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Non-convex

(w) = (α, ( , − w x ))

Convex Optimization in Machine Learning:  
Multistage Relaxation for Non-Convex Objectives 

(Joseph Castagneri, Denis Kazakov, Davis Yoshida)

Optimal Beamforming Given Positional Array Element Uncertainty 
(Michael Fromandi, Ryan Montoya, Erez Shani)

(a) Finite Difference Method with N(µ,0.1) added noise (b) LP underdetermined reconstruction.

Figure 13: Gradient Descent reconstruction of a random N = 20 element antenna array targeting K = 2 users, noisy FD
and underdetermined LP, w 2 RNx(N�2)

6.3 Error Sensitivity
In both cases, it is clear that either reconstruction technique is extremely susceptible to measurement noise. This is to be
expected, as the reconstruction can only be as close to the noisy signal as possible without violating the EDM conditions.
Nonlinear Gradient Descent perfectly imposes the EDM conditions, and is therefore the optimal choice for approximating
the true solution.

(a) Finite Difference Method with N(µ,0.9) added noise

(b) LP underdetermined reconstruction, w 2 RNx(N�5)
.

Figure 14: Gradient Descent reconstruction of a random N = 20 element antenna array targeting K = 2 users, subject to
additional uncertainty.

From Figure 14, it is clear that the system must have almost a full rank measurement matrix � and low noise variance
to allow for effective reconstruction. Most of the mean error may be calibrated or removed, but noise variance may only be
reduced if additional samples can be taken, or if the noise structure is well understood.
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A Convex Optimization Procedure for Missing Data Principle 
Components Analysis with applications to Econometrics 

(Theodore Naff)

ponent does fall short of the Modified Zero approach in that it only accounting for 26.14% of the

variance.

A common way of understanding principle components is through the use of bi-plots which

employ both points and vectors to represent structure. Specifically, a bi-plot uses points to represent

the scores of the observations on the principal components, and it uses vectors to represent the

coe�cients of the variables on the principal components. In the case of the bi-plots presented in

Figure 7, all forty-five variables are represented in this bi-plot by a vector, and the direction and

length of the vector indicates how each variable contributes to the two principal components in the

plot. For example, the variables L50 and L80 which represent average very-low and low income

limits respectively, have a strong positive influence on both components. By contrast, variables like

AMTF (the annual cost of other fuels) and VALUE (the current market value of the unit) have a

strong positive impact on one principle component and negative impact on the other.

Figure 7: Orthonormal Coe�cients for Proposed Methods

While the small sample size inherently limits the scope of our investigations, we can see certain

parallels between our results and other empirical results from the literature in economics. In

particular, our finding of the importance of L50 and L80 has many parallels. Most directly, Tanjil

& Chakraborty (2013) employ an adaptive LASSO to analyze data from the American Housing

Survey and find that L50 has a large positive impact on housing values. Case et al. (2000) found

a strong relationship between renting and lower incomes in the AHS. Ferreira et al. (2010) noted

16

Mixture Setup

Let P be a joint distribution over (X
1

, ...,X
d

), with d < +1, and
each X

i

2 X , with |X | = k .

P can be written as a mixture P = � · Q+ (1� �) · S, 0  �  1,
where Q is exchangeable and S is some other distribution.

We wish to find the largest possible �.

Let M = {exchangeable measures on X d}, and
FP(Q) = maxP��·Q �.

Then we wish to optimize maxQ2M FP(Q).
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Analytical Solution

The results of the weighted simplex search, along with the analytical form
for the optimum in the bivariate Bernoulli case, motivated the following
theorem:

Theorem

For a given source P over X d , the maximum possible weight of any
exchangeable component of P is

�⇤ =
X

⌃2⌥
|⌃| ·min

�2⌃
P(�), (1)

and this weight is uniquely achieved by the measure Q⇤ which, for each
⌃ 2 ⌥, gives equal mass min�2⌃

P(�)
�⇤ to each x 2 ⌃.

Antony Pearson Largest Exchangeable Component 1 May 2017 21 / 23

Largest Exchangeable Component: finite case 
(Antony Pearson)

CSCI 5720: Advanced Convex Optimization, University of Colorado-Boulder, May 1, 2017

DDP: How It Works
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1. Pick a control guess.

2. Propagate the dynamics forward.

3. Evaluate the cost.

4. Compute corrections to the 

control backwards using a 
quadratic approximation of 
Bellman’s principle of optimality.


5. Update: Apply corrections 
propagating forward using a line 
search.

The equations are a mess!

min
{uk}k=0,...,N−1

J =
N−1∑

k=1

Lk(xk,uk, k) + φ(xk, N)

xk+1 = f(xk,uk, k)

x0 = x̄0

An Introduction to Differential Dynamic Programming for Optimal Control Problems  
(Manuel Díaz Ramos David Iglesias Echavarría Christopher Rabotin)

Sample Noisy Recovery

Problem Formulation
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On Superresolution 
(Rachel Robey & Nicole Woytarowicz)

Seismic Migration: Visualization

Figure: Marine Seismic Data Acquisition
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Seismic Migration: Visualization

Figure: Marine Seismic Data Acquisition
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(Ryan Mustari, Derek Driggs, Jon Lavington)
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