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Applications of machine learning to Inverse Scattering
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Sample Selection Bias in Machine Learning
(Robin Bowers)
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Physics-Assisted Learning
Approach

Deconstruct the equations governing scattering, use
this to inform the design of a minimally-sized neural
network

A History of Machines

Playing Games
(Thomas Neal)

“Switchnet: A neural network model for forward
and inverse scattering problems.”

Yuehaw Khoo and Lexing Ying

TD-Gammon

Developed by Gerald Tesauro
Watson Research Center, TD-
computer program designed to'f
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m Cancer screenings: only specific populations recommended for \/here po = mianUP[X] > 0.
testing

Problem: We might ignore mistakes on training samples which are
more common in the testing set.

() Ground truth scattering pattern d. (1) Predicted seatlesiag paticrs @

Universal Approximation Power of Deep Residual Networks: A

review with applications to research in controls & optimization

ottt iy P (AR licioy™ Residual Networks <= Control Systems pt. 2 (Lily Coth ren)

A P P M 44 9 0/54 9 O [1], [2] provide results from a control-theoretic view.*

Discretized Differential Equation . . o . .
To claim universal approximation of continuous functions, we need:

“Theory of Machine Learning”
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Figure 1: Multi-class Classification Boosting Comparison

The Benefit of Multitask Representation

Symmetry, Invariance, and Learning: A Critical Review

Machine Learning (Killian Wood)
(Ezzeddine AlSai)
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£ ( TZ Q()) = ‘2 (F()Q’ Figures depict test error gap (0-1 loss) between MTL and ITL as a
function of T and n.

Gap widens when number of tasks exceeds the number of samples used
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Binary Classification Problem: Dictionary representation using synthetic

™3 ple.la®,2)V™(z,)] * Applied Math (MS, PhD) =

MMD_rbf

» Computer Science (PhD) Discrepancy Principle =
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The following proposition explains why MU Is a kernel embedded
distance.
Proposition 2.1 Maximum mean discrepancy (MMD) between two
distribution P and Q defined above can also be represented as

> Aerospace Engineering (PhD)

: MMD(P, Q) = [[wp — wqlln,
Review Of AgnOStIC Active Learnmg where wp := [} k(x,-)dup, and pp is the probability measure of P.

(Lauren Marsh) _ _ _ ) _
Theorem 1 (Correctness Balcan et al.(3]). Forall H, forall (D, O), for all valid subroutines for CO n SIStent Reg|0n‘ Based Losses via LOVa SZ H | nge

computing UB and LB, for all0 < ¢ < 1/2 and 0 < § < 1/2, with probability 1 - §, A returns .
an e-optimal hypothesis or does not terminate. ( E nri q ue N u eVe)

Theorem 2 (Balcan et al.[3]). Forall H, forall (D, O), for all UB and LB satisfying m(2¢,5, H) <
%M,farallo <e<1/2and0< 6 <1/2, the algorithm A2 makes at most2m(e,8', H) calls to
oracle, O, where§' = m and N(e, 8, H) satisfies N(¢,6, H) = In % Inmf(e,d', H).
Here m(e, 6, H) is the sample complexity of UB and LB.

Valid for most “reasonable” subroutines for computing UB and LB, such as VC bound, Occam’s
Razor Bound or data-dependent generalization bounds based on Rademacher complexity
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