
Figure 4: Reservoir computer prediction (red) and the true dynamical system (blue)

Figure 5: 3D plot of the RC predicted time series compared with the true system

5

Figure 4: Training Loss Figure 5: Testing Loss

Figure 6: (Belkin 2019) results

4 Discussion

We argue that while this looks qualitatively similar to the double descent curve
seen in Random Fourier Feature models and neural networks this is a funda-
mentally di↵erent phenomena. First of all in (Belkin 2019) they mention that
Random forests with (maximal) interpolating decision trees are “more robust
to noise in the training data” and “yield better generalization.” Because Ran-
dom forests do not su↵er from the same overfitting problems as other models
we should not expect to see the classical U-shaped curve describing the bias-
variance tradeo↵.

Another argument to be made is that while the number of leaves and trees
are said to control the model complexity they do so in fundamentally di↵erent
ways. Leaves control model complexity in the way we typically have studied, i.e a
tree with n leaves correspond to n piecewise constant functions with axis-aligned

5

Figure 2: (Left) Optimizes networks at a variety of depths and initializations. (Right) Com-
pares Tensorflow’s LeNet example code to an “overparameterized” version created by
doubling up all dense layers.

3 Discussion and Conclusion

The paper provided an interesting explanation for why overparameterization may be assisting
in the optimization of neural networks. While the analysis clearly does not directly apply to
non-linear nets and higher order Lp losses are rare, it provides one concrete example of a sce-
nario where overparameterization does provably (and empirically) improve performance over
minimally parameterized models. It’s unclear if there is a way to extend the analysis to non-
linear networks, but the experiment where they overparameterize the Tensorflow example code
gives some reason to believe that the phenomenon might. Though in fairness, one of the authors
did acknowledge that the Tensorflow example may be slightly cherry-picked in his presentation
(recorded on YouTube) at DeepMath 2019, so it’s hard to tell.

It’s actually interesting that Arora’s group also works on Neural Tangent Kernel approaches
(Arora et al., 2019). This approach is width-agnostic. The authors credit acceleration entirely
to depth and performance is shown to be about equivalent between 1 and 100 node hidden
layers. Neural Tangent Kernel methods on the other hand exist in the infinite width realm
and, to my knowledge, do not say much about depth. The non-infinite width bounds on NTK
tend to be quite large as well. The proof of convergence for NTK is based on the fact that for
infinitely wide networks, the weights stay very close to their initialization values. Plugging in
the logic from NTK arguments, it actually seems as though by including a weight norm term,
the derived update formula suggests that acceleration should be non-existent for wide networks
and rapidly growing for narrow networks. It would have been interesting to see the authors
comment on that interaction given that they do publish on both topics.

Of the explanations out there for overparameterization enabling learning in deep nets, I can’t
say this was my favorite. There’s a degree to which it seems too clean while being unable to
explain too much. For instance, the paper ignores generalization entirely which is a roadblock
for many methods that seem to converge faster on training data. The paper also demonstrates
accelerated gradient flow, but they do not touch on what type of critical point the network is
converging to.

Overall, it was a solid paper that suggested counterintuitive explanations for observed phe-
nomena. The authors were able to support the arguments both empirically and theoretically
and the explanation provided seems plausible if incomplete.

5

APPM 7400 (special topics)
“Theory of Machine Learning”

Prof. Becker, spring 2020
Student projects

Distributed and Inexact Proximal Gradient
Method for Online Convex Optimization

(Amirhossein Ajalloeian)

Student backgrounds:
‣ Applied Math (BS/MS/PhD)
‣ Math (PhD)
‣ Engineering Physics (BS)
‣ Computer Science (PhD)
‣ Electrical & Comp. Eng.

(BS/PhD)
‣ Aerospace (PhD)
‣ Mechanical Eng. (BS)

Deep Learning against COVID-19
(Arturo Freydig Avila)
- classification of infected lungs via x-ray

data using convolutional neural nets
- Recurrent Neural Networks to predict

spread of COVID-19 in Mexico
- Mask detection in images

Generating an Operation on Embeddings Using Neural Networks
(Jordan DuBeau and Albany Thompson)

https://github.com/stephenbeckr/ML-theory-class

6

A. Simulation setup

The simulations are performed for a random graph with
N = 25 nodes and ⇠ 160 edges, with vectors of dimension
n = 5. The consensus matrix W is built using the Metropolis-
Hastings rule. The nodes are tasked with solving, in a dis-
tributed fashion, a sparse linear regression problem; that is, fi
and gi are:

fi(xi; tk) =
1

2
kAi,kxi � bi,kk2 and gi(xi; tk) = �1 kxik1 .

