansion of fHF,

fLF(z) =
2∑

m=0

(m!)↗1

(
2↑

1000∑

k=1

sin(k)zk
k

)m

. (3.39)

The HF function hHF(z) is set to 20 ↑ fHF(z) within the hypercube [↑1, 1]1000 domain, and we

apply a penalty of 100⇐z⇐2 outside this domain. Similarly, the LF function hLF(z) is defined as

8↑ fLF(z) with the same penalty applied.

For tuning the value of ϑ, we employed two approaches, utilizing L = 1 ↗ 102 HF trial

evaluations (for approach one) and M = 1 ↗ 106 LF evaluations (for both methods) for variance
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Convergence behavior of L-BF-IS (dash) for ϑ values of 3.26 (a-b), 5.80 (c-d), and 7.34
(e-f), compared with standard Monte Carlo (solid), MF-IS (dot), and LF failure probability (dash
dot) using 10 Gaussian mixture clusters for the borehole function in Section 3.4.2.1. The blue dash
dotted lines are LF failure probabilities. The shaded areas represent the 95% confidence interval
from 1, 000 trials.
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(a) (b)

Figure 3.6: Convergence behavior of L-BF-IS (dash) for ϑ = 3.71 compared with standard Monte
Carlo (solid) and LF failure probability (dash dot) with updated LF and HF functions for the
borehole function in Section 3.4.2.1. The shaded areas represent the 95% confidence interval from
1, 000 trials.

estimation. These calculations were repeated ten times to estimate their variability. Unlike the

borehole example in Section 3.4.2.1, both approaches yielded similar variance estimates for this high-

dimensional problem, though approach one exhibited larger variability, as depicted in Figure 3.7.

Figure 3.7: Estimated variance of L-BF-IS across di”erent ϑ values, with uncertainty bars indicating
a 95% confidence interval. Estimates are based on L = 1↗ 102 HF evaluations (approach one) and
M = 1↗ 106 LF evaluations (both approaches).

Given the consistent results in Figure 3.7, we selected an ϑ value of 2.36 for this problem. Due

to the high-dimensionality of this problem, we compared the convergence of L-BF-IS solely with the
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Monte Carlo method. The MALA step size τ is set to 1↗10↗5, with a burn-in number B of 1↗104

and T = 1 ↗ 104 iterations. The L-BF-IS is compared with MC estimator with HF sample sizes

N as 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, and 10000 across 1000 trials to calculate the 95%

confidence intervals. The failure probability produced by the LF model PLF
f has relative RMSE

of around 64%, while the L-BF-IS is able to reduce it to around 20%. However, the convergence

outcomes in Figure 3.8 reveal a bias of 2% in the L-BF-IS estimate, which we attribute to the

Langevin algorithm’s inaccuracies discussed in Section 3.3.7. Despite this bias, L-BF-IS still o”ers

a significant improvement of the MSE for smaller HF sample sizes (N ⇓ 300).

(a) (b)

Figure 3.8: Convergence of L-BF-IS (dash) for selected ϑ = 2.36 value compared with standard
Monte Carlo (solid) and LF failure probability (dash dot) for the 1000D problem in Section 3.4.2.2.

3.4.3 Physics-based Examples

3.4.3.1 Composite Beam

Building on the work of [218, 123, 124, 96, 94], we examine a plane-stress, cantilever beam

featuring a composite cross-section and hollow web, as depicted in Figure 3.9. The focus is on the

maximum displacement of the top cord, with uncertain parameters z1, z2, z3, z4. Here, z1 represents

the intensity of the distributed force applied to the beam, while z2, z3, and z4 denote Young’s

moduli of the cross-section’s three components. These parameters are independent and uniformly
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distributed, with the input parameter dimension being D = 4. The QoI of this problem is the

maximum displacement at the top of the beam. Table 3.2 outlines the range of input parameters

alongside other deterministic parameters.

h1

h2

h3

w

q

r

L

E1

E2

E3
x

y !

"

!"

!#

!$

!%

Figure 3.9: Top: Cantilever beam (left) and the composite cross section (right) adapted from [218].
Bottom: Finite element mesh used to generate high-fidelity solutions.

Table 3.2: The parameter values in the composite cantilever beam model. The center of the holes
are at x = {5, 15, 25, 35, 45}. The parameters z1, z2, z3 and z4 are drawn independently and
uniformly at random from the specified intervals.

H h1 h2 h3 w r z1 z2 z3 z4

50 0.1 0.1 5 1 1.5 [9, 11] [0.9e6, 1.1e6] [0.9e6, 1.1e6] [0.9e4, 1.1e4]

This study employs two models to represent the HF and LF QoI functions. The HF QoI

function fHF is obtained from a finite element analysis using a triangular mesh, while the LF QoI

function fLF is evaluated based on the Euler-Bernoulli beam theory, which simplifies the model by

ignoring shear deformation and circular holes. The Euler-Bernoulli theorem provides a di”erential

equation for vertical displacement u(x), which can be explicitly solved as

EI
d4u(x)

dx4
= ↑z1 =△ u(x) = ↑ z1H

4

24EI

(( x

H

)4
↑ 4

( x

H

)3
+ 6

( x

H

)2
)
, (3.40)

where E and I represent Young’s modulus and the moment of inertia, respectively. We take E = z4,

and the width of the top and bottom sections are w1 = (z2/z4)w and w2 = (z3/z4)w respectively,

while all other dimensions are the same as Figure 3.9 shows. For simulation convenience, we

generate 10, 000 realizations from both HF and LF QoI functions, constructing their surrogates
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f̃HF and f̃LF using polynomial chaos expansion (PCE) with a total degree of 3. The relative

MSE of f̃HF and f̃LF are 1.38 ↗ 10↗2 and 1.26 ↗ 10↗2, respectively. We define the HF function

hHF(z) := f̃HF(z) + 4.04 and LF function hLF(z) := f̃LF(z) + 3.18. These two functions output

negative values if the displacement of the composite beam is less than ↑4.04 (for HF) or ↑3.18 (for

LF). These two functions are defined so that negative values indicate failures.

To determine the optimal ϑ, we replicated the experimental setup used in the previous ex-

amples, employing L = 1 ↗ 102 HF trials and M = 1 ↗ 106 LF trials, with the process repeated

ten times to account for uncertainty. The estimated variances for various ϑ values are illustrated in

Figure 3.10, showing slight di”erences between the two approaches. The values of ϑ that minimize

the variance are 14.90 and 18.57 for approach one and approach two, respectively. Based on these

findings, we proceed with the convergence analysis using the two identified ϑ values.

Figure 3.10: Estimated variance of L-BF-IS for di”erent ϑ values, with uncertainty bars representing
the 95% confidence interval. Using L = 100 HF evaluations (approach one) and M = 1, 000, 000
LF evaluations (both approaches).

In this study, we set the MALA step size τ = 1↗ 10↗3 and chose both the burn-in number B

and iteration number T to be 10, 000. The starting value z(0) is [1↗ 101, 1↗ 106, 1↗ 106, 1↗ 104].

This approach was compared with the MF-IS technique [424], which uses a Gaussian mixture

model with 10 cluster centers. For the convergence analysis, we used HF sample sizes N as

10, 21, 46, 100, 215, 464, 1000, 2154, 4641, and 10000 with experiments repeated 1, 000 times to as-

sess the standard deviation of the results. The outcomes, illustrated in Figure 3.11, highlight a

noteworthy observation regarding the impact of an inaccurately chosen parameter ϑ on the L-BF-IS
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estimates. Specifically, with ϑ = 18.57, the biasing distribution derived from the MALA significantly

reduces the RMSE at the early stage, whereas the convergence with ϑ = 14.90 demonstrated rela-

tively inferior performance. Given that ϑ = 14.90 was obtained using approach one and ϑ = 18.57

using approach two, our findings suggest that the latter provides a more accurate determination of

the optimal ϑ value. Note that the L HF evaluations for approach one is not included in this figure.

A potential reason for the observed bias of ϑ = 14.90 is that varying ϑ values alter the smooth-

ness conditions of the resultant biasing densities, which in turn negatively a”ects the convergence

performance of the Langevin algorithm.

(a) (b)

(c) (d)

Figure 3.11: Convergence behavior of L-BF-IS (dash) for ϑ values of 14.90 (a-b) and 18.57 (c-d),
compared with standard Monte Carlo (solid) and MF-IS (dot) using 10 Gaussian mixture clusters
for the beam problem in Section 3.4.3.1. The shaded areas represent the 95% confidence interval
from 1, 000 trials.
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3.4.3.2 Steady-state Heat Equation with Random Inputs

In this section, we discuss the performance of a 2D steady-state stochastic heat equation,

with uncertain thermal coe!cient K. The steady-state heat equation can be described as

↑ 0

0x

(
K(x, z)

0u(x, z)

0x

)
= 1.0, x → (0, 1)2

u(x, z) = 0, x1 → {0, 1} or x2 → {0, 1}.

(3.41)

The thermal coe!cient K(x, z) is defined as a stochastic process given by [440],

K(x, z) = K̄ + exp

( ⇒
2⇒
D↙

D↑∑

i=1

zwi cos
(
za1i x1 + za2i x2 + zbi

))
, (3.42)

where K̄ = 3, zwi , z
a1
i , za2i

iid↓ N (0, 1) and zbi
iid↓ U [0, 24]. The corresponding covariance ker-

nel function of the Gaussian process for the exponent part of Equation (3.42) is k(x1, x2) =

exp
(
↑(x1 ↑ x2)

2
)
. The dimension of the problem is 4D↙ = D = 400. The QoI is the solution

on the domain (0, 1)2 with a grid size of #x1 = #x2 = 1.67↗ 10↗2 in each direction, then leading

to a solution in R
61↓61. Therefore the QoI functions are defined as fLF, fHF : R400 ↘ R

61↓61. The

finite di”erence method is used to compute the HF QoI and a pre-trained Physics-informed Neural

Operator (PINO) [314] as a surrogate LF QoI function. The core idea of PINO is to construct a

deep-learning-based surrogate that learns the operator G, such that G(K)(x, z) ≃ u(x, z). We use

a PINO model pre-trained following [314]; however, since the distribution of K in [314] di”ers from

our K defined in Equation (3.42), this setting can be treated as a transfer learning problem. In this

case, the training data for PINO are not counted as additional HF evaluations. The deep-learning

structure of the PINO provides the Jacobian 0G(K)(x, z)/0z given x is defined over a fixed grid. In

Figure 3.13a, three samples of K(x, z) and the corresponding realizations of u(x, z) are presented.

We assume the system fails if the maximum value of u(x, z) is larger than some thresholds.

The LF and HF functions are defined as hLF(z) = 0.019 ↑ max(fLF) and hHF(z) = 0.022 ↑

max(fHF), respectively. We choose M = 1 ↗ 106 and L = 1 ↗ 102 for selecting ϑ, with the result

presented in Figure 3.12. The optimal value of ϑ, as selected by the approach two, is 1786.0.

The Langevin algorithm is employed with step size τ = 1↗10↗4 and burn-in number B = 1↗

104. We provide three examples of the thermal coe!cients that are sampled from the biasing density
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Figure 3.12: The estimated variance of L-BF-IS with 95% confidence intervals across varying values
of ϑ is illustrated in the left figure using approach one and in the right figure using approach two. It
is worth noting that the left figure exhibits a minimum point; however, the uncertainty is su!ciently
large to obscure its depiction.
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q(z) with the associated LF and HF QoIs presented in Figure 3.13b. Comparing Figure 3.13a and

Figure 3.13b, we note that the results generated from the Langevin algorithm are more likely to

produce failure results defined by functions h(·) and with smaller variance relative to the original

reference density p(z). These examples explain why importance sampling using the Langevin

algorithm can help reduce the variance of the estimates and eventually the MSE.

(a) (b)

Figure 3.13: The solutions of the steady-state heat equation in Equation (3.41) given three dif-
ferent realizations of the thermal coe!cient K(x, z) on a 61 ↗ 61 grid over (0, 1)2 sampled from
Equation (3.42) (a) or q(z) (b). For both figures, the left column is the visualization of the thermal
coe!cient, the middle column is the LF QoI solution provided by a pre-trained PINO, and the
right column is the HF QoI solution computed using the finite di”erence method.

The convergence of the estimator is depicted in Figure 3.14. We restrict the performance

comparison to cases where the number of HF evaluations is small (⇓ 63). Notably, a non-trivial bias

of approximately 2% is observed. Despite demonstrating that the L-BF-IS estimator is unbiased

in Section 3.3.2, the samples produced by the Langevin algorithm, as described in Section 3.3.5,

cannot be guaranteed to exactly represent q(z), thereby generating numerical bias in the obser-

vations. Given the problem’s high dimensionality and suboptimal LF model, the L-BF-IS is able

to reduce the relative RMSE from 85% to 65% using less than N = 100 HF samples. Further-
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(a) (b)

Figure 3.14: Convergence of the L-BF-IS (dashed) against standard Monte Carlo (solid) and LF
failure probability (dashed dot) with 95% confidence bound computed from 1, 000 trials for the
steady-state heat equation problem in Section 3.4.3.2.
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more, the variance observed in the results generated by the L-BF-IS is substantially lower than

that of standard Monte Carlo methods. This scenario underscores a case for employing pre-trained

deep-learning-based operator learning strategies as a LF model.

3.5 Conclusion

In this study, we present an importance sampling estimator, referred to as the Langevin bi-

fidelity importance sampling (L-BF-IS). This estimator operates under the premise that in many

practical applications, a considerably cheaper, di”erentiable lower-fidelity model is available. L-BF-

IS employs the Metropolis-adjusted Langevin algorithm for sampling from a biasing distribution

informed from the low-fidelity model, aiming to estimate failure probabilities with limited high-

fidelity evaluations. The algorithm demonstrates superior performance in scenarios characterized

by high input dimensions and multimodal failure regions. Two methodologies are introduced to

tune a key parameter of the biasing distribution. Our empirical tests include a 1D manufactured

bimodal function and two experimental setups using synthetic functions, with one involving 1000

random inputs. Additional experiments are conducted estimating failure probabilities of physics-

based problems with failure probabilities of magnitude 1-5%. These experiments illustrate the

e!ciency of the L-BF-IS estimator relative to standard Monte Carlo simulation and a di”erent

importance sampling approach.

