
APPM 4720/5720 (special topics)
“Randomized Algorithms”
Prof. Becker, spring 2019

Student projects

Hough Transformation and its
Randomized Version: Line Detection

(Jiafan Qian)

Student backgrounds:
‣ Applied Math (BS, BS/MS, PhD)
‣ Engineering Physics (BS)
‣ Computer Science (BS)
‣ Electrical & Comp. Eng. (BS)
‣ Aerospace (PhD)

An Analysis of Primality Tests
(Adrian Strock)

Music Clip Identification with Randomized Locality Sensitive

Hash Tables

Padraig S. Lysandrou
Samuel W. Wishnek

The University of Colorado Boulder, Boulder, CO 80301
https://github.com/Lysandr/minHash Shazam

Figure 1: Block diagram describing the numerical processes of our algorithm.

Figure 2: A clip of Darude - Sandstorm after processing and spectrogram conversion.

1 OF 2

a) Predictably, identification accuracy decreased with the addition of
noise. However, the algorithm was still relatively robust for many songs.

b) Predictably, as the duration of the sample clip provided increased, so
did the identification accuracy.

Figure 3: Box and whisker plot showing the spread of execution times for duration of clip. Note the y-axis is

logarithmic.

2 OF 2

Music Clip Identification with Randomized Locality Sensitive Hash Tables
(Padraig Lysandrou, Samuel Wishnek)

Classifying Income
(Cheryl Hansen)
Use census data to predict if annual income is
above or below $50K
- Quantifying categorical data for use in k-
Means++
- Subsampling entries while obtaining similar
classification accuracy with k-Means

1/1

Training Neural Nets with Random Projections

Projection 100 ⇥ 100 300 ⇥ 100 1000 ⇥ 1000
No Sketch 97.30 98.06 98.16
Gaussian 96.26 (.92) 96.36 (.88) 96.84 (.80)

Subsampling 92.37 (.90) 92.85 (.87) 92.67 (.82)
FJLT 97.97 (.92) 97.57 (.89) 97.50 (.84)
Sparse 96.60 (.92) 97.19 (.89) 97.41 (.79)

CountSketch 96.61 (.90) 97.23 (.87) 97.48 (.80)

Training Neural Nets with Random Projections
(Alec Dunton, Fortino Garcia, Felix Newberry)

Origin	 Image Edge	Image

HT RHT

Experiments with t-SNE
Riley Hadjis, Suyog Soti, Aparajithan Venkateswaran

Can we make t-SNE faster using Locality Sensitive Hashing or designing a new cost function?

Experiments with t-SNE
(Riley Hadjis, Suyog Soti, Aparajithan Venkateswaran)

https://github.com/Lysandr/minHash_Shazam

Looking at the total time spent calculating all values, we see the AKS primality test
was at least twice as fast as the Miller-Rabin and Fermat test respectively.

Algorithm AKS Miller-Rabin(k=5) Fermat(k=5)

Time(s) 9.632 26.313 20.729

Comparing accuracy, we note that every algorithm obtained a perfect score. That is,

1000 known primes were tested, and each prime was declared as such by all algorithms in
this paper. Although this accuracy is astonishing, this outcome is expected as our theory
predicts prime numbers should pass the given test. A similar test using composite numbers
instead of primes will produce similar and accurate results. The important takeaway is that
given a random number, our tests are all pretty accurate. The main difference between the
three is the time needed to perform the task.

Algorithm AKS Miller-Rabin(k=5) Fermat(k=5)

Accuracy 1000/1000 1000/1000 1000/1000

Knowing that each algorithm is sufficiently accurate, we can now try to decrease the
k-value used in the Miller-Rabin and Fermat test in order to level to speed up their
respective performances, while, also hoping we maintain good accuracy.

For a k-value of two, the following total time was measured:

Looking at the total time spent calculating all values, we see the AKS primality test
was at least twice as fast as the Miller-Rabin and Fermat test respectively.

Algorithm AKS Miller-Rabin(k=5) Fermat(k=5)

Time(s) 9.632 26.313 20.729

Comparing accuracy, we note that every algorithm obtained a perfect score. That is,

1000 known primes were tested, and each prime was declared as such by all algorithms in
this paper. Although this accuracy is astonishing, this outcome is expected as our theory
predicts prime numbers should pass the given test. A similar test using composite numbers
instead of primes will produce similar and accurate results. The important takeaway is that
given a random number, our tests are all pretty accurate. The main difference between the
three is the time needed to perform the task.

Algorithm AKS Miller-Rabin(k=5) Fermat(k=5)

Accuracy 1000/1000 1000/1000 1000/1000

Knowing that each algorithm is sufficiently accurate, we can now try to decrease the
k-value used in the Miller-Rabin and Fermat test in order to level to speed up their
respective performances, while, also hoping we maintain good accuracy.

For a k-value of two, the following total time was measured:

Figure 5: Comparison between two of the neighbor functions (1&3), both using temperature func-
tion 5 and two of the previous methods we used.

solver, but on average perform slightly worse.