Let bi,k = Ai,ky(tk) + ei,k be the noisy measurements of the
sparse signal y(tk) performed by the i-th node, with ei,k 2
N (0, 10�3). The signal has bn/2c non-zero components, and
�1 is set to �1 = 0.01. Different regression matrices Ai,k are
randomly generated at each sampling time tk, with condition
number of ⇠ 100.

In the time-varying case, the signal has sinusoidal com-
ponents with different phases uniformly drawn from [0, ⇡],
angular frequency 0.5, and the sampling time is Ts = 0.01.

The results presented are averaged over 100 Monte Carlo
iterations. As a performance metric, the cumulative tracking

error is utilized, which is defined in the time-invariant (TI)
and time-varying (TV) case, respectively, as:

E`
TI :=

1

`

X̀

h=0

��xh � x⇤�� , Ek
TV :=

1

k

kX

h=0

kx(th) � x⇤(th)k .

In the following, both time-invariant and time-varying
sparse linear regression problems are considered. The nodes
exhibit errors caused by white Gaussian noise on the commu-
nications, with variance �2

comm.

B. Time-varying problem

This section considers the time-varying, inexact DPGM for
the sparse linear regression problem described above.

A first result is presented in Figure 1, which illustrates the
cumulative tracking error attained by DPGM, PG-EXTRA, and
NIDS for different values of No; that is, by varying the number
of steps of the algorithm within each interval Ts.

0 20 40

10�8

10�7

10�6

10�5

10�4

10�3

�2
comm = 0

0 20 40

10�2

2 � 10�3

3 � 10�3

4 � 10�3

6 � 10�3

�2
comm = 0.001

PG-EXTRA

NIDS

DPGM

Num. of solver steps (No)

C
um

ul
at

iv
e

tr
ac

ki
ng

er
ro

r

Fig. 1. Comparison in terms of cumulative tracking error of DPGM (proposed
in this paper), PG-EXTRA [20], and NIDS [21] for a time-varying sparse
linear regression problem, without and with communication errors. The step-
size of each algorithm is chosen as 0.5↵̄.

It can be noticed that, in the case of exact algorithmic steps
(left plot), PG-EXTRA and NIDS have better performances
the larger No is, since they converge exactly. On the other
hand, when inexactness is introduced, PG-EXTRA attains
worse errors than DPGM, while NIDS diverges. Indeed, it
is interesting to see that DPGM performs the worst for time-
invariant problems and with exact updates, but becomes the
best algorithm in the time-varying and inexact cases. A further
remark is that the performance of PG-EXTRA and DPGM
coincide for No = 1, since with this choice PG-EXTRA
reduces to DPGM.

Another interesting observation is that the cumulative error
of the proposed DPGM – as well as PG-EXTRA in the inexact
case (right plot) – decreases only up to a threshold value of No,
and afterwards exhibits a plateau. The following observation
explains this behavior. By Corollary 1, one has that

lim sup
k!1

E [kx(tk) � x⇤(tk)k] ��No

1 � �No
+

+
1

1 � �

1 � �No+1

1 � �No

⇣
4↵Lg + �0 + 2E

⇥��e`s
��⇤

⌘

' ��No

1 � �No
+

1

1 � �

⇣
4↵Lg + �0 + 2E

⇥��e`s
��⇤

⌘
. (25)

The right-hand-side of (25) is therefore the sum of two terms,
��No

1��No , which decreases as No increases, and 1
1��

⇣
4↵Lg +

�0 + 2E
⇥��e`s

��⇤
⌘

, which is constant even if the number of
steps No varies. Therefore, when the second term becomes
dominant over the first one, the cumulative error plateaus.

Finally, Figure 2 depicts the cumulative tracking error of
the proposed DPGM for different choices of No and ↵.

Fig. 2. Cumulative tracking error of DPGM for different number of solver
steps No and different choices of step-size.

The cumulative tracking error of DPGM plateaus after a
threshold value of No. Moreover, the larger the step-size, the
smaller the error, since the right-hand side of (25) is weighted
by 1/(1 � �).