L-BF-IS demonstrates significant advantages, and our findings reveal opportunities to en-

hance the proposed estimator further. One promising direction is incorporating prior knowledge

when selecting the Langevin algorithm’s starting point and step size. Additionally, future research

could explore treating the low-fidelity surrogate as dynamic, updating it at each iteration. This

approach would extend the methodology into adaptive importance sampling, making it applicable

when a fixed low-fidelity model is unavailable. These directions not only have the potential to refine

the e”ectiveness of existing models but also pave the way for advancing state-of-the-art importance

sampling techniques.
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Chapter 4

Bi-fidelity Stochastic Subspace Descent: A Surrogated Line Search Approach

4.1 Abstract

E!cient optimization is a fundamental problem in many scientific and engineering appli-

cations, particularly when dealing with expensive-to-evaluate objective functions. In this work,

we propose the Bi-fidelity Stochastic Subspace Descent (BF-SSD) algorithm, a novel zeroth-order

optimization approach that leverages a bi-fidelity framework to significantly reduce computational

costs. The method constructs a surrogate model by combining high-fidelity (HF) and low-fidelity

(LF) evaluations, enabling e!cient step size selection via backtracking line search, for which we

can prove convergence guarantees for some sets of assumptions. We evaluate BF-SSD on four dis-

tinct problems: a synthetic optimization benchmark and three machine learning tasks, including

dual-form kernel ridge regression, black-box adversarial attacks, and transformer-based black-box

language model fine-tuning. The results demonstrate that BF-SSD consistently outperforms com-

peting methods and achieves superior performance with fewer HF function evaluations. This study

underscores the potential of bi-fidelity frameworks for addressing large-scale, high-dimensional op-

timization problems in a computationally e!cient manner, making BF-SSD a promising tool for

real-world applications.
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4.2 Introduction

In this work, we are interested in the unconstrained optimization problem

x→ → argmin
x

f(x), (4.1)

where the objective function f : R
D ↘ R is L-smooth but ∀f is di!cult to obtain and the

dimension is large enough (i.e., D ↭ 100) that traditional derivative free methods struggle. The

focus of this work is on selecting an appropriate step size (learning rate) ⇁k for the iterative descent

scheme

xk+1 = xk ↑ ⇁kvk, (4.2)

where vk → R
D is an estimate of ∀f(xk).

Selecting an appropriate step size can significantly improve the convergence performance of

the optimization process. This is illustrated in Figure 4.1, where an example function is optimized

using di”erent methods with and without a step size tuning scheme. However, most machine

learning problems either use a fixed step size throughout the entire optimization process or employ

an adaptive step size scheduling strategy [159]. Both of these methods, although convenient to

implement, ignore the intrinsic characteristics of the objective function. In contrast, line search

methods, including exact line search and backtracking, produce better step sizes but at the cost

of additional function evaluations. This makes them impractical when the function evaluation

budget is limited, as is often the case in black-box machine learning problems. To address this,

we propose a novel bi-fidelity approach to tune the step size by considering the objective function

from a multi-fidelity perspective. The concept of multi-fidelity refers to two (or more) levels: the

high-fidelity (HF) objective, which provides accurate but expensive function evaluations, and one

or more low-fidelity (LF) objectives which are cheap but inaccurate approximations to the true HF

objective. We emphasize that this multi-fidelity structure is more prevalent than often recognized

in machine learning applications, making our proposed method broadly applicable, as demonstrated

in the experimental section.
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Figure 4.1: Gradient Descent (GD), Coordinate Descent (CD), and Stochastic Subspace Descent
(SSD), along with their respective backtracking line search (LS) variants for step size tuning, as
well as the proposed Bi-fidelity SSD (BF-SSD), are evaluated on the “worst function in the world”
example, detailed in Section 4.5.1.

For simplicity, we focus on the bi-fidelity case, where only two fidelity levels are considered.

The high-fidelity objective, fHF, is treated as the ground-truth objective function, so we treat fHF

and the f from Eq. (4.1) synonymously. We construct simple bi-fidelity surrogates after obtaining

the gradient estimation vk. Specifically, given the LF objective fLF : RD ↘ R, the current position

xk, vk, and a budget nk for HF evaluations at this step, the local 1D surrogate is constructed as

↼̃k(⇁;nk) = 5fLF(xk ↑ ⇁vk) + ↽̃k(⇁;nk), ⇁ → [0,⇁max], (4.3)

where ⇁max is the initial step size, in order to approximate the HF counterpart ↼k(⇁) := fHF(xk ↑

⇁vk). Here, 5 is a scalar, and ↽̃k(·;nk) : R ↘ R is a piecewise linear function constructed using

nk HF evaluations. Once the surrogate ↼̃k : R ↘ R is constructed, the step size is selected using

backtracking line search by (approximately) solving

⇁k = argmin
φ↑[0,φmax]

↼̃k(⇁;nk), (4.4)

thereby providing a reasonable estimation for the step size ⇁k.

Assuming the scalar 5 is properly chosen so that the di”erence

d(x) := fHF(x)↑ 5fLF(x) (4.5)
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is Lipschitz continuous, we show that the convergence of this descent method is guaranteed, and

Kϑ = O(L/⇀) iterations are needed to ensure that mink⇐∀fHF(xk)⇐2 is ⇀-small. Moreover, when the

HF and LF functions are well-aligned, i.e., the Lipschitz constant W of d(x) is small, the required

number of HF function evaluations Nϑ = O(WL2/⇀+DL/⇀) is not large.

For implementation, we focus on high-dimensional zeroth-order optimization problems, using

the Stochastic Subspace Descent (SSD) method [285] combined with the proposed step size tuning

strategy, and call the resulting method Bi-fidelity Stochastic Subspace Descent (BF-SSD). BF-SSD

demonstrates strong empirical performance across various tasks and holds great potential for future

applications.

4.2.1 Related Work

Line Search for Optimization Line search is a widely used method for determining step

sizes in optimization algorithms. Line searches can be either exact, meaning that ⇁ is chosen to

exactly or almost exactly minimize fHF(xk↑⇁vk), or inexact. Exact line searches are computation-

ally expensive, so other than in special cases, they are rarely used in practice. Common inexact line

search methods include backtracking line search [395], the Polyak step size [438], spectral methods

such as [35], and learning rate scheduling [159]. Among these, backtracking line search is partic-

ularly popular due to its simplicity and explainable design, often employing stopping criteria like

the Armijo and Wolfe conditions [395]. However, backtracking line search increases the high com-

putational costs due to the numerous function evaluations required at each iteration to determine

the step size. One way to mitigate this issue is by constructing surrogate models to guide step size

selection. For example, Yue et al. [579] and Grundvig et al. [200] used reduced-order models to

approximate the objective function during line search, while Mahsereci and Hennig [340] employed

a probabilistic Gaussian model for step size selection. Paquette and Scheinberg [418] provided a

theoretical analysis of line search in stochastic optimization. However, these approaches do not

account for the multi-fidelity structure of objective functions, which is the focus of this work.

Derivative-Free and Zeroth-Order Optimization Derivative-free optimization refers
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to a family of optimization techniques that rely solely on function evaluations, without requiring

gradient information, to find the optimum of an objective function. This category includes methods

such as Bayesian optimization [467], direct search [277], trust region methods [112], genetic algo-

rithms [491], and zeroth-order optimization [326]. Among these, zeroth-order methods stand out

for their scalability to high-dimensional problems and reliable convergence properties. Following

[326], we refer to zeroth-order algorithms as the type of algorithms that approximate gradients

using finite di”erence techniques and subsequently apply strategies similar to first-order methods.

These methods have shown great promise in various machine learning applications where objective

functions are smooth but lack accessible derivatives. Recent advances include their use in solving

black-box adversarial attacks [89, 88] and fine-tuning large models with minimal memory overhead

in models such as MeZO, S-MeZO and SubZO among others [501, 502, 350, 329, 577, 584].

Randomized Zeroth-Order Optimization for High-Dimensional Problems In high-

dimensional zeroth-order optimization problems, estimating gradients via finite di”erences can be

computationally prohibitive. To address this, randomized algorithms have been proposed to re-

duce the cost of gradient estimation. The Simultaneous Perturbation Stochastic Approximation

(SPSA) [489, 490] uses Rademacher random vectors for gradient estimation, while Gaussian smooth-

ing methods [386] employ Gaussian random vectors. These algorithms typically provide gradient

estimators projected onto one-dimensional subspaces. However, for certain problems it is worth the

increased functional calls to get an improved estimate of the gradient. Stochastic Subspace Descent

(SSD) [285] explores this idea by projecting the gradient onto a random subspace of dimension ϑ for

any 1 ⇓ ϑ ⇓ D, providing a more generalized framework for randomized zeroth-order optimization.

Multi-Fidelity Model and Optimization Multi-fidelity modeling is a well-established

approach in engineering and scientific computing for reducing computational costs. It has been

widely applied across various domains, including aerodynamic design [583], structural optimiza-

tion [389, 126], data sampling [96], and uncertainty quantification [427, 94]. As a strategy to

tackle expensive problems while minimizing computational burden, multi-fidelity modeling has

been employed in hyperparameter tuning [559], accelerating Bayesian optimization [256, 509], and
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reinforcement learning [116] within machine learning. However, despite its relevance in settings

where function evaluations are costly, its application in zeroth-order optimization remains largely

unexplored [603] and has not been applied to any randomized zeroth-order method.

4.2.2 Contributions

In this work, we propose a multi-fidelity approach for constructing surrogate models in line

search. Unlike previous works that use static surrogate (reduced-order) models which do not change

from iteration-to-iterate [579, 200] or which incorporate inexactness [81, 526, 418, 251], our method

constructs a temporary surrogate after the gradient is estimated. This allows us to focus on

building a one-dimensional surrogate which is a much easier task than building an accurate

D-dimensional surrogate. By leveraging a low-fidelity (LF) model, we construct a simple linear

surrogate using a small number of high-fidelity (HF) evaluations, nk. This surrogate facilitates the

identification of an optimal step size under certain conditions between the LF and HF models.

Specifically, this work makes the following contributions:

(1) We develop the general BF-SSD algorithm which is a stochastic zeroth-order optimization

method with a bi-fidelity line search that allows the user to choose the approximation

quality of the gradient by tuning ϑ (reducing to deterministic gradient descent when ϑ = D).

(2) When the error of the gradient estimate is negligible (e.g., ϑ is su!ciently large), we give

specific conditions on the relation between the HF and LF functions that will guarantee

convergence to a stationary point (or a global minimizer when f is convex).

(3) We highlight that many machine learning problems naturally have a corresponding sub-

problem (low-fidelity model) that can be used to construct a surrogate model, significantly

improving optimization e!ciency. Despite its potential, this strategy has not received

su!cient attention in prior work.

(4) We systematically evaluate the proposed optimization method, BF-SSD, against other
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zeroth-order optimization methods on one synthetic function and the following three real-

world applications:

• Kernel ridge regression with a Nyström-based low-fidelity approximation;

• Black-box image-based adversarial attacks with a low-fidelity model trained via knowl-

edge distillation;

• Soft prompting of language models using a smaller training set to construct the bi-

fidelity surrogate.

The rest of the paper is organized as follows. Section 4.3 introduces the proposed bi-fidelity

line search method and provides convergence results. Section 4.4 details the implementation of

the proposed method with SSD. Section 4.5 presents the experimental results, and Section 4.6

concludes the paper.

4.3 Line Search on Bi-fidelity Surrogate

In this section we discuss the proposed algorithm and the main theoretical results delivered

in this work. Unless specified, ⇐·⇐ denotes the Euclidean norm. In the purpose of simplicity and

focusing on the main contribution, we assume the gradient ∀fHF(xk) can be accurately estimated

by vk in proofs.

4.3.1 Algorithm

First we define the algorithm, which consists of three step for each iteration k:

(1) Given the current position xk → R
D, gradient vk → R

D, and initial step size ⇁max → R,

sample nk equi-spaced HF evaluations in [0,⇁max] and build the surrogate ↼̃k : R ↘ R

following Equation (4.3) (see Algo. 6 for details);

(2) Given Armijo condition parameters c → (0, 1), ϱ ⇓ 1/2, and initial step size ⇁max ⇔
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c/(L+ cL), conduct bi-fidelity adjusted Armijo backtracking so that

⇁k = max
m↑N

cm⇁max

s.t. ↼̃k(c
m⇁max;nk) ⇓ fHF(xk)↑ ϱcm⇁max⇐vk⇐2.

(4.6)

See Algo. 7 for details.

(3) Evaluating fHF at the new point and continue the iterations.

4.3.2 Convergence Results

For convergence, we make the following assumptions:

Assumption 4.3.1. The objective function fHF : RD ↘ R attains its minimum f→ and ∀fHF is

L-Lipschitz continuous, i.e., there exists L → R such that

⇐∀fHF(x)↑∀fHF(y)⇐ ⇓ L⇐x↑ y⇐, ¬x,y → R
D. (4.7)

Note that Assumption 4.3.1 is standard for analysis of zeroth and first-order methods. The

constant L must be known to the algorithm since it is used to set ⇁max.

Assumption 4.3.2. The di”erence between fHF and fLF is assumed to be smooth with Lipschitz

constant; specifically, we assume there exists W, 5 → R such that

⇐
(
fHF(x)↑ 5fLF(x)

)
↑
(
fHF(y)↑ 5fLF(y)

)
⇐ ⇓ W⇐x↑ y⇐, ¬x,y → R

D. (4.8)

Clearly there needs to be some assumption made about the relationship of fLF to fHF.

Our particular assumption allows for fLF to be uncalibrated, meaning we do not even require

fLF(x) ≃ fHF(x) since this can be corrected for by the surrogate.

Assumption 4.3.3. For each iteration k, the surrogate must be accurate (i.e., satisfies Eq. (4.13));

in particular, a su!cient condition is that the the number of HF evaluations for building the

surrogate, nk, satisfies

nk ⇔ WL(1 + c)⇁max

cϱ⇐vk⇐2
, i.e., nk = %

(
W (⇁maxL+ 1)

⇐vk⇐2
)
. (4.9)
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Using vk = ∀f(xk) and with the above assumptions satisfied and su!ciently large initial

step size ⇁max ⇔ c/(cL+ L), the designed bi-fidelity line search leads to the following result:

Theorem 4.3.4. Given an initial point x0, then the algorithm generates a sequence (xk) such that

min
k↑{0,...,K}

⇐∀fHF(xk)⇐2 ⇓
2L(1 + c)(fHF(x0)↑ f→)

(K + 1)cϱ
. (4.10)

That is to say, Kϑ = O(L/⇀) iterations are required to obtain mink′Kε
⇐∀fHF(xk)⇐2 ⇓ ⇀.

Remark 4.3.5. Theorem 4.3.4 holds when vk = ∀f(xk). The error in approximating ∀f(xk)

using finite di”erence methods with O(D) samples is typically negligible in comparison to the

optimization error (see [286] for a precise quantitative statement for the case of SSD). Hence

assuming we accurately estimate vk = ∀f(xk) with O(D) samples per step, then a bound for the

total number of HF evaluations for ⇀-convergence is

Nϑ =

Kε∑

k=1

(nk +O(D)) = O

(
WL2

⇀
+

DL

⇀

)
. (4.11)

The result in Equation (4.11) suggests that the number of function evaluation for ⇀-convergence

for the proposed algorithm can be significantly reduced by a small value of W .

Remark 4.3.6. When using zeroth-order gradient descent making the same assumption that we

accurately estimate vk = ∀f(xk) with O(D) samples per step, a bound for the total number of

HF evaluations for ⇀-convergence is

Nϑ =

Kε∑

k=1

(logc↔1(⇁maxL) +O(D)) = O

(
L log(L)

⇀
+

DL

⇀

)
. (4.12)

The proof of Remark 4.3.6 follows the convergence proof of gradient descent using backtrack-

ing line search. Comparing the results in Equation (4.11) and Equation (4.12), we notice that

the advantage of using our bi-fidelity surrogate depends on the value of W . From a theoretical

bound perspective, if W is su!ciently small so that WL2 ⇓ L logL, then the worst-case bound of

our method is better than that of zeroth-order gradient descent. However, we emphasize that the

convergence analysis is loose, due to the global nature of the assumptions and di!culty in precisely
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describing the quality of the LF function. Hence we mostly view the convergence analysis simply

as a reassurance that the method does converge, and rely on numerical experiments to elucidate

when the method improves over baseline methods.

