

On Superresolution (Rachel Robey \& Nicole Woytarowicz)
$\min _{\tilde{x}}\|\tilde{x}\|_{T V}$ subject to $\mathcal{F}_{c} \tilde{x}=y$
Consider the dual to shift instead to infinite-dimensionality in the constraints

A Convex Optimization Procedure for Missing Data Principle Components Analysis with applications to Econometrics (Theodore Naff)
Hydrophone sting

The Adjoint State Method Applied to Seismic Migration (Ryan Mustari, Derek Driggs, Jon Lavington)

Kernel regression in PDE approximation
(Nathaniel Mathews)

Largest Exchangeable Component: finite case

(Antony Pearson)

- Let \mathcal{P} be a joint distribution over $\left(X_{1}, \ldots, X_{d}\right)$, with $d<+\infty$, and each $X_{i} \in \mathcal{X}$, with $|\mathcal{X}|=k$.
- \mathcal{P} can be written as a mixture $\mathcal{P}=\lambda \cdot \mathcal{Q}+(1-\lambda) \cdot \mathcal{S}, 0 \leq \lambda \leq 1$, where \mathcal{Q} is exchangeable and \mathcal{S} is some other distribution.
- We wish to find the largest possible λ.

The results of the weighted simplex search, along with the analytical form for the optimum in the bivariate Bernoulli case, motivated the following theorem:

Theorem
For a given source \mathcal{P} over \mathcal{X}^{d}, the maximum possible weight of any exchangeable component of \mathcal{P} is

$$
\lambda^{*}=\sum_{\Sigma \in \Upsilon}|\Sigma| \cdot \min _{\sigma \in \Sigma} \mathcal{P}(\sigma),
$$

and this weight is uniquely achieved by the measure \mathcal{Q}^{*} which, for each $\Sigma \in \Upsilon$, gives equal mass $\min _{\sigma \in \Sigma} \frac{\mathcal{P}(\sigma)}{\lambda^{*}}$ to each $x \in \Sigma$.

An Introduction to Differential Dynamic Programming for Optimal Control Problems

(Manuel Díaz Ramos David Iglesias Echavarría Christopher Rabotin)