VI. CONCLUSIONS

This paper developed an online DPGM for time-varying
composite convex optimization problems. The algorithmic
steps of the online DPGM may be “inexact” to account for ap-
proximate first-order information of the smooth component of

Generating an Operation on Embeddings Using

Neural Networks

Jordan DuBeau & Albany Thompson

4/24/20

1 Problem Statement

The goal of our project was to design a neural network that could help create
an embedding algebra. An embedding algebra consists of a set E of strictly
increasing functions N ! N (we call the members of E embeddings), together with
an operation ⇤ such that the following conditions hold for all embeddings a, b, c:

1. a ⇤ b is an embedding,

2. if b is not the identity function, then crit(a ⇤ b) = a(crit(b)) (see below), and

3. a ⇤ (b ⇤ c) = (a ⇤ b) ⇤ (a ⇤ c).

In item (2), we understand crit(f) for a strictly increasing function f : N ! N to be
the smallest n for which f(n) > n, called the critical point of f . Every strictly
increasing function N ! N has a critical point, with the exception of the identity
function.

Technically, the set containing only the identity function (with id ⇤ id defined to
be id) is an embedding algebra by the above definition, so our project is designed
to look for a nontrivial embedding algebra. We usually ignore this technicality and
just say “embedding algebra.”

It is not at all clear that an embedding algebra should exist. It is di�cult to
construct an operation ⇤ that satisfies the above requirements by hand, and it is
also unclear which strictly increasing functions should be members of E. But the
question of whether an embedding algebra exists is of great interest in set theory.
This is due to a “large cardinal axiom” called Axiom I3, which essentially asserts
the existence of an unfathomably large set. This axiom cannot be proven in ZFC
(nor is it known to be inconsistent with ZFC), but it would imply the existence of
an embedding algebra.

So the question of whether an embedding algebra exists is in a peculiar situation.
The question is simple enough to state, and concerns only natural numbers and
functions on the natural numbers. And yet, as far as we know, it seems to be
a↵ected by the existence of a particularly large infinite set. Whether the existence
of an embedding algebra can be proven in ZFC is currently open. Using a neural
net to come up with an operation ⇤ that is close to satisfying the desired properties
would be helpful for gaining intuition about whether such an operation exists, and
how it might behave.

The set theory that motivates this question was initiated by Rich Laver (CU
Boulder), and much of the theory can be credited to him. The specific question of

1

Figure 2: Table of data gathered

performance on average than the sigmoid. One other thing we can observe is that
the training error and testing error are in general very close – this seems at first like
a good generalization outcome for us, but it may also be a sign that our generation
of random embeddings was not diverse enough, and that the training and testing
datasets themselves were too similar.

Figure 3: Sample output with small
loss

Figure 4: Sample output with large
loss

To get a sense of how well the operation was performing, we plotted the output of
our neural net (orange) against the “correct answers” (blue) for some of the testing
data. In Figures 3 and 4 we show our network performing well and performing
poorly, respectively. The network in the figures was trained on 1,000,000 inputs
(represented by the third row from the bottom in Figure 2).

As can be seen in the pictures, our networks tended to output very similar
embeddings for all input data. This low dependence on input shows how di�cult
of a task we are asking of our neural net; some very subtle changes in the input
can lead to drastically di↵erent expected outputs. The network is not confident in
predicting how steeply it will need to curve, so it gives outputs that depend less
on the input data but are more likely to succeed on average. Nonetheless, we were
happy to see that it can capture the correct output fairly well.

7

5 Face Mask Detection

Another interesting application of CNNs is in face mask detection. The company AIZOO Tech released an open source project
for face mask detection using Keras for learning and replication purposes. What it is interesting to see, is that the model they
used to build this project y based on simple CNNs and writen in Keras showing the simplicity of writing an accurate face
mask recognition application. This model could be used in supermarkets, restaurants, hospitals and public places to identify
costumers and people without a mask. This example serves to illustrate another important application based on DL.

Figure 14: No Mask Detection Figure 15: Mask Detection

6 Conclusion

This project presented three different examples on how Deep Learning can serve as an important tool to help medical experts
combat COVID-19. The intention of these examples is to illustrate how deep learning could aide experts, not to blindly use
these tools without medical knowledge. It is promising to see the high accuracy of the X-ray lung testing — particularly for
developing countries where COVID-19 tests might be limited. The use of GRUs to predict the COVID-19 spread also shows
potential as a simple model was able to almost replicate the last 12-days of COVID-19 spread in Mexico only using 83 sample
days. Lastly, the project shows how simple is to adapt face mask detection that could be use to open cities where the spread of
cases is slowing down.