4.3.3 Proof of Theorem 4.3.4

Before the proof, we first introduce the following lemma:

Lemma 4.3.7. With Assumption 4.3.2 and Assumption 4.3.3 satisfied, for any ⇁ → [0,⇁max], the

1D surrogate ↼̃k(⇁) satisfies the following bound,

|↼̃k(⇁;nk)↑ ↼(⇁)| ⇓ ⇐vk⇐2
2

min


c

(1 + c)2L
,

cϱ

(1 + c)L
,ϱ⇁max


=

cϱ⇐vk⇐2
2(1 + c)L

. (4.13)

The proof of Lemma 4.3.7 is in D.1. Following this lemma, the proof of Theorem 4.3.4 is as

follows.

Proof. Following Lemma 4.3.7, we have

|fHF(xk+1)↑ ↼̃k(⇁k;nk)| = |↼(⇁k)↑ ↼̃k(⇁k;nk)| ⇓
⇐vk⇐2
2

min


c

(1 + c)2L
,

cϱ

(1 + c)L
,ϱ⇁max



(4.14)

and, using the standard descent lemma for L-smooth functions (guaranteed by Assumption 4.3.1),

fHF(xk+1) ⇓ fHF(xk)↑ ⇁k⇐vk⇐2 +
⇁2
kL

2
⇐vk⇐2, (4.15)

therefore using the triangle inequality, the surrogate ↼̃k is bounded as

↼̃k(⇁k;nk) ⇓ fHF(xk+1) + |fHF(xk+1)↑ ↼̃k(⇁k;nk)|

⇓ fHF(xk) +

(
↑⇁k +

⇁2
kL

2
+

c

2(1 + c)2L

)
⇐vk⇐2.

When the step size satisfies ⇁k → [c/(L + cL), 1/(L + cL)], the quadratic inequality ↑⇁k +

⇁2
kL/2+c/(2(1+c)2L) ⇓ ↑⇁k/2 holds, along with the fact that ϱ ⇓ 1/2, which implies the following
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bi-fidelity-adjusted Armijo condition

↼̃k (⇁k;nk) ⇓ fHF(xk) +

(
↑⇁k +

⇁2
kL

2
+

c

2(1 + c)2L

)
⇐vk⇐2

⇓ fHF(xk)↑
⇁k

2
⇐vk⇐2

⇓ fHF(xk)↑ ϱ⇁k⇐vk⇐2.

(4.16)

The last line in Equation (4.16) satisfies the bi-fidelity-adjusted Armijo condition in Equation (4.6).

Therefore, the bi-fidelity backtracking either terminates immediately with ⇁k = ⇁max or else ⇁k ⇔

c/(L+ cL), and implies

↼̃k (⇁k;nk) ⇓ fHF(xk)↑ ϱ⇐vk⇐2min


c

(1 + c)L
,⇁max


= fHF(xk)↑

ϱc

(1 + c)L
⇐vk⇐2, (4.17)

where the last equality comes from ⇁max ⇔ c/((1 + c)L). Since |fHF(xk+1) ↑ ↼̃k (⇁k;nk)| ⇓

ϱc⇐vk⇐2/(2(1 + c)L) from Lemma 4.3.7, combined with Equation (4.17), we have

fHF(xk+1) ⇓ ↼̃k (⇁k;nk) +

∣∣∣∣f
HF(xk+1)↑ ↼̃k (⇁k;nk)

∣∣∣∣

⇓ ↼̃k (⇁k;nk) +
ϱc⇐vk⇐2
2(1 + c)L

⇓ fHF(xk)↑
ϱc⇐vk⇐2
2(1 + c)L

.

(4.18)

Equation (4.18) leads to the telescope series

ϱc

2(1 + c)L

K∑

k=0

⇐vk⇐2 ⇓
K∑

k=0

(
fHF(xk)↑ fHF(xk+1)

)

= fHF(x0)↑ fHF(xK+1) ⇓ fHF(x0)↑ f→.

(4.19)

Hence,

(K + 1) min
k↑{0,...,K}

⇐vk⇐2 ⇓
(

ϱc

2(1 + c)L

)↗1

(fHF(x0)↑ f→)

=
2(1 + c)L

ϱc

(
fHF(x0)↑ f→) .

(4.20)

To guarantee mink′Kε
⇐∀fHF(xk)⇐2 ⇓ ⇀, the value of Kϑ should be

Kϑ ⇔
2(fHF(x0)↑ f→)(1 + c)L

ϱc⇀
= O

(
L

⇀

)
. (4.21)
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Remark 4.3.8. Even if fHF is non-convex, Eq. (4.18) implies that the method is a descent method,

meaning fHF(xk+1) ⇓ fHF(xk), hence after K iterations it is natural to use xK as the output.

This descent property is not enjoyed by other methods like subgradient descent, stochastic gradient

descent or Polyak step size gradient descent.

Remark 4.3.9. If fHF is convex, then the theorem implies convergence to a global minimizer.

Or, if fHF satisfies the Polyak-Lojasiewicz inequality with parameter µ (which includes some non-

convex functions, as well as all strongly convex functions), then the theorem in conjunction with

the descent property implies fHF(xK)↑ f→ ⇓ L(1+c)
(K+1)µcϱ (f

HF(x0)↑ f→), cf. [259].

4.3.4 Examples of Possible Low-Fidelity Functions

In practice, the low-fidelity function fLF can be constructed in various ways. The most straight-

forward approach is when a multi-fidelity structure is intrinsically present in the problem. For

example, in [94, Section 5.1], the low-fidelity model is the exact solution to a simplified physical

model; in particular, the LF objective ignores the holes in a cantilevered beam and thus can use the

closed-form Euler-Bernoulli equation whereas the HF objective relies on an expensive finite-element

simulation. However, in most machine learning problems, the low-fidelity model is not explicitly

given, making its construction necessary. In this section, we discuss some possible cases for building

the LF model and their resulting upper bound of W .

Affine Bi-Fidelity Relationship The most ideal case occurs when the HF model is

an a!ne transformation of the LF model, i.e., fHF(x) = 5fLF(x) + c. In this case, the Lipschitz

constantW , as defined in Assumption 4.3.2, is zero, and the number of function evaluations required

for convergence is proportional to the number of iterations, as nk = 1 is su!cient (besides xk).

Quadratic Objective with Low-Rank LF Approximation Consider the case where

the objective is quadratic with a positive semi-definite matrix A → R
D↓D, and denote its rank-r

approximation Ã → R
D↓D, assuming that rank(A) ⇑ rank(Ã). The HF objective is fHF(x) =

1
2∝x,Ax′+ ∝x,a′, and the LF objective is fLF(x) = 1

2∝x, Ãx′+ ∝x,a′. Assuming the input space
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X is bounded by a unit ball with radius R, the Lipschitz constant W is upper bounded as

W ⇓ sup
x

⇐∀fHF(x)↑∀fLF(x)⇐ = sup
x

⇐A↑ Ã⇐ · ⇐x⇐ ⇓ 1r+1R, (4.22)

where 1r+1 is the (r + 1)-th eigenvalue of A. The empirical problems in Section 4.5.1 and Sec-

tion 4.5.2.1 fall into this category.

Full-Batch HF and Mini-Batch LF Objectives A common scenario in machine learn-

ing involves an objective function consisting of a large number of sub-functions evaluating on

individual data samples. In this case, a natural choice for the LF objective is the summation over

a smaller subset of the data. Specifically, assuming that the HF objective sums over datapoints

i = 1, . . . , n and (without loss of generality, i.e., by relabeling) that the LF objective sums over

datapoints i = 1, . . . , r for r ↖ n, then the HF objective is fHF(x) = 1
n

∑n
i=1 fi(x), and the LF

objective is fLF(x) = 1
r

∑r
i=1 fi(x), so the Lipschitz constant W is upper bounded as

W ⇓ sup
x

∥∥∥∥∥
1

n

n∑

i=1

∀fi(x)↑
1

r

r∑

i=1

∀fi(x)

∥∥∥∥∥ ⇓ 2(n↑ r)

n
max
1′i′n

⇐∀fi(x)⇐ (4.23)

using the triangle inequality. The terms ⇐∀fi(x)⇐ are bounded if each fi is Lipschitz or equivalently

if fi is continuous and x is constrained to a compact set. An empirical problem with this setting

is presented in Section 4.5.2.3. Our analysis is deterministic, so W is a worst-case bound, but if r

is large and the LF subsamples are chosen uniformly at random, it would be reasonable to expect

that due to the law of large numbers, the average case behavior is significantly better than our

worst-case bounds predict.

Generic Case Finally, we consider the most general case, without assuming specific rela-

tionships between the high-fidelity and low-fidelity objectives. By assuming the Lipschitz continuity

of both the high-fidelity and low-fidelity objectives, W can be bounded as

W = ⇐fHF(x)↑ 5fLF(x)⇐L ⇓ ⇐fHF(x)⇐L + |5| · ⇐fLF(x)⇐L, (4.24)

for any choice of 5 where ⇐·⇐L denotes the Lipschitz constant. The proportionality 5 should not

be chosen to minimize this bound (since that leads to 5 = 0) but can instead be chosen by any
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heuristic, such as the one used in control variate techniques where 5 = ↑ĉ/v̂ where ĉ is an estimate

of the covariance between fHF and fLF, and v̂ is an estimate of the variance of fHF.

4.4 Bi-Fidelity Line Search with Stochastic Subspace Descent

In applications, we focus on zeroth order optimization, utilizing Stochastic Subspace Descent

(SSD) as the implementation method. Following the algorithmic steps introduced in Section 4.3.1,

combined with SSD, the entire process is divided into three key components: gradient estimation

to construct vk, bi-fidelity surrogate construction, and Armijo backtracking on the surrogate.

Gradient Estimation SSD employs a random projection matrix Pk → R
D↓ω with ϑ ↖

D. The random matrix Pk satisfies the properties E[PkP
↔
k ] = ID and P↔

k Pk = (D/ϑ)Iω. A

common choice for Pk is based on the Haar measure, where Pk is derived from the Gram-Schmidt

orthogonalization of a random Gaussian matrix. The gradient estimation is given by vk = Pkgk,

where gk is the finite di”erence estimator of the gradient:

gk :=


fHF(xk +#p1)↑ fHF(xk)

#
,
fHF(xk +#p2)↑ fHF(xk)

#
, . . . ,

fHF(xk +#pω)↑ fHF(xk)

#

↔
,

(4.25)

where# → R is a small step size and pi is the i-th column of Pk. Estimating vk using Equation (4.25)

requires ϑ function evaluations; a more accurate O(#2) approximation is also possible at the cost

of 2ϑ function evaluations if more than 8 digits of precision are needed. Up to the finite-di”erence

error, gk ≃ P↔
k ∀fHF(xk) so that vk ≃ PkP

↔
k ∀fHF(xk), hence E[vk] ≃ ∀fHF(xk). It is also

possible to construct the same estimator without reference to the Haar measure by rewriting vk as

vk = projcol(Qk)
(∀fHF(xk)) where Qk → R

D↓ω is any random matrix with independent columns

from an isotropic probability distribution (such as the standard normal).

Surrogate Construction Given the estimated gradient vk and the current position xk,

the goal of surrogate construction is to build ↼, denoted as:

↼̃k(⇁) := 5fLF(xk + ⇁vk) + ↽̃k(⇁). (4.26)
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The analysis in Section 4.3 assumes that 5 is known and fixed as a constant. However, in practice, 5

is tuned for better performance. In our application, we set 5k = fHF(xk)/f
LF(xk). We model ↽̃kas a

piecewise linear function using nk additional HF evaluations at equispaced points {0, ⇁̃1, . . . , ⇁̃nk
=

⇁max}. Specifically,

↽̃k(⇁) =
h↑ ⇁

h
↽(⇁̃j↗1) +

⇁

h
↽(⇁̃j), ⇁ → [⇁̃j↗1, ⇁̃j ], j = 1, . . . , nk, (4.27)

where h = ⇁max/nk. This piecewise linear interpolation is a simple yet e”ective approach for

interpolating ↼ in 1D space and satisfies the bounds of Lemma 4.3.7 given su!cient nk. The

detailed algorithm is presented in Algorithm 6.

Figure 4.2 illustrates the bi-fidelity backtracking line search process using the example prob-

lem in Section 4.5.2.1. The blue curve represents the bi-fidelity surrogate model (↼̃k) approximating

the HF function ↼ (red curve). Rather than performing the line search directly on the computa-

tionally expensive HF function (indicated by potential evaluation points as red dots), the method

utilizes the surrogate ↼̃k to estimate an optimal step size. While this surrogate is an approxima-

tion and may require more surrogate function evaluations during the search itself, it substantially

reduces computational cost. In this example, the expense is decreased from 4 HF function calls

(for a direct search) to only 1 HF call (to build the surrogate) combined with 6 LF function calls,

yielding significant overall savings.

Algorithm 6: Surrogate Construction

Input: fLF, fHF,xk,vk, nk → N,⇁max > 0
Output: 1D surrogate ↼̃k

1: Define {(⇁̃j ,↼(⇁̃j))}
nk

j=0 as equispaced points between 0 and ⇁max (including endpoints), and

compute HF evaluations ↼(⇁̃j) ⊥ fHF(xk + ⇁̃jvk);
2: 5k ⊥ fHF(xk)/f

LF(xk);
3: ↽(⇁̃j) ⊥ ↼(⇁̃j)↑ 5kf

LF(xk + ⇁̃jvk), j = 1, . . . , nk;
4: Construct piecewise linear function ↽̃k using Equation (4.27);
5: Return ↼̃k using Equation (4.26).

Armijo Backtracking on the Surrogate Based on the criteria in Equation (4.6), we

set the maximum number of iterations for testing the Armijo condition as M → N. The detailed

procedure is presented in Algorithm 7.
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Figure 4.2: Illustration of the bi-fidelity backtracking line search process using the example problem
in Section 4.5.2.1. The blue curve represents the bi-fidelity surrogate model (↼̃k) approximating
the HF function ↼ (red curve). It significantly lowers computational cost (e.g., reducing 4 HF calls
to 1 HF + 6 LF calls).

Convergence Analysis of SSD with Line Search The convergence results of SSD

with line search (on the exact surrogate, ↼(⇁)) are presented in D.2, under three separate scenarios:

strongly convex, convex, and non-convex. The proof shows that in the SSD with line search setting,

the value of ϱ can be set as ϑ/2D.

The proposed bi-fidelity line search algorithm, combined with SSD, will be referred to as

Bi-Fidelity SSD (BF-SSD), and is summarized in Algorithm 8. Our theory covers either ϑ = D

with bi-fidelity linesearch (Thm. 4.3.4) or 1 ⇓ ϑ ⇓ D with HF linesearch (D.2); combining the two

analyses is fairly complicated and messy so we do not pursue it.

For practical considerations, as the parameters in Assumption 4.3.3 are often unknown, we set

5k as described above, and choose nk = 1 out of simplicity and because it has excellent experimental

performance for all of the HF/LF pairs we have examined.