Algorithm Max Objective Value Mean Objective Value Mean Runtime (s)
Greedy 104.85 70.047 0.341

Dynamic Programming 167.98 141.48 82.4
Branch & Bound (n=1) 168.51 N/A N/A

Neighbors 1 SA 170.87 162.38 0.46
Neighbors 3 SA 170.87 164.96 0.673

Table 1: Algorithm Performance Comparison. All algorithms were run 100 times unless otherwise
specified.

6 Conclusions

For the purpose of finding the optimal Draft Kings lineup, simulated annealing is e↵ective and fast.
Since it is a random algorithm it does not always converge on the most optimal solution; however,
with su�cient trials we discern it can obtain the largest objective value of all the approaches we
have implemented.

We found that neighbors function 3 had the most consistently desirable objective values. Neigh-
bor functions 1 and 4 were also e↵ective, with function 1 being able to obtain the same maximum
objective value as neighbors 3. Since neighbors 1 is slightly faster than 2 and 3, it might be
advantageous if a significant number of trials are required.

In our future gambling pursuits, we might attempt to find more clever neighbor or temper-
ature functions. But more likely, we will apply simulated annealing to a di↵erent combinatorial
optimization problem. Hopefully one where the stakes are even higher.

10

Figure 5: Comparison between two of the neighbor functions (1&3), both using temperature func-
tion 5 and two of the previous methods we used.

solver, but on average perform slightly worse.

Algorithm Max Objective Value Mean Objective Value Mean Runtime (s)
Greedy 104.85 70.047 0.341

Dynamic Programming 167.98 141.48 82.4
Branch & Bound (n=1) 168.51 N/A N/A

Neighbors 1 SA 170.87 162.38 0.46
Neighbors 3 SA 170.87 164.96 0.673

Table 1: Algorithm Performance Comparison. All algorithms were run 100 times unless otherwise
specified.

6 Conclusions

For the purpose of finding the optimal Draft Kings lineup, simulated annealing is e↵ective and fast.
Since it is a random algorithm it does not always converge on the most optimal solution; however,
with su�cient trials we discern it can obtain the largest objective value of all the approaches we
have implemented.

We found that neighbors function 3 had the most consistently desirable objective values. Neigh-
bor functions 1 and 4 were also e↵ective, with function 1 being able to obtain the same maximum
objective value as neighbors 3. Since neighbors 1 is slightly faster than 2 and 3, it might be
advantageous if a significant number of trials are required.

In our future gambling pursuits, we might attempt to find more clever neighbor or temper-
ature functions. But more likely, we will apply simulated annealing to a di↵erent combinatorial
optimization problem. Hopefully one where the stakes are even higher.

10

1: procedure Simulated Annealing(P(Ei, Ej , T), N(x), T (k), kmax)
2: x x0 . Initialize x
3: for k = 1, . . . , kmax do
4: T T (k) . Update temperature, based on k
5: xcandidate N(x) . Propose a new candidate state
6: if P(E(x), E(xcandidate), T) � Uni(0, 1) then . Possibility of state change
7: x xcandidate

8: end if
9: end for

10: return x
11: end procedure

We apply this general algorithm to our specific problem by tailoring the “energy” function,
E(x), to be our objective function and handling our constraints with N(x). The neighbors function,
N(x), is another convenient component of simulated annealing, where one can use their creativity
to further accommodate their particular problem. We implement a variety of neighbors functions
and evaluate their e�cacy in Section 4.5. T (k) is the temperature function and is only dependent
on the current iteration of the algorithm, k. T (k) is also discretionary, and can be chosen to change
the properties of convergence for the algorithm. We experiment with a few di↵erent temperature
functions in Sections 4.4. The acceptance probability function P(Ei, Ej , T), however, we do not
modify from the suggested function in [5]. Thus,

P(E(x), E(xcandidate), T) =

(
exp {�(E(xcandidate)� E(x))/T} E(xcandidate) � E(x)

1 E(xcandidate) < E(x).

4.2 Temperature Functions

We define and utilize 5 temperature functions [6], T (k):

1. T (k) = T0/ (ln k + 1)

2. T (k) = T0e(c�1)k for fixed 0 < c < 1

3. T (k) = cTk�1 for fixed 0 < c < 1

4. T (k) = T0/(k + 1)

5. T (k) = T0/(k + 1)2.

The consistent property of these 5 functions is that they are decreasing in k.

4.3 Neighbor Functions

We create and utilize 4 di↵erent neighbors algorithms. Quickly recall that x is a binary vector with
xi = 1 if the i-th player is in the lineup and xj = 0 if the j-th player is not in the lineup. Thus for
the following algorithms, let i be associated with players who are currently in the lineup and j be
associated with players who are not currently in the lineup.

3

Simulated Lineup Smithing
(Draft Kings portfolio selection, ver. 2)

(Tyler Schuessler, Nelson Mitchell)

Improvements to t-SNE
(Kathryn Gray,
Ryan Marizza,
Zack Jensen)

Private IoT Device Identification Using
Locality-Sensitive Hashing

(Will Shand)

https://github.com/stephenbeckr/randomized-algorithm-class

https://github.com/Lysandr/minHash_Shazam
https://github.com/stephenbeckr/randomized-algorithm-class