4.5 Empirical Experiments

In this section, we evaluate the proposed BF-SSD Algorithm 8 on four distinct problems:

one synthetic optimization problem discussed in Section 4.5.1 and three machine learning-related
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Algorithm 7: BF-Backtracking

Input: ↼̃k,ϱ > 0, c → (0, 1),⇁max > 0,vk,M → N // typical value of c ≃ 0.9
Output: Step size ⇁k

1: Initialize ⇁k ⊥ ⇁max;
2: for m = 0 : M do
3: if ↼̃k(⇁k) ⇓ fHF(xk)↑ ⇁kϱ⇐ṽk⇐2 then
4: Break;
5: else
6: ⇁k ⊥ c⇁k;
7: end if
8: end for
9: Return ⇁k;

problems across diverse scenarios presented in Section 4.5.2. These include dual-form kernel ridge

regression (Section 4.5.2.1), black-box adversarial attacks (Section 4.5.2.2), and transformer-based

black-box language model fine-tuning (soft prompting) in Section 4.5.2.3. We demonstrate that the

BF-SSD algorithm consistently outperforms competing methods. To illustrate these advantages,

we compare BF-SSD against the following baseline algorithms:

• Gradient Descent (GD): A zeroth-order gradient descent method, where the full-batch

gradient is estimated using forward di”erences, and a fixed step size is used.

• Coordinate Descent (CD): Iteratively optimizes each coordinate individually using

finite-di”erence estimated coordinate gradients.

• Stochastic Subspace Descent with Fixed Step Size (FS-SSD): The standard stochas-

tic subspace descent method, which samples subspaces from the Haar measure and uses a

fixed step size.

• Simultaneous Perturbation Stochastic Approximation (SPSA): A randomized op-

timization method using a Hadamard random variable to estimate the gradient, as pro-

posed by [489] and with step sizes as described in [490]; this is a time-tested, well-respected

zeroth-order method.

• Gaussian Smoothing (GS): A method popularized by [386], which is nearly equivalent
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Algorithm 8: Bi-Fidelity Line Search SSD Algorithm

Input: fHF, fLF, ϑ, c,M,⇁max, n // by default, n = 1 and ϱ = ϑ/2D
Output: HF minimum value
1: Initialize x0 and set of HF values D = {fHF(x0)}
2: ϱ ⊥ ϑ/2d;
3: for k = 0 : K do
4: Sample random matrix Pk;
5: Approximate ṽk ≃ PkP

T
k ∀f(xk) using finite di”erence (ϑ HF evaluations);

6: Normalize vk ⊥ ṽk/⇐ṽk⇐;
7: Construct ↼̃k ⊥ surrogate-construction(fLF, fHF,xk,vk, n,⇁max) (n HF evaluations);
8: ⇁k ⊥ BF-backtracking(↼̃k,ϱ, c,⇁max,vk,M);
9: Update xk+1 ⊥ xk ↑ ⇁kvk;

10: Evaluate fHF(xk+1) and update D;
11: end for
12: Return minD;

to SSD with ϑ = 1, and uses a fixed step size.

• High-Fidelity Stochastic Subspace Descent (HF-SSD): A single-fidelity SSD method

that utilizes a high-fidelity function for backtracking line search, with its convergence anal-

ysis detailed in D.2.

• Variance-Reduced Stochastic Subspace Descent (VR-SSD): A variance-reduced

version of the SSD method inspired by SVRG [253], as described in the technical report

[284, Section 2.2] of the SSD authors.

• Bi-fidelity Stochastic Subspace Descent (BF-SSD): The proposed method detailed

in Section 4.4.

The performance of the optimizers is assessed based on the number of HF objective function

evaluations required, accounting for LF calls (in terms of fractional equivalent HF function calls)

as appropriate.
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4.5.1 Synthetic Problem: Worst Function in the World

In this section we investigate the performance of our proposed BF-SSD algorithm on the

“worst function in the world” [385]. With a fixed Lipschitz constant L > 0, the function is

f(x; r, L) = L

(
x21 +

∑r↗1
i=1 (xi ↑ xi+1)

2 + x2r
8

↑ x1
4

)
↑ Lr

8(r + 1)
, (4.28)

where xi denotes the ith entry of the input x and r < D is a constant integer defining the intrinsic

dimension of the problem. The function is convex with global minimum value 0. The Lipschitz

constant of the gradient of this function is L. Nesterov has shown a wide ranges of iterative

first-order method that performs poorly when minimizing f(x; r, L) with initial point x0 = 0.

(a) (b)

(c) (d)

Figure 4.3: The convergence performance for di”erent optimizers. The x-axis is the equivalent
number of HF function evaluations, and the y-axis is the HF function evaluation value at the
current stage. We investigate the results when ϑ = 20, 50, 100, 200 with rL = 2, rH = 100. The
corresponding results are presented with their titles indicating the specific choices. The shadow
regions are the area between the best and the worst behavior by 10 trials.
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We set the dimension d = 1,000, ϑ = 20, and L = 20. The intrinsic dimension of the HF

function is rH and of the LF function is rL. We choose rL ↖ rH and assume the computational cost

ratio between HF and LF evaluations is rH : rL. For Gradient Descent, we choose the standard step

size of 1/L = 0.05 and for the GS and SSD-based methods the step size is ϑ/(LD). The backtracking

parameter is ϱ = ϑ/(2D). The hyperparameter study is conducted according to di”erent values

of c → {0.8, 0.9, 0.99} and ϑ → {5, 10, 20}. All the experiments are repeated 10 times with shaded

regions denoting the worst and the best performance over 10 trials.

Figure 4.3 illustrates the performance of various optimizers across di”erent values of ϑ. De-

tailed results for ϑ = 20 and c = 0.99 at N from 500 to 8,000 are presented in Table 4.1, while

additional comparisons across di”erent ϑ and c configurations are included in Table D.1. These

results show that BF-SSD consistently outperforms the other optimizers in most scenarios. For

di”erent SSD methods, the e”ect of ϑ on the final performance varies. Large values of ϑ improve

the optimization results for FS-SSD and VR-SSD, while HF-SSD and BF-SSD prefer relatively

smaller ϑ, as highlighted in Table 4.2.

Equivalent HF function evaluations N

Method N = 100 N = 1000 N = 10000 N = 20000 N = 30000

GD 2.48± 0.00 2.48± 0.00 0.62± 0.00 0.43± 0.00 0.34± 0.00
CD 1.48± 0.00 1.48± 0.00 0.70± 0.00 0.49± 0.00 0.40± 0.00
FS-SSD 2.47± 0.00 2.45± 0.00 2.26± 0.00 2.08± 0.00 1.92± 0.00
SPSA 1.95± 0.05 0.61± 0.04 0.19± 0.00 0.14± 0.00 0.12± 0.00
GS 2.47± 0.00 2.46± 0.00 2.36± 0.00 2.25± 0.00 2.15± 0.00
HF-SSD 2.07± 0.15 0.77± 0.06 0.22± 0.02 0.17± 0.02 0.14± 0.02
BF-SSD 2.00± 0.05 0.66± 0.03 0.17± 0.00 0.11± 0.00 0.09± 0.00
VR-SSD 2.47± 0.00 2.10± 0.02 0.63± 0.01 0.43± 0.00 0.35± 0.00

Table 4.1: Performance values (mean ± std over 10 runs) showing the objective function for di”erent
optimization methods at various HF function evaluations N with ϑ = 20, c = 0.99. The minimum
values in each column are highlighted in bold.
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Table 4.2: Comparison of SSD methods for di”erent values of ϑ (Mean ± Std at N = 20, 000). Bold
values indicate the minimum mean for each SSD method, i.e., across each row.

Method ϑ = 20 ϑ = 50 ϑ = 100 ϑ = 200

FS-SSD 2.0766± 0.0038 1.6726± 0.0057 1.2943± 0.0047 0.9447± 0.0041
HF-SSD 0.1745± 0.0209 0.1357± 0.0073 0.1482± 0.0067 0.1893± 0.0115
BF-SSD 0.1149± 0.0016 0.1206± 0.0015 0.1236± 0.0028 0.1329± 0.0024
VR-SSD 0.4328± 0.0030 0.4268± 0.0023 0.4232± 0.0018 0.4227± 0.0016

4.5.2 Zero-th Order Optimization for Machine Learning Problems

In this section, we present the BF-SSD optimization results with other completing methods

under the machine learning-related zero-th order optimization settings. Besides showing the ad-

vantages of the BF-SSD, we also show that it is often convenient to design a cheap LF model in

many machine learning problems that can be leveraged to accelerate the convergence.

4.5.2.1 Dual Form of Kernel Ridge Regression

Consider a kernel ridge regression problem as follows. By the representer theorem, given

datapoints {(xi, yi)}
D
i=1 and a kernel function ▷ : Rm̃ ↗R

m̃ ↘ R, the goal is to find the coe!cients

↽̃ such that

fpredict(x) =
D∑

i=1

⇁̃ik(x,xi). (4.29)

One way to solve the coe!cients is to solve the dual form of the kernel ridge regression,

↽̃→ = argmin
α

↽TK↽↑ 2∝↽,y′+ 1⇐↽⇐2, (4.30)

where K is the kernel matrix with [K]i,j = ▷(xi,xj), [y]i = yi, and 1 is a positive scalar denoting

the regularization parameter. The solution of Equation (4.30) can be explicitly represented as

↽̃→ = (K + 1I)↗1y. (4.31)

However, solving the explicit solution involves inverting the matrix K + 1I, which takes O(D3)

and can be extremely expensive when D is large. In fact, when D is su!ciently large, evaluating

the function in Equation (4.29) takes O(D2) and becomes expensive.
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Therefore, an alternative approach to solve this problem is to build a low-rank surrogate for

the kernel matrixK. One of the mostly used approach is the Nystroem method, which finds a subset

S ∞ [1, . . . , D] with size l ↖ D and builds the kernel surrogate K̃ = K[:,S](K[S,S])↗1K[S, :].

By implementing Nystroem method, the complexity of evaluating objective function is reduced to

O(lD), which can be much cheaper as l ↖ D. We let the low-rank surrogate model using Nystroem

method as LF function. Therefore, the ratio of computational cost between HF and LF function

evaluation is D/l.

We consider the problem is a black-box format: the accesses to the HF function are presented

as a form of API, which means some parts of the objective function in Equation (4.30), e.g. y and/or

K, are concealed, so that the derivative is unavailable. In this specific case, we assume the values

of y and K are unavailable due to privacy reason.

Figure 4.4: The eigenvalues of the kernel matrix implemented in Equation (4.30).

For the regression data, we select the first D = 1,000 samples from the California housing

dataset provided in the scikit-learn library [422]. We use a Gaussian (RBF) kernel with lengthscale

1.0 to generate the corresponding kernel matrix K. Figure 4.4 shows the decay of eigenvalues

for K, with a rapid drop, especially within the first 100 eigenvalues, due to the Gaussian kernel’s

properties. This fast decay motivates our focus on cases where the values of ϑ are below 100. The

starting point x0 is set at the origin 0.

The results of kernel ridge regression are shown in Figure 4.5, with values of c chosen from

0.9 and 0.99, and value of ϑ is fixed as 100. According to these results, BF-SSD shows advantages
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(a) (b)

Figure 4.5: Similar with Figure 4.3, we compare the optimizer performances with varying parame-
ters ϑ = 10, 50, 100 and c=0.9, 0.95, 0.99. The corresponding results are presented with their titles
indicating the specific choices. The shadow regions are the area between the best and the worst
behavior by 10 trials.

over other methods except in Figure 4.5a. When the backtracking factor c decreases, the step sizes

determined by the backtracking method become more conservative, leading to suboptimal results,

especially for BF-SSD. We also implement di”erent combinations of c and ϑ and collect the SSD

performances in Table 4.3. The results suggest that BF-SSD show great advantages over other

methods for the most of cases, and larger values of ϑ and c improve the performances of BF-SSD.

c ϑ FS-SSD HF-SSD VR-SSD BF-SSD

0.9

10 3497.69± 3.56 8.98± 0.43 23.65± 0.83 8.77± 0.72

50 1016.43± 9.26 3.96± 0.17 22.19± 0.66 6.49± 0.51

100 268.71± 3.32 5.70± 0.26 21.81± 0.71 6.01± 0.36

0.95

10 3499.15± 6.41 19.17± 0.99 23.39± 0.72 3.21± 0.40

50 1009.36± 9.14 5.52± 0.13 21.46± 0.55 2.42± 0.38

100 269.68± 2.79 6.07± 0.23 21.32± 1.09 2.06± 0.27

0.99

10 3499.32± 7.90 30.18± 1.08 23.04± 0.91 1.59± 0.74

50 1010.93± 6.68 6.94± 0.21 21.94± 0.50 0.88± 0.49

100 270.82± 4.04 6.17± 0.19 21.53± 0.75 0.75± 0.38

Table 4.3: Black-box kernel ridge regression HF function values (mean ± std) for FS-SSD, HF-SSD,
VR-SSD, and BF-SSD at various combinations of ϑ and c at N = 50, 000. Considering uncertainties,
the minimum values in each row are highlighted in bold.
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4.5.2.2 Black-box Adversarial Attack on MNIST

In practice, especially in the area of explainable AI (XAI), researchers have found that many

deep learning models are not robust towards noisy data. Specifically, if test data is contaminated

with a small noisy perturbation that is imperceptible to humans, many previously well-performing

deep learning models fail to produce reasonable results. Generating such biased noise to confuse

a trained neural network model is an interesting topic, which is usually referred as an “attack” in

the domain of adversarially robust training. This need not be a “black hat” activity, as it can be

used as part of hardening a system in order to prevent these attacks in the future.

There are primarily two types of attacks: one is white-box attack, in which we have knowledge

of the model and generating the corresponding adversarial samples to confuse the given model. The

standard approach under this scenario is to generate the shift in pixel space based on the gradient

of loss function in order to maximize the loss. The other type of attack is called black-box attack,

in which one does not have knowledge of the trained model and would like to generate adversarial

data from it. The black-box scenario is more di!cult due to the missing knowledge and one way

to solve it is to treat this problem as a black box optimization. To generate an adversarial sample

for the given datapoint x† → R
D, with D representing the number of pixels in the given image, a

common formulation of the adversarial attack is to find a noise sample x→ solving

x→ = argmax
∞x∞′↼

L
(
g(x+ x†), y†

)
, (4.32)

where y† is the correct label of x†, L is the attack loss function, and g represents the model for

attack. Following the adversarial attack paradigm of [80] and its black-box extension [89], we use

a soft version of the given optimization problem as follows:

x→ = argmin
x

↑CE
(
g(x+ x†), y†

)
+ τ̃⇐x⇐2, (4.33)

where cross entropy loss CE is assigned as the attack loss and g(·) outputs the probabilities of

di”erent classes, usually using a softmax function for normalization. τ̃ is a variable balancing the

attack loss function CE and the attack norm. The goal of the optimization is to find a small shift
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x in pixel space so that the output results are greatly changed.

In this study, we utilized two convolutional neural network (CNN) architectures to model the

HF and LF representations for classification tasks on the MNIST dataset with 60,000 training data

and 10,000 testing data. The HF model was a deeper CNN consisting of two convolutional layers,

the first with 32 filters and the second with 64 filters, both using 5↗ 5 kernels, followed by ReLU

activations and 2↗ 2 max-pooling. The flattened output from the convolutional layers (7↗ 7↗ 64)

was connected to a fully connected layer with 1024 neurons, followed by a 10-class output layer.

In contrast, the LF model employed a simplified architecture with a single convolutional layer

containing 2 filters and a 3 ↗ 3 kernel, followed by ReLU activation and 2 ↗ 2 max-pooling. The

output (13 ↗ 13 ↗ 2) was flattened and passed through a fully connected layer with 16 neurons,

leading to a 10-class output layer with log-softmax activation. The HF model was designed to

provide high-capacity representations, while the LF model served as a lightweight alternative for

computational e!ciency. The LF model was trained using knowledge distillation [232], leveraging

only 1000 training samples and 1000 evaluations of the HF function. Knowledge distillation is a

technique where a smaller, simpler model (the student) learns to replicate the outputs of a larger,

more complex model (the teacher), e”ectively transferring knowledge while reducing computational

costs. The classification accuracy for the HF and LF CNN are 99.02% and 82.21%, respectively.

There are 27,562 parameters for the LF CNN and 3,274,634 parameters for the HF CNN. We

estimate the ratio between HF and LF computational costs as 3274634/27562 ≃ 118.8. The images

in MNIST dataset are 28↗ 28 with single channel, hence the dimension is D = 784. The starting

points are initialized as the origin point for all experiments.

Figure 4.6 illustrates the optimization convergence of various zeroth order methods on two

test images. For the SSD methods (including the line search version), the parameters are set

to ϑ = 50 and ⇁max = 2.0. Since BF-SSD uses 1,000 HF evaluations for knowledge distillation

training, it begins at N = 1,000. The convergence results demonstrate that HF-SSD outperforms

other methods in this task. Additionally, HF-SSD, BF-SSD, and SPSA exhibit clear advantages

over other methods, underscoring the importance of tuning suitable step sizes for the optimization

��������������������
�������
�����������������������	�����



137

(a) (b)

Figure 4.6: Optimization performances according to di”erent attack targets. The images and their
attack noises are presented in Figure 4.7.

process.

In Figure 4.7, we present the adversarially attacked test images generated by di”erent opti-

mization approaches for N = 2,000, 5,000, and 7,000. For the first test image (a-f), only HF-SSD,

BF-SSD, and SPSA successfully flip the output of the HF model under limited HF evaluations

(N ⇓ 7,000). Similarly, for the second test image (g-l), HF-SSD, BF-SSD, SPSA, and VR-SSD

succeed in flipping the HF model output. However, in both cases, we observe that HF-SSD (Fig-

ure 4.7c and Figure 4.7i) and BF-SSD (Figure 4.7d and Figure 4.7j) tend to blur the images more

than SPSA (Figure 4.7b and Figure 4.7h). This behavior may result from di”erences in sampling

strategies, such as Haar measure sampling versus Hadamard sampling. From an adversarial at-

tack perspective, a successful attack should flip the model’s output without excessively blurring

the image. In this regard, SPSA performs better compared to HF-SSD and BF-SSD, despite its

loss function remaining higher than the other two methods. Since SPSA performs visually better

despite a higher objective function, the problem is not with BF-SSD per se, but instead related to

the formulation of the objective function, and will require further investigation in future work.
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(a) GD (Label=5, Predict=5) (b) SPSA (Label=5, Predict=6) (c) HF-SSD (Label=5, Predict=6)

(d) BF-SSD (Label=5, Predict=6) (e) CD (Label=5, Predict=5) (f) VR-SSD (Label=5, Predict=5)

(g) GD (Label=3, Predict=3) (h) SPSA (Label=3, Predict=8) (i) HF-SSD (Label=3, Predict=8)

(j) BF-SSD (Label=3, Predict=8) (k) CD (Label=3, Predict=3) (l) VR-SSD (Label=3, Predict=8)

Figure 4.7: Adversarial examples for idx = 8 (top two rows) and idx = 18 (bottom two rows) using
di”erent methods.
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4.5.2.3 Soft Prompting Black-box Language Model

Fine-tuning pre-trained models like BERT or GPT has become a cornerstone of modern nat-

ural language processing (NLP). These models, trained on massive corpora, achieve state-of-the-art

performance across a wide range of downstream tasks when adapted using task-specific fine-tuning.

However, traditional fine-tuning involves updating millions or even billions of parameters, making it

computationally expensive and prone to overfitting, especially in low-resource settings. To address

these challenges, soft prompting has emerged as a lightweight and e!cient alternative. Instead of

modifying the model’s internal parameters, soft prompting introduces learnable embeddings (soft

prompts) that are prepended to the input sequence, enabling task adaptation with minimal com-

putational cost. This approach is particularly appealing for tasks requiring minimal intervention

in the model’s architecture while leveraging its pre-trained knowledge.

Despite the e!ciency of soft prompting, its practical applicability faces challenges when deal-

ing with black-box models where gradients with respect to the model parameters are inaccessible.

For instance, many commercial APIs or proprietary models only provide access to predictions or

loss values, making gradient-based optimization infeasible. In such scenarios, zeroth order opti-

mization becomes a crucial tool. Specifically, in this section, we consider a black-box pre-trained

language classifier fc : R
Lt↓768 ↘ [0, 1], a pre-trained tokenizer ft : str ↘ R

Lt↓768, where str is any

string of arbitrary length, and the sequence length Lt is a positive integer up to 512 representing

the length of the embedding. The goal is to find a soft prompt x→ → R
768 such that

x→ = argmin
x

E(z,y)


CE(fc(cat[x, ft(z)]), y)


, (4.34)

where CE(·, ·) is the cross-entropy loss function, and the dataset (z, y) → str ↗ {0, 1}. This

particular formulation addresses a binary sentiment analysis task where a given string is classified

as expressing a positive (1) or negative (0) sentiment. Since the classifier fc is pre-trained and

treated as a black box, gradient information for the loss function is unavailable, necessitating the

use of zeroth order optimization to solve the problem.

For the pre-trained classifier and tokenizer, we employed the BERT model, a state-of-the-art
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transformer-based architecture trained on large corpora. Specifically, we focused on a simplified

version of BERT, named DistilBERT. Sentiment analysis on the aclImdb dataset was used as a

soft prompting task. This dataset comprises movie reviews categorized into positive and negative

sentiments, forming a binary classification problem. A D = 768-dimensional soft prompt x is

considered as the input. The transformer’s parameters were kept frozen to focus optimization on

the soft prompt, reducing the degrees of freedom and computational overhead. The HF model,

as described in Equation (4.34), was evaluated using 1,000 samples from aclImdb to approximate

the expectation, while the LF model leveraged only 10 samples that randomly selected from them.

Consequently, the evaluation cost ratio between HF and LF was 100:1.

We set the initial starting point at the origin. We let ϑ = 50, c = 0.99, and for the non-line

search methods we chose a fixed step size of 1 ↗ 10↗2. Additionally, we ran the Adam optimizer

(using gradients) to solve the same problem using 500 epochs to generate a reference error. The

y-axis in the following figure represents the relative error compared with the Adam optimizer.

Figure 4.8 illustrates the performances of di”erent competing methods. The BF-SSD demonstrates

significant advantages compared with others, highlighting its e!ciency in the optimization.

4.6 Conclusion

In this paper, we introduced Bi-fidelity Stochastic Subspace Descent (BF-SSD), a novel

zeroth-order optimization algorithm designed for computationally expensive black-box problems.

BF-SSD constructs a bi-fidelity surrogate model using both high-fidelity (HF) and low-fidelity (LF)

function evaluations, enabling an e!cient backtracking line search on the surrogate to determine

step sizes. This approach significantly reduces the required number of expensive HF evaluations

while maintaining theoretical convergence guarantees under certain assumptions. We demonstrated

the e”ectiveness of BF-SSD on diverse tasks, including a synthetic benchmark, dual-form kernel

ridge regression, black-box adversarial attacks, and transformer-based language model fine-tuning.

Our results show consistent outperformance against methods like gradient descent, coordinate de-

scent, SPSA, and HF-SSD, particularly in terms of solution quality achieved per HF evaluation.
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Figure 4.8: Relative errors with respect to Adam optimization using 500 epochs of zero-th order
optimizers.

These findings highlight the e”ectiveness of the bi-fidelity strategy within a stochastic subspace

descent framework for tackling large-scale, high-dimensional optimization challenges, positioning

BF-SSD as a promising and computationally e!cient tool for various real-world applications.
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[36] Muthu Baskaran, Benôıt Meister, Nicolas Vasilache, and Richard Lethin. E!-
cient and scalable computations with sparse tensors. In 2012 IEEE Conference on
High Performance Extreme Computing, pages 1–6. IEEE, 2012.

[37] Casey Battaglino, Grey Ballard, and Tamara G. Kolda. A practical randomized CP tensor
decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2):876–901, 2018.

[38] Christian Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, Rafet Sifa, and S. Wrobel. Ising Models
for Binary Clustering via Adiabatic Quantum Computing. In Marcello Pelillo and Edwin Han-
cock, editors, Energy Minimization Methods in Computer Vision and Pattern Recognition,
Lecture Notes in Computer Science, pages 3–17, Cham, 2018. Springer International Pub-
lishing.

[39] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[40] Johann A. Bengua, Ho N. Phien, and Hoang D. Tuan. Optimal feature extrac-
tion and classification of tensors via matrix product state decomposition. In 2015
IEEE International Congress on Big Data, pages 669–672. IEEE, 2015.

[41] Austin R. Benson and Grey Ballard. A framework for practical parallel fast matrix multipli-
cation. In ACM SIGPLAN Notices, volume 50, pages 42–53. ACM, 2015.

��������������������
�������
�����������������������	�����



145

[42] Tanya Y. Berger-Wolf and Jared Saia. A framework for analysis of dynamic social networks.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 523–528. ACM, 2006.

[43] Michael W. Berry, Shakhina A. Pulatova, and G. W. Stewart. Algorithm 844: Computing
sparse reduced-rank approximations to sparse matrices. ACM Transactions on Mathematical
Software (TOMS), 31(2):252–269, 2005.

[44] Gregory Beylkin and Martin J. Mohlenkamp. Numerical operator calculus in higher dimen-
sions. Proceedings of the National Academy of Sciences, 99(16):10246–10251, 2002.

[45] Gregory Beylkin and Martin J. Mohlenkamp. Algorithms for Numerical Analysis in High
Dimensions. SIAM Journal on Scientific Computing, 26(6):2133–2159, July 2006.

[46] Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of ten-
sor decompositions with applications to polynomial identifiability. In Conference on
Learning Theory, pages 742–778, 2014.

[47] David J. Biagioni, Daniel Beylkin, and Gregory Beylkin. Randomized interpolative decom-
position of separated representations. Journal of Computational Physics, 281(C):116–134,
January 2015.

[48] Jacob Bien, Ya Xu, and Michael W. Mahoney. CUR from a sparse optimization viewpoint.
In Advances in Neural Information Processing Systems, pages 217–225, 2010.

[49] Ilias Bilionis and Nicholas Zabaras. Multi-output local gaussian process regression: Appli-
cations to uncertainty quantification. Journal of Computational Physics, 231(17):5718–5746,
2012.

[50] Dario Bini. Relations between exact and approximate bilinear algorithms. Applications.
Calcolo, 17(1):87–97, 1980.

[51] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n2.7799) complexity for
n↗n approximate matrix multiplication. Information Processing Letters, 8(5):234–235, June
1979.

[52] Dario Bini and Grazia Lotti. Stability of Fast Algorithms for Matrix Multiplication.
Numerische Mathematik, 36(1):63–72, 1980.

[53] Dario Bini, Grazia Lotti, and Francesco Romani. Approximate solutions for the bilinear form
computational problem. SIAM Journal on Computing, 9(4):692–697, 1980.
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[57] Markus Bläser. On the complexity of the multiplication of matrices of small formats. Journal
of Complexity, 19(1):43–60, 2003.

[58] Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, and Chris Umans. Which
groups are amenable to proving exponent two for matrix multiplication? arXiv preprint
arXiv:1712.02302, 2017.

[59] David M Blei, Alp Kucukelbir, and Jon D McAuli”e. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[60] Ajinkya Borle, Vincent E. Elfving, and Samuel J. Lomonaco. Quantum Approximate Opti-
mization for Hard Problems in Linear Algebra. arXiv preprint arXiv:2006.15438, 2020.

[61] Christos Boutsidis. http://www.boutsidis.org, accessed 25 April 2019.

[62] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-Optimal Column-Based
Matrix Reconstruction. SIAM Journal on Computing, 43(2):687–717, April 2014.

[63] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved approximation
algorithm for the column subset selection problem. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 968–977. SIAM, 2009.

[64] Christos Boutsidis and David P. Woodru”. Optimal CUR matrix decompositions. SIAM
Journal on Computing, 46(2):543–589, 2017.

[65] Amanda Bower and Laura Balzano. Preference modeling with context-dependent salient
features. In International Conference on Machine Learning, pages 1067–1077. PMLR, 2020.

[66] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press,
2004.

[67] Karen Braman. Third-order tensors as linear operators on a space of matrices. Linear Algebra
and its Applications, 433(7):1241–1253, 2010.

[68] Richard P. Brent. Algorithms for matrix multiplication. Technical Report STAN-CS-70-157,
Stanford University, 1970.

[69] Richard P. Brent. Error Analysis of Algorithms for Matrix Multiplication and Triangular
Decomposition using Winograd’s Identity. Numerische Mathematik, 16(2):145–156, 1970.

[70] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[71] Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, and Jill P. Mesirov. Metagenes and
molecular pattern discovery using matrix factorization. Proceedings of the national academy
of sciences, 101(12):4164–4169, 2004.

[72] Christian G Bucher. Adaptive sampling—an iterative fast monte carlo procedure. Structural
safety, 5(2):119–126, 1988.
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[360] E”rosyni Mavroudi, Benjamı́n Béjar Haro, and René Vidal. Representation Learn-
ing on Visual-Symbolic Graphs for Video Understanding. In European Conference on
Computer Vision, pages 71–90. Springer, 2020.

[361] Edward Meeds, Zoubin Ghahramani, Radford M. Neal, and Sam T. Roweis. Modeling dyadic
data with binary latent factors. In Advances in Neural Information Processing Systems, pages
977–984, 2007.

[362] Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for polynomials of independent
random variables. arXiv preprint arXiv:1507.00829, 2015.

[363] Xuhui Meng and George Em Karniadakis. A composite neural network that learns from multi-
fidelity data: Application to function approximation and inverse pde problems. Journal of
Computational Physics, 401:109020, 2020.

[364] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The journal
of chemical physics, 21(6):1087–1092, 1953.

[365] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The journal
of chemical physics, 21(6):1087–1092, 1953.

[366] J. V. Michalowicz, J. M. Nichols, F. Bucholtz, and C. C. Olson. An Isserlis’ theorem for
mixed Gaussian variables: Application to the auto-bispectral density. Journal of Statistical
Physics, 136(1):89–102, 2009.

[367] Oscar Mickelin and Sertac Karaman. On algorithms for and computing with the tensor ring
decomposition. Numerical Linear Algebra with Applications, 27(3):e2289, 2020.

��������������������
�������
�����������������������	�����



167

[368] Pauli Miettinen. Boolean tensor factorizations. In 2011 IEEE 11th International Conference
on Data Mining, pages 447–456. IEEE, 2011.
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Appendix A

Bi-fidelity Sampling

A.1 Efficient leverage score sampling of certain design matrices

In this section, we describe the key elements of the sampling approach developed in [349] as

it applies to the problems we consider in this paper. The discussion here will consider the design

matrices discussed in Section ??. Using the same notation as in that section, define the matrices

Ak for k → [q] elementwise via

Ak(nk, jk) =
⇒
wk,nk

↽jk(pk,nk
), nk → [Nk], jk → [◁]. (A.1)

Next, define

ATP := A1 ⊤ · · ·⊤Aq, (A.2)

where ⊤ denotes the Kronecker product; see Section 12.3 of [190] for a definition. The design ma-

trices corresponding to total degree and hyperbolic cross polynomial spaces discussed in Section ??

are made up of a subset of the columns of ATP. In particular, using Matlab indexing notation,

they can be written as

A = ATP(:,v), (A.3)

where v is a vector containing distinct column indices of ATP. The sampling scheme we discuss

requires the additional assumption that the entries in v are arranged in increasing order. The

columns of A can always be permuted to ensure that this is possible when A corresponds to a total

degree or hyperbolic cross space. Such a permutation will not change the least squares problem
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since it will only permute the order of the entries in the solution vector, and is therefore something

that can always be done.

Note that a column index c of ATP corresponds to a multi-index (c1, . . . , cq) such that

ATP(:, c) = A1(:, c1)⊤ · · ·⊤Aq(:, cq). (A.4)

Each row index r of ATP corresponds to a multi-index (r1, . . . , rq) in a similar fashion.

Algorithm 9 outlines the sampling algorithm. We provide some intuition for why the algo-

rithm works and refer the reader to [349] for a rigorous treatment. Note that A is full rank and

therefore rank(A) = d. Let QR = A be a compact QR decomposition (i.e., such that Q has d

columns and R has d rows). Recall that the leverage score sampling distribution satisfies

p(i) =
⇐Q(i, :)⇐22

d
. (A.5)

Instead of drawing a sample according to the distribution above, we may instead draw a single

column Q(:, j) of Q uniformly at random and instead draw a sample according to the probability

distribution defined by p̃j(i) = (Q(i, j))2. To see this, let Ĩ be a random row index drawn according

to this alternate strategy. Moreover, let J ↓ Uniform([d]) be the random column index, and let Ĩj

be a random row index drawn according to p̃j . Then we have

P(Ĩ = i) =
d∑

j=1

P(Ĩ = i | J = j)P(J = j) =
d∑

j=1

P(Ĩj = i)P(J = j) =
d∑

j=1

(Q(i, j))2
1

d
=

⇐Q(i, :)⇐22
d

= p(i).

(A.6)

This shows that the alternate sampling strategy indeed draws samples according to the leverage

score sampling distribution. This is the sampling strategy that our algorithm uses. Moreover, it

uses two additional fact:

(1) When A has the particular structure assumed in this section, then the cth column of Q

satisfies

Q(:, c) = Q1(:, c1)⊤ · · ·⊤Qq(:, cq), (A.7)

where Q1, . . . ,Qq are defined in line 2 in Algorithm 9.
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(2) Due to (A.7), drawing a row index r according to p̃j is equivalent to drawing a multi-

index (r1, . . . , rq) according to a product distribution with each rk drawn independently

according to the distribution ((Qk(rk, jk))
2)rk where (j1, . . . , jq) is the column multi-index

corresponding to j.

Fact (i) makes it possible to sample according to the alternate sampling strategy without every

needing to compute the QR decomposition of the large matrix A. A more general version of this

fact appears in Proposition 4.4 of [349]. Fact (ii) further makes it possible to sample according to

p̃j without needing to form that probability vector which is of length


k Nk.

Algorithm 9: E!cient leverage score sampling of total degree and hyperbolic cross design
matrices
Input: Matrices A1, . . . ,Aq, index vector v, number of samples m
Output: Vector s → [


k Nk]

m of m samples drawn from row indices of A
1: for k → [q] do
2: Compute compact QR decomposition QkRk = Ak

3: end for
4: for i → [m] do
5: Draw an entry j from v uniformly at random
6: Compute the multi-index (j1, . . . , jq) corresponding to j
7: for k → [q] do
8: Construct the probability distribution p = ((Qk(rk, jk))

2)rk → R
Nk

9: Draw an index rk → [Nk] according to the distribution p

10: end for
11: Set the ith sample s(i) equal the row index corresponding to the row multi-index (r1, . . . , rq)
12: end for
13: return Vector of samples s

A.2 Proof of Theorem 1.4.5

The proof of Theorem 1.4.5 relies on the following lemmas:

Lemma A.2.1. Let X and Y be two (nonconstant) random variables defined on the same probability

space. The correlation coefficient between X and Y , corr(X,Y ), is bounded from below as

corr(X,Y ) ⇔
√

V[X]

V[Y ]
↑
√

V[Y ↑X]

V[Y ]
. (A.8)
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Proof. It follows from direct computation that

corr(X,Y ) =
E[XY ]↑ E[X]E[Y ]√

V[X]V[Y ]

=
E[X2]↑ E[X]2√

V[X]V[Y ]
+

E[X(Y ↑X)]↑ E[X]E[Y ↑X]√
V[X]V[Y ]

=

√
V[X]

V[Y ]
+ corr(X,Y ↑X)

√
V[Y ↑X]

V[Y ]

⇔
√

V[X]

V[Y ]
↑
√

V[Y ↑X]

V[Y ]
,

(A.9)

where the last inequality uses corr(X,Y ↑X) ⇔ ↑1.

Lemma A.2.2. Let ε ↓ N (0, In) be a standard Gaussian vector in R
n. For any w, z → R

n,

E[∝w, ε′2∝z, ε′2] = 2∝w, z′2 + ⇐w⇐22⇐z⇐22. (A.10)

Proof. The proof follows from a direct application of Wick’s formula [553]. Denote X1 = ∝w, ε′

and X2 = ∝z, ε′. It is easy to verify that



X1

X2


 ↓ N (0,K), K =




⇐w⇐22 ∝w, z′

∝w, z′ ⇐z⇐22


 . (A.11)

By Wick’s formula,

E[∝w, ε′2∝z, ε′2] = E[X2
1X

2
2 ] = 2E[X1X2]

2 + E[X2
1 ]E[X

2
2 ] = 2∝w, z′2 + ⇐w⇐22⇐z⇐22. (A.12)

Proof of Theorem 1.4.5. Since correlation coe!cients are scale-invariant, and both b and b̃ are

fixed,

corr(µ2(b,S), µ2(b̃,S)) = corr

(
r2S(A, b)↑ r2(A, b)

⇐b⇐22
,
r2S(A, b̃)↑ r2(A, b̃)

⇐b̃⇐22

)
. (A.13)

Without loss of generality, we assume ⇐b⇐2 = ⇐b̃⇐2 = 1, so that bP = b, b̃P = b̃.

Let

X = r2S(A, b)↑ r2(A, b) = ⇐(SQ)†SQ↘Q
T
↘b⇐22

Y = r2S(A, b̃)↑ r2(A, b̃) = ⇐(SQ)†SQ↘Q
T
↘b̃⇐22.

(A.14)
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To apply Lemma A.2.1, it su!ces to estimate V[X]/V[Y ] and V[Y ↑X]/V[Y ].

First of all, due to the rotation invariance of joint Gaussians,

G1 :=
⇒
mSQ → R

m↓d,

G2 :=
⇒
mSQ↘ → R

m↓(N↗d)

(A.15)

are independent Gaussian random matrices, i.e., (SQ)†SQ↘QT
↘ = G

†
1G2Q

T
↘, and

E[X] = E

[
tr
(
G

†
1G2Q

T
↘bb

TQ↘G
T
2 G

†
1

T
)

= E

[
tr
(
G

†
1E[G2Q

T
↘bb

TQ↘G
T
2 ]G

†
1

T
)

= ⇐QT
↘b⇐22E

[
tr
(
G

†
1G

†
1

T
)

= ⇐QT
↘b⇐22E


tr
(
(GT

1 G1)
↗1

)
,

(A.16)

where we have used that E[G2Q
T
↘bb

TQ↘GT
2 ] = ⇐QT

↘b⇐22Im.

Note GT
1 G1 is a Wishart matrix with dimension d and degrees of freedom m, i.e. W =

GT
1 G1 ↓ Wd(Id,m). Consequently, E[W↗1] = 1

m↗d↗1Id if m > d+ 1, and

E[X] = ⇐QT
↘b⇐22

d

m↑ d↑ 1
. (A.17)

Similarly,

E[Y ] = ⇐QT
↘b̃⇐22

d

m↑ d↑ 1
. (A.18)

Note G
†
1G2Q

T
↘a

D
= ⇐QT

↘a⇐2(GT
1 G1)

↗1GT
1 ε for every a → R

N , where ε ↓ N (0, Im) is independent

of G1. If we denote G = (GT
1 G1)

↗1GT
1 , with rows denoted by gi, i → [d], then

E[X2] = E[⇐⇐QT
↘b⇐2Gε⇐42]

= ⇐QT
↘b⇐42E



(

d∑

i=1

∝gi, ε′2
)2




= ⇐QT
↘b⇐42




d∑

i=1

E[∝gi, ε′4] +
∑

i ⇑=j

E[∝gi, ε′2∝gj , ε′2]




(A.10)
= ⇐QT

↘b⇐42


3

d∑

i=1

E[⇐gi⇐42] +
∑

i ⇑=j

(2E[∝gi, gj′2] + E[⇐gi⇐22⇐gj⇐22])




= ⇐QT
↘b⇐42

(
2E[⇐GGT ⇐2F ] + E[tr

(
GGT

)2
]
)

= ⇐QT
↘b⇐42

(
2E[⇐(GT

1 G1)
↗1⇐2F ] + E[tr

(
(GT

1 G1)
↗1

)2
]
)
.

(A.19)
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To explicitly compute (A.19), we use the following moments formulas of inverse Wishart distribu-

tions [280, Theorem 2.4.14]:

E[W↗1W↗1] =

(
d

(m↑ d)(m↑ d↑ 3)
+

d

(m↑ d)(m↑ d↑ 1)(m↑ d↑ 3)

)
Id

Cov(W↗1
ii ,W↗1

jj ) =
2 + 2(m↑ d↑ 1)εij

(m↑ d)(m↑ d↑ 1)2(m↑ d↑ 3)
.

(A.20)

Therefore,

E[⇐(GT
1 G1)

↗1⇐2F ] = tr
(
E[W↗1W↗1]

)
=

d2

(m↑ d↑ 1)(m↑ d↑ 3)
A d2

(m↑ d↑ 1)2
(A.21)

and

E[tr
(
(GT

1 G1)
↗1

)2
] =

∑

i,j↑[d]
E[W↗1

ii W↗1
jj ]

=
∑

i,j↑[d]
(Cov(W↗1

ii ,W↗1
jj ) + E[W↗1

ii ]E[W↗1
jj ])

=
d2

(m↑ d↑ 1)2
+

2d

(m↑ d↑ 1)2(m↑ d↑ 3)
+

2(d2 ↑ d)

(m↑ d)(m↑ d↑ 1)2(m↑ d↑ 3)

A d2

(m↑ d↑ 1)2
,

(A.22)

where am A bm if limm≃⇐ am/bm = 1. Substituting these back into (A.19) yields

E[X2] A ⇐QT
↘b⇐42

3d2

(m↑ d↑ 1)2
. (A.23)

Replacing b by b̃ in the above computation gives a similar estimate for E[Y 2]:

E[Y 2] A ⇐QT
↘b̃⇐42

3d2

(m↑ d↑ 1)2
. (A.24)

Combining (A.23), (A.24) with (A.17) and (A.18) produces

V[X] A ⇐QT
↘b⇐42

2d2

(m↑ d↑ 1)2
,

V[Y ] A ⇐QT
↘b̃⇐42

2d2

(m↑ d↑ 1)2
,

(A.25)

which implies

V[X]

V[Y ]
A ⇐QT

↘b⇐42
⇐QT

↘b̃⇐42
. (A.26)
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On the other hand, using Cauchy–Schwarz inequality, Moreover, we have

V[Y ↑X] ⇓ E[(Y ↑X)2]

= E

(X

1

2 + Y
1

2 )2 · (X
1

2 ↑ Y
1

2 )2


= E

(X

1

2 + Y
1

2 )2 · (⇐G†
1G2Q

T
↘b⇐2 ↑ ⇐G†

1G2Q
T
↘b̃⇐2)2



⇓ E[(X
1

2 + Y
1

2 )2 · ⇐G†
1G2Q

T
↘(b± b̃)⇐22],

(A.27)

where the last inequality follows from the reverse triangle inequality. Furthermore, using the

inequality of arithmetic and geometric means followed by the Cauchy–Schwarz inequality, we have

E[(X
1

2 + Y
1

2 )2 · ⇐G†
1G2Q

T
↘(b± b̃)⇐22

⇓ 2E[(X + Y ) · ⇐G†
1G2Q

T
↘(b± b̃)⇐22]

= 2E[X · ⇐G†
1G2Q

T
↘(b± b̃)⇐22] + 2E[Y · ⇐G†

1G2Q
T
↘(b± b̃)⇐22]

⇓ 2

√
E[X2] · E[⇐G†

1G2Q
T
↘(b± b̃)⇐42] + 2

√
E[Y 2] · E[⇐G†

1G2Q
T
↘(b± b̃)⇐42].

(A.28)

Combining (A.27) and (A.28) yields

V[Y ↑X] ⇓ 2

√
E[X2] · E[⇐G†

1G2Q
T
↘(b± b̃)⇐42] + 2

√
E[Y 2] · E[⇐G†

1G2Q
T
↘(b± b̃)⇐42]. (A.29)

A similar argument as (A.23) shows that

E[⇐G†
1G2Q

T
↘(b± b̃)⇐42] A ⇐QT

↘(b± b̃)⇐42
3d2

(m↑ d↑ 1)2
. (A.30)

Plugging (A.30) into (A.29) together with the previous estimates yields that, asymptotically,

V[Y ↑X]

V[Y ]
⇓

2
(
⇐QT

↘b⇐22 + ⇐QT
↘b̃⇐22

)
⇐QT

↘(b± b̃)⇐22
⇐QT

↘b̃⇐42
·
3d2

2d2
⇓ 6⇐QT

↘(b± b̃)⇐22
⇐QT

↘b̃⇐42
, (A.31)

where the last inequality follows from ⇐b⇐2 = ⇐b̃⇐2 = 1. Appealing to Lemma A.2.1,

lim inf
m≃⇐

corr(X,Y ) ⇔ ⇐QT
↘b⇐22 ↑

⇒
6min{⇐QT

↘(b± b̃)⇐2}
⇐QT

↘b̃⇐22
. (A.32)

(1.33) follows by noting ⇐QT
↘a⇐2 = ⇐PQ↓

a⇐2 for a → R
N .

To prove (1.35), we use Proposition 1.4.8 (i.e. (1.44)) to lower bound ⇐QT
↘b̃⇐22:

↼ ⇓ ⇐QT
↘b̃⇐2 + ▷ =△ (↼↑ ▷)2 ⇓ ⇐QT

↘b̃⇐22 ⇓ ⇐b̃⇐22 = 1. (A.33)

��������������������
�������
�����������������������	�����



190

Also, ⇐QT
↘b⇐22 = 1↑ ▷2 and

min{⇐QT
↘(b± b̃)⇐2} ⇓ min{⇐b± b̃⇐2} =

√
2↑ 2↼. (A.34)

Hence,

lim inf
m≃⇐

corr(X,Y ) ⇔ (1↑ ▷2)↑
√
12(1↑ ↼)

(↼↑ ▷)2
, (A.35)

completing the proof.

A.3 Proof of Theorem 1.4.11

We first prove the case of the sub-Gaussian sketches. According to Lemma 1.4.10, it su!ces

to verify the conditions (1.52).

Note
⇒
mSQ → R

m↓d is a random matrix whose rows are i.i.d. isotropic random vectors in

R
d, with the sub-Gaussian norm ↫ K (this follows from Definition 3.4.1 and Proposition 2.6.1 in

[528]). Applying [528, Theorem 4.6.1] to the matrix
⇒
mSQ and using the fact that φmin(

⇒
mSQ) =

⇒
mφmin(SQ), we find that if m ↭ K4d log (4L/ε), then with probability at least 1 ↑ ε/(2L), the

first condition in (1.52) is satisfied.

For the second condition in (1.52), we write the i-th component of QTSTSh as

qTi S
TSh =

1

m

∑

j↑[m]

∝⇒msj , qi′∝
⇒
msj ,h′, i → [d]. (A.36)

Both ∝⇒msj , qi′ and ∝⇒msj ,h′ are sub-Gaussian random variables [528, Proposition 2.6.1]. There-

fore,

⇐∝⇒msj , qi′∝
⇒
msj ,h′⇐ϖ1

⇓ ⇐∝⇒msj , qi′⇐ϖ2
⇐∝⇒msj ,h′⇐ϖ2

⇓ ⇐⇒msj⇐2ϖ2
↫ K2, (A.37)

where the first inequality follows from [528, Lemma 2.7.7], the second inequality follows from [528,

Definition 3.4.1], and the final inequality follows from an application of [528, Proposition 2.6.1].

Moreover, since h B range(Q) it is easy to verify that the summands in (A.36) are all zero-mean.

By Bernstein’s inequality [528, Corollary 2.8.3], if m ↭ K4d log(4dL/ε)/ω, with probability at least
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1↑ε/(2dL), |qTi S
TSh| ⇓

√
ω/(2d). Taking a union bound over i → [d] yields that, with probability

at least 1↑ ε/(2L),

max
i↑[d]

|qTi S
TSh| ⇓

√
ω

2d
. (A.38)

Note that (A.38) implies ⇐QTSTSh⇐22 ⇓ ↼
2 . Consequently, combining the results we have that

there exists an absolute constant C, such that if m ⇔ CK4d log(4dL/ε)/ω, then with probability

at least 1↑ ε/L,

φ2
min(SQ) ⇔

⇒
2

2
and ⇐QTSTSh⇐22 ⇓

ω

2
, (A.39)

which are the conditions in (1.52). This completes the proof for the sub-Gaussian sketch.

We next prove the case for the leverage score sampling matrices, and the proof is again based

on Lemma 1.4.10. Note that leverage score sampling can be viewed as a special case of induced

measure sampling. The first condition in (1.52) is implied by ⇐QTSTSQ ↑ I⇐2 ⇓ 1 ↑
⇒
2
2 , which,

according to [349, Lemma A.1], is satisfied with probability at least 1↑ε/2L if m ⇔ 35d log(4dL/ε).

For the second condition in (1.52), the only di”erence is that one uses Markov’s inequality in place

of Bernstein’s inequality due to the lack of information on the tail of qTi S
TSh, and the details

are omitted. Under additional assumptions in (1.56), Markov’s inequality can be replaced by

Hoe”ding’s inequality to yield an improved bound (1.57):

qTi S
TSh =

1

m

∑

j↑[m]

∝⇒msj , qi′∝
⇒
msj ,h′, i → [d], (A.40)

with each summand ∝⇒msj , qi′∝
⇒
msj ,h′ centered and bounded as

|∝⇒msj , qi′∝
⇒
msj ,h′| ⇓ max

i↑[d]
max

j↑[N ]:ωj>0

r|qijhj |

ϑj
⇓ max

i↑[d]
max

j↑[N ]:ωj>0

d|qijhj |

ϑj
⇓ C, (A.41)

where r is the rank of A. By Hoe”ding’s inequality, for t > 0,

P
(
|qTi S

TSh| ⇓ t
)
⇔ 1↑ 2 exp

(
↑mt2

2C2

)
. (A.42)

Setting t =
√

ω/2d and taking a union bound over i yields that, for m ⇔ 4C2d log(4dL/ε)/ω, with

probability at least 1↑ ε/2L, ⇐QTSTSh⇐22 ⇓ ω/2.
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Appendix B

Bi-fidelity VAE

B.1 Proof of Bi-fidelity ELBO

In this section, we present the detailed proof of Equation (2.15). We assume the conditions

p(xH |zL, zH) = p(xH |zH) and p(zH |zL,xL) = p(zH |zL) hold.

Proof. HF log-likelihood log pθ,ψ(x
H) can be decomposed and lower bounded as follows

log pθ,ψ(x
H) = Eqφ(zψ |xL)[log pθ,ψ(x

H)] (B.1)

= Eqφ(zψ |xL)


log

(
pθ(x

H , zψ)

pθ(zψ|xH)

)
(B.2)

= Eqφ(zψ |xL)


log

(
pθ(x

H , zψ)qφ(zψ|x
L)

pθ(zψ|xH)qφ(zψ|xL)

)
(B.3)

= KL
(
qφ(zψ|x

L)⇐pθ(zψ|xH)
)
+ Eqφ(zψ |xL)


log

(
pθ(x

H , zψ)

qφ(zψ|xL)

)
(B.4)

⇔ Eqφ(zψ |xL)


log

(
pθ(x

H , zψ)

qφ(zψ|xL)

)
(B.5)

= Eqφ(zψ |xL)


log

(
pθ(x

H |zψ)pψ(z
H |zL)p(zL)

pψ(zH |zL)qφ(zL|xL)

)
(B.6)

= Eqφ(zψ |xL)


log

(
p(zL)

qφ(zL|xL)

)
+ log

(
pθ(x

H |zψ)
)

(B.7)

= ↑KL
(
qφ(z

L|xL)⇐p(zL)
)
+ Eqφ(zψ |xL)


log

(
pθ(x

H |zψ)
)

(B.8)

= ELBOBF(φ,ϱ,ς). (B.9)

The only inequality above follows from the non-negativity of KL divergence. The above deriva-

tion shows that the HF log-likelihood can be lower bounded by the proposed BF-ELBO in Equa-
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tion (2.16), where the tightness of the bound is controlled by the approximation error mentioned

in Section 2.4.3 as KL
(
qφ(zψ|x

L)⇐pθ(zψ|xH)
)
.

B.2 Proof of Bi-fidelity Information Bottleneck

In this section, we prove that optimizing ELBOBF (φ,ϱ,ς) in Equation (2.16) is equivalent

with optimizing BF-IB objective function IBBF
ϱ in Equation (2.22) with ϱ = 1. With the BF-

IB graphical model zψ ⊥ xL C xH assumed (similar with IB in [378]), we have qφ(zψ|x
L) =

qφ(zψ|x
L,xH).
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194

Proof.

IBBF(φ,ϱ,ς) (B.10)

= ↑I(xL, zψ) + I(zψ,x
H) (B.11)

= ↑Ep(xL,zψ)


log

qφ(zψ,x
L)

p(zψ)p(xL)


+ Ep(xH ,zψ)


log

pθ(x
H , zψ)

p(xH)p(zψ)


(B.12)

= ↑Epφ(xL,zψ)


log

qφ(zψ|x
L)

pψ(zψ)


+ Ep(xH ,zψ)[log pθ(x

H |zψ)] +H[xH ] (B.13)

= ↑Ep(xL,zH ,zL)


log

qφ(z
L|xL)pψ(z

H |zL)

p(zL)pψ(zH |zL)


+ Ep(xH ,zH ,zL)[log pθ(x

H |zH)] +H[xH ] (B.14)

= ↑Ep(xL)


KL(qφ(z

L|xL)||p(zL)

+ Ep(xH ,zH ,zL)


log pθ(x

H |zH)

+H[xH ] (B.15)

= ↑Ep(xL)


KL(qφ(z

L|xL)||p(zL)

+


p(xH , zH , zL)


log pθ(x

H |zH)

dzLdzHdxH +H[xH ]

(B.16)

= ↑Ep(xL)


KL(qφ(z

L|xL)||p(zL)


(B.17)

+


qφ(z

L, zH |xL,xH)p(xH ,xL)

log pθ(x

H |zH)

dzHdxHdxLdzL +H[xH ] (B.18)

= ↑Ep(xL)


KL(qφ(z

L|xL)||p(zL)


(B.19)

+


qφ(z

L|xL)p(xH ,xL)pψ(z
H |zL)


log pθ(x

H |zH)

dzHdxHdxLdzL +H[xH ] (B.20)

= ↑Ep(xL)


KL(q↽(z

L|xL)||p(zL)

+ Ep(xL,xH)Eqφ(zL|xL)


Epψ(zH |zL)[log pθ(x

H |zH)]

+H[xH ]

(B.21)

= Ep(xL,xH)[ELBO
BF (φ,ϱ,ς)] + constant, (B.22)

where H[·] is the di”erential entropy of the input random vector. Since p(xH) is fixed, its entropy

is a constant.

B.3 A Brief Introduction to KID

In this section, we briefly introduce the kernel inception distance (KID). KID is a commonly-

used metric for evaluating the performance of generative models [54], which stems from maximum

mean discrepancy (MMD). MMD is a type of statistical distance that falls under the umbrella of
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the integral probability metric (IPM). Given two probability distributions p(x) and q(x), the IPM

is defined as

IPMF (p, q) := sup
f↑F

Ep[f(x)]↑ Eq[f(x)], (B.23)

where the function class F controls the value range of the IPM and Ep is the expectation with

respect to p(x). Larger F brings higher accuracy to the IPM value but also increases the computing

complexity. By the Kantorovich-Rubinstein duality theorem [530], the Wasserstein-1 distance is a

type of IPM with F being all Lipschitz continuous functions having Lipschitz constant bounded by

1. However, estimating the Wasserstein distance accurately in high dimensions is di!cult. MMD

assigns F to be all functions in a reproducing kernel Hilbert space (RKHS) H with norm bounded

by 1, where H is generated from a given kernel function k : RD ↗ R
D ↘ R. The motivation for

using RKHS is for its computational convenience, as the following propositions show.

Proposition B.3.1. MMD can be expressed in the following alternative form.

MMD(p, q) := sup
∞f∞H=1

Ep[f(x)]↑ Eq[f(x)] (B.24)

= ⇐GH(p)↑ GH(q)⇐H, (B.25)

where GH is a Bochner integral defined as GH(p) :=

RD k(x, ·)p(x)dx.

The proof of Proposition B.3.1 is available from the Lemma 4 in [196]. Suppose we have

samples {xi}
m
i=1 ↓ p(x) and {x̃i}

n
i=1 ↓ q(x), then it is straightforward to see that the following

KID statistic is an unbiased estimate of the MMD:

KID ({xi}
m
i=1, {x̃i}

n
i=1) (B.26)

=
1

m(m↑ 1)

m∑

i,j=1
i ⇑=j

k(xi,xj)↑
2

mn

m∑

i=1

n∑

j=1

k(xi, x̃j) +
1

n(n↑ 1)

n∑

i,j=1
i ⇑=j

k(x̃i, x̃j). (B.27)

Equation (B.26) discloses the connection between KID and MMD. In Section 3.4, we use KID to

present the distributional similarity between two given samples.
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The authors of [54] have shown that a rational quadratic kernel with a mixture of length

scales is a good choice of the kernel function to be used with MMD due to its low rate of tail decay.

The rational quadratic kernel has the form

krq(xi,yj) :=
∑

ω↑I

(
1 +

⇐xi ↑ yj⇐2
2ϑ

)↗ω

, (B.28)

where I = [0.2, 0.5, 1.0, 2.0, 5.0] is a mixture of di”erent length scales.

The following results, which appear as Theorem 10 and Corollary 16 in [196], show the

consistency of KID.

Proposition B.3.2. Assuming both input sample sets have the same size m, and that the kernel

function satisfies 0 ⇓ k(x,y) ⇓ K, KID in Equation (B.26) satisfies

P[|KID↑MMD2| > ⇀] ⇓ 2 exp

(
↑ ⇀2m

16K2

)
, (B.29)

m1/2(KID↑MMD2)
d↑↘ N (0,φ2

u), (B.30)

where φ2
u is a value independent of m and D.

It should be noted that the asymptotic mean square error of KID is m↗1φ2
u, which is indepen-

dent of the dimension D. It is the key reason why we choose KID over other statistical distances

to test our models, considering the problems in this work have large D (D ⇔ 100).
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Appendix C

Langevin Bi-fidelity Importance Sampling

C.1 Variance Deviation

The simplification of the PBF
N variance is as follow:

Vp⇓q

[
PBF
M,N


≃ Z2(ϑ)

N
Vq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)

=
Z2(ϑ)

N

(
Eq

[
hHF(z)<0 exp

(
2ϑ tanh ℜhLF(z)

)
↑
(
Eq

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

))2
)

= =
Z2(ϑ)

N

(
Eq

[
hHF(z)<0 exp

(
2ϑ tanh ℜhLF(z)

)
↑
(

1

Z(ϑ)
Ep

[
hHF(z)<0

)2
)

=
Z(ϑ)

N
Ep

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)
↑ 1

N

(
Ep

[
hHF(z)<0

)2

=
Z(ϑ)

N
Ep

[
hHF(z)<0 exp

(
ϑ tanh ℜhLF(z)

)
↑ (Pf )

2

N
.

(C.1)

C.2 An Upper Bound for the Normalization Constant

Lemma C.2.1. An upper bound for Z(ϑ) is as

Z(ϑ) < (eω ↑ 1)Pp[AL] + 1. (C.2)
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Proof.

Z(ϑ) = Ep[exp
(
↑ϑ tanh ℜhLF(z)

)
]

=



Ω

exp
(
↑ϑ tanh ℜhLF(z)

)
p(z)dz

=



AL

exp
(
↑ϑ tanh ℜhLF(z)

)
p(z)dz +



AC
L

exp
(
↑ϑ tanh ℜhLF(z)

)
p(z)dz

< eωPp[AL] + Pp[A
C
L ]

= (eω ↑ 1)Pp[AL] + 1.

(C.3)

C.3 Simplification for KL Divergence

The detailed process to simplify the KL divergence is,

KL(q→⇐q) = Eq→


log

Z(ϑ) hHF(z)<0

Pf exp (↑ϑ tanh ℜhLF(z))



= log
Z(ϑ)

Pf
+ Eq→ [log hHF(z)<0 + ϑ tanh ℜhLF(z)]

= log
Z(ϑ)

Pf
+



AH

log hHF(z)<0 + ϑ tanh ℜhLF(z)dz

= log
Z(ϑ)

Pf
+ ϑ



AH∝AL

tanh ℜhLF(z)dz + ϑ



AH∝AC
L

tanh ℜhLF(z)dz

< log
(eω ↑ 1)Pp[AL] + 1

Pf
+ ϑPp[AH ↔AC

L ].

(C.4)
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Appendix D

Bi-fidelity Stochastic Subspace Descent

D.1 Proof of Lemma 4.3.7

Proof. We let nk evaluations positioned at equispaced points between xk and xk+⇁maxvk, each sub-

interval has length ⇁max/nk. We also define ↽k(⇁) := ↼(⇁)↑ fLF(x+ ⇁vk). For each sub-interval,

we define the surrogate ↽̃k(⇁;nk) as a linear function connecting these values.

WLOG, we prove the bound in Equation (4.13) holds in the interval ⇁ → [0, h] with h =

⇁max/nk and this result can be extended to other sub-intervals. The surrogate ↽(⇁) is defined as

↽̃k(⇁;nk) :=
h↑ ⇁

h
↽(0) +

⇁

h
↽(h), ⇁ → [0, h], (D.1)

and similar definitions of ↽̃k(⇁;nk) hold when ⇁ in other sub-intervals. Such linear approximation

↽̃k(⇁) satisfies

|↼(⇁)↑ ↼̃k(⇁;nk)| = |↽(⇁)↑ ↽̃k(⇁;nk)| =

∣∣∣∣
h↑ ⇁

h
(↽(0)↑ ↽(⇁)) +

⇁

h
(↽(h)↑ ↽(⇁))

∣∣∣∣, (D.2)

for any ⇁ → [0, h]. Since the Lipschitz constant of ↽(⇁) is strictly controlled by W and the fact

that vk is a unit vector, Equation (D.2) satisfies

|↼(⇁)↑ ↼̃k(⇁;nk)| ⇓ W
⇁max/nk ↑ ⇁

⇁max/nk
(⇁↑ 0) +W

⇁

⇁max/nk
(⇁max/nk ↑ ⇁) ⇓ W⇁max

2nk
, ¬⇁ → [0, h].

(D.3)

Since we have

nk ⇔ WL(1 + c)⇁max

cϱ⇐vk⇐2
, (D.4)
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the sup-norm is bounded as

|↼(⇁)↑ ↼̃k(⇁;nk)| ⇓
cϱ⇐vk⇐2
2(1 + c)L

=
⇐vk⇐2
2

min


c

(1 + c)2L
,

cϱ

(1 + c)L
,ϱ⇁max


=

ϱc⇐vk⇐2
2(1 + c)L

, (D.5)

where the last equality stems from the fact that ϱ ⇓ 1/2 and ⇁max ⇔ c/(cL+ L).

D.2 Single-fidelity SSD with Line Search

D.2.1 Assuming Strong-convexity

Assumption D.2.1. Assume the objective function fHF and algorithm satisfies the following

conditions

(1) Pk → R
d↓ω are independent random matrices such that E[PkP

T
k ] = Id and P T

k Pk = (d/ϑ)Iω

with d > ϑ;

(2) Objective function fHF : Rd ↘ R attains its minimum f→ and ∀fHF is L-Lipschitz contin-

uous;

(3) Objective function fHF : Rd ↘ R is ϖ-strongly convex; note ϖ ⇓ L.

Theorem D.2.2. (Single fidelity) With the assumptions of D.2.1, SSD with line search (either

exact line search or backtracking) converges in the sense that f(xk)
a.s.↘ f→ and f(xk)

L1

↘ f→.

Proof. Define the filtration Fk := φ(P1, . . . ,Pk↗1) and F1 = {D,%}. By Lipschitz continuity, we

have

f(xk+1) ⇓ f(xk) +∀f(xk)
T (xk+1 ↑ xk) +

L

2
⇐xk+1 ↑ xk⇐2. (D.6)

By defining fe(x) := f(x)↑ f→ and plugging xk+1 = xk ↑ ⇁kPkP
T
k ∀f(xk), Equation (D.6) yields

fe(xk+1)↑ fe(xk) ⇓ ↑⇁k∝∀f(xk),PkP
T
k ∀f(xk)′+

⇁2
kL

2
∝PkP

T
k ∀f(xk),PkP

T
k ∀f(xk)′

= ↑⇁k∝∀f(xk),PkP
T
k ∀f(xk)′+

d⇁2
kL

2ϑ
∝∀f(xk),PkP

T
k ∀f(xk)′

=

(
↑⇁k +

d⇁2
kL

2ϑ

)
∝∀f(xk),PkP

T
k ∀f(xk)′,

(D.7)

where the fact PkP
T
k PkP

T
k = (d/ϑ)PkP

T
k is applied. We have two line search approaches to

determine the step size ⇁k,
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(1) Exact line search:

⇁k = argmin
φ

f(xk ↑ ⇁PkP
T
k ∀f(xk)); (D.8)

(2) Backtracking: for some fixed ⇁max > 0, ϱ → (0, ϑ/2d), and c → (0, 1),

⇁k = max
m↑N

cm⇁max

s.t. f(xk ↑ cm⇁maxPkP
T
k ∀f(xk)) ⇓ f(xk)↑ ϱcm⇁max⇐PkP

T
k ∀f(xk)⇐2.

(D.9)

Note that ⇁k is a scalar random variable with randomness from the Haar measure Pk. We will

prove the convergence for two line search methods separately. All the following analyses hold for

any Pk.

Exact line search According to Equation (D.8), the exact line search method can find

the optimal ⇁k such that the quadratic term in Equation (D.7) yields ↑⇁k + d⇁2
kL/2ϑ ⇓ ↑ϑ/2dL

for any Pk, thereby

fe(xk+1)↑ fe(xk) ⇓ ↑ ϑ

2dL
∝∀f(xk),PkP

T
k ∀f(xk)′ ¬Pk. (D.10)

With condition on the current filtration Fk, the conditional expectation on both sides turn to

E[fe(xk+1)|Fk] ⇓ ↑ ϑ

2dL
E

∝∀f(xk),PkP

T
k ∀f(xk)′|Fk


+ fe(xk)

= ↑ ϑ

2dL
⇐∀f(xk)⇐2 + fe(xk),

(D.11)

where the equality is from the fact E[PkP
T
k |Fk] = Id. By invoking the Polyak-Lojasiewicz inequal-

ity,

E[fe(xk+1)|Fk] ⇓ ↑ ϖϑ

dL
fe(xk) + fe(xk) =

(
1↑ ϖϑ

dL

)
fe(xk) (D.12)

Recursive application yields

E[fe(xk+1)|Fk] ⇓
(
1↑ ϖϑ

dL

)
fe(xk) =

(
1↑ ϖϑ

dL

)
E[fe(xk)|Fk↗1] ⇓

(
1↑ ϖϑ

dL

)k+1

E[fe(x0)]

(D.13)

Since ϑ ⇓ d and ϖ ⇓ L, the term 1↑ ϖϑ/dL is less than 1. Equation (D.13) implies

E [f(xk+1)]↑ f→ ⇓
(
1↑ ϖϑ

dL

)k+1

E[(f(x0)↑ f→)] =

(
1↑ ϖϑ

dL

)k+1

(f(x0)↑ f→), (D.14)
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which proves f(xk)
a.s.↘ f→ and f(xk)

L1

↘ f→.

Backtracking (Show the existence of a feasible set such that Armijo condition satisfies.)

Following Equation (D.9), the backtracking method selects the maximal possible step size value

that satisfies the Armijo condition with specified parameter ϱ ⇓ ϑ/2d and shrinking parameter

c < 1. When 0 ⇓ ⇁k ⇓ ϑ/dL, ↑⇁k + d⇁2
kL/2ϑ ⇓ ↑⇁k/2 holds with Haar measure probability one,

which implies the following Armijo stopping condition

f(xk+1) ⇓ f(xk)↑ ⇁k∝∀f(xk),PkP
T
k ∀f(xk)′+

d⇁2
kL

2ϑ
∝∀f(xk),PkP

T
k ∀f(xk)′

⇓ f(xk)↑
⇁k

2
∝∀f(xk),PkP

T
k ∀f(xk)′

= f(xk)↑
⇁kϑ

2d
⇐PkP

T
k ∀f(xk)⇐2

⇓ f(xk)↑ ϱ⇁k⇐PkP
T
k ∀f(xk)⇐2.

(D.15)

Therefore, the backtracking terminates when ⇁k = ⇁max or ⇁k ⇔ ϑc/dL, which implies

fe(xk+1) ⇓ fe(xk)↑ ϱ⇁max∝∀f(xk),PkP
T
k ∀f(xk)′, (D.16)

or

fe(xk+1) ⇓ fe(xk)↑
ϑcϱ

dL
∝∀f(xk),PkP

T
k ∀f(xk)′. (D.17)

Similar with Equation (D.11), by combining Equation (D.16) and Equation (D.17) and taking

expectations conditioned on the filtration Fk, we have

E[fe(xk+1)|Fk] ⇓ ↑min


ϱ⇁max,

ϑcϱ

dL


E

∝∀f(xk),PkP

T
k ∀f(xk)′|Fk


+ fe(xk)

= ↑min


ϱ⇁max,

ϑcϱ

dL


⇐∀f(xk)⇐2 + fe(xk).

(D.18)

Similar with Equation (D.12), by invoking the Polyak-Lojasiewicz inequality,

E[fe(xk+1)|Fk] ⇓ ↑min


2ϖϱ⇁max,

2ϑcϖϱ

dL


fe(xk) + fe(x) =

(
1↑min


2ϖϱ⇁max,

2ϑcϖϱ

dL

)
fe(xk).

(D.19)

By recursively implementing Equation (D.19), we have

E[fe(xk+1)] ⇓
(
1↑min


2ϖϱ⇁max,

2ϑcϖϱ

dL

)k+1

fe(x0). (D.20)

Since 0 < c < 0, 0 < ϖ ⇓ L, 0 < ϑ ⇓ d, and 0 < ϱ < 0.5, the term 0 < (1↑min{2ϖϱ, 2ϑcϖϱ/dL}) <

1, the convergences f(xk)
a.s.↘ f→ and f(xk)

L1

↘ f→ are guaranteed.
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D.2.2 Assuming Convexity

Assumption D.2.3. For the non-strongly convex objective function fHF and the algoritihm, we

make the following assumptions

(1) Pk → R
d↓ω are independent random matrices such that E[PkP

T
k ] = Id and P T

k Pk = (d/ϑ)Iω

with d > ϑ;

(2) Objective function fHF : Rd ↘ R is convex and ∀fHF is L-Lipschitz continuous;

(3) The function fHF attains its minimum(s) f→ at x→ so that there exists a known R satisfying

maxx,x→{⇐x↑ x→⇐ : fHF(x) ⇓ fHF(x0)} ⇓ R;

Given the above convex-but-not-strongly-convex assumption, we have the following L1 con-

vergence result:

Theorem D.2.4. With backtracking implemented for line search, we have

E[f(xk)]↑ f→ ⇓ max


2R2

kϱ⇁max
,
2dLR2

kϑcϱ


. (D.21)

Proof. We use the same notation as in the proof of Thm. D.2.2. Starting from Equation (D.18),

we have

E[fe(xk+1)|Fk] = ↑min


ϱ⇁max,

ϑcϱ

dL


⇐∀f(xk)⇐2 + fe(xk). (D.22)

By convexity and the Cauchy-Schwartz inequality, ⇐∀f(xk)⇐ ⇔ fe(xk)/R. With the fact that

Efe(xk+1) ⇓ Efe(xk), we have

Efe(xk+1)↑ fe(xk) ⇓ ↑min


ϱ⇁max,

ϑcϱ

dL


Ef2

e (xk)

2R2

⇓ ↑min


ϱ⇁max,

ϑcϱ

dL


E
2fe(xk)

2R2

⇓ ↑min


ϱ⇁max,

ϑcϱ

dL


Efe(xk+1)Efe(xk)

2R2
,

(D.23)

which further implies

1

Efe(xk+1)
⇔ 1

Efe(xk)
+ 2R2min


ϱ⇁max,

ϑcϱ

dL


. (D.24)
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Applying (D.24) recursively, we obtain

Efe(xk+1) ⇓
(
min


ϱ⇁max,

ϑcϱ

dL

)↗1 2R2

k
= max


2R2

kϱ⇁max
,
2dLR2

kϑcϱ


. (D.25)

D.2.3 No convexity assumptions

Assumption D.2.5. We make the following assumptions:

(1) Pk → R
d↓ω are independent random matrices such that E[PkP

T
k ] = Id and P T

k Pk = (d/ϑ)Iω

with d > ϑ;

(2) The objective function fHF : R
d ↘ R (or fHF) attains its minimum f→ and ∀fHF is

L-Lipschitz continuous;

When Assumption D.2.5 holds, we have following L2 convergence of the gradient norm result

for SSD with line search:

Theorem D.2.6. With Assumption D.2.5 holding and backtracking implemented for line search,

we have

min
k↑{0,...,K}

E[⇐∀f(xk)⇐2] ⇓ max


(f(x0)↑ f→)
(K + 1)ϱ⇁max

,
dL(f(x0)↑ f→)
(K + 1)ϑcϱ


. (D.26)

That is, k = O(1/(⇀ϱ⇁max) + dL/(⇀ϑcϱ)) iterations are required to achieve E⇐∀f(xk)⇐2 ⇓ ⇀.

Proof. Following Equation (D.18)

min


ϱ⇁max,

ϑcϱ

dL


⇐∀f(xk)⇐2 ⇓ fe(xk)↑ E[fe(xk+1)|Fk], (D.27)

which leads to the telescope series

min


ϱ⇁max,

ϑcϱ

dL

 K∑

k=0

⇐∀f(xk)⇐2 ⇓
K∑

k=0

(fe(xk)↑ E[fe(xk+1)|Fk])

= f(x0)↑ Ef(xK+1) ⇓ f(x0)↑ f→.

(D.28)
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Therefore,

(K + 1) min
k↑{0,...,K}

E⇐∀f(xk)⇐2 ⇓
(
min


ϱ⇁max,

ϑcϱ

dL

)↗1

(f(x0)↑ f→)

= max


(f(x0)↑ f→)

ϱ⇁max
,
dL(f(x0)↑ f→)

ϑcϱ


.

(D.29)

A su!cient condition to let E⇐∀f(xk)⇐2 be ⇀-small is to let

k ⇔ max


(f(x0)↑ f→)

⇀ϱ⇁max
,
dL(f(x0)↑ f→)

⇀ϑcϱ


. (D.30)

D.3 Worst Function in the World: Additional Data

c = 0.8 c = 0.9 c = 0.99

Method ϑ = 5 ϑ = 10 ϑ = 20 ϑ = 5 ϑ = 10 ϑ = 20 ϑ = 5 ϑ = 10 ϑ = 20

GD 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026
CD 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984
FS-SSD 2.4495 2.4194 2.3611 2.4495 2.4196 2.3619 2.4497 2.4194 2.3622
SPSA 0.7713 0.7756 0.7502 0.6245 0.4623 0.5549 0.6046 0.6721 0.7006
GS 2.4598 2.4442 2.4129 2.4597 2.4447 2.4144 2.4596 2.4445 2.4150
HF-SSD 0.3620 0.2511 0.2194 0.8667 0.5109 0.3337 3.4582 1.7191 1.0331
BF-SSD 0.3177 0.2947 0.2932 0.2686 0.2526 0.2497 0.2316 0.2104 0.1984
VR-SSD 0.9885 0.9374 0.9178 0.9881 0.9464 0.9154 0.9925 0.9395 0.9121

Table D.1: Performance values for di”erent optimization methods across various c and ϑ combina-
tions at N = 5,000. The minimum value in each row is highlighted in bold.
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