This project thought me how to use Keras and implement CNNs, LSTMs, RNNs, and GRUs. I also realized that Machine
Learning concepts are not straight-forward to implement and require robustness to become working products — using the same
epochs, samples, and model I would get different accuracy and predictions, which particularly in the medical field, cannot
happen. However, it is promising to see acceptable results and learn how Machine Learning Scientist could help.

References

[1] Ioannis D. Apostolopoulos, Sokratis Aznaouridis, and Mpesiana Tzani. Extracting possibly representative COVID-19

Biomarkers from X-Ray images with Deep Learning approach and image data related to Pulmonary Diseases. 2020.
arXiv: 2004.00338 [eess.IV].

[2] Roobottom C.A. Mitchell G. Morgan-Hughes G. Radiation-reduction strategies in cardiac computed tomographic an-

giography. 2010.
[3] Ali Narin, Ceren Kaya, and Ziynet Pamuk. Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images

and Deep Convolutional Neural Networks. 2020. arXiv: 2003.10849 [eess.IV].
[4] Can Jozef Saul, Deniz Yagmur Urey, and Can Doruk Taktakoglu. Early Diagnosis of Pneumonia with Deep Learning.

2019. arXiv: 1904.00937 [cs.CV].

9

Figure 2: CNN Backpropagation Idea

Now, like magic we can teach computers to identify images based on feature maps obtained through kernel convolutions. In
medical images, this means that we can teach large networks to identify diseases, which could be otherwise hard to detect to
the naked eye. Just like lungs with COVID-19 and healthy lungs.

3.2 Results

Unfortunately, there are not huge amounts of COVID-19 X-ray images — however, using image augmentation techniques
I created 1900 images based on a dataset of 39 infected images. These images were then divided (60/20/20) to create our
training, validation, and test sets. The healthy lung images were taken from an open source dataset and there was no need to
augment [Figure 3]. After data preprocessing, a CNN model [Figure 4] was created with a total of 1, 649, 057 parameters.

Figure 3: X-Ray Images

4

Data-Driven Model Predictive Control
(Felipe Galarza-Jimenez) 2

Dynamics

Controller
𝒖 ൌ 𝑲ሺ࢟ሻ

𝑑࢞
𝑑𝑡

ൌ 𝑭 ,𝒖,࢞ 𝒅
࢟ ൌ 𝑯ሺ࢞ሻ

C
on

tro
l

Disturbances d

u

J

y C
ost functional

Sensor

Fig. 1: Diagram of a generic controlled dynamical system.

xk+1 = f(xk, uk)

y = h(xk, uk)

x(0) = x0

(1)

We represent the dynamical system in discrete time as shown in (1), and the reconstruction of the model of the

dynamical system is based on discrete stored data that in the scheme shown in Fig. 1 is provided by the sensor

measuring the output. The subindex k here is to put emphasis on the discrete nature of the system, but will be used

ahead only when necessary for the sake of a clean notation.

A. Koopman Operator Definition

For controlled dynamical systems it is necessary to define the Koopman operator associated to the uncontrolled

dynamical system evolving on a extended state-space given by the product of the original state-space with the space

of all control sequences. An element of this control sequence `(U) is u := (ui)1i=0 with ui 2 U ⇢ Rm. Let us

denote the extended state as

� =

2

4x

u

3

5 and

�k+1 = 's(�) :=

2

4f(x, u(0))

u(k + 1)

3

5 ,

then the Koopman operator K : F ! F is defined as

(K�)(�) = � � 's(�), 8� 2 F , (2)

where an observable � : Rn ⇥ `(U) ! R belongs to a space of observables F . Note that K is linear and infinite

dimensional and acts on the observables. A way to approximate K is using EDMD, which requires snapshot

April 24, 2020 DRAFT

7

0 5 10 15

-0.5

0

0.5

0 5 10 15
-2

-1

0

1

-0.5 0 0.5
-2

-1

0

1

0 5 10 15

-1

-0.5

0

0.5

1

Fig. 3: Inverted pendulum without friction and MPC feedback controller.

VI. CONCLUSIONS

We reproduced the desired results for the damped Duffing oscillator steering its output with a MPC controller.

Additionally, we were able to track the same reference but for an inverted pendulum, which usually is a more

problematic setup since it is not a normalized system. This MPC shows robustness to model errors and a fast

computing complexity given the dense form of the optimization problem.

REFERENCES

[1] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica,

vol. 93, pp. 149–160, jul 2018.

[2] M. Korda and I. Mezic, “Optimal construction of koopman eigenfunctions for prediction and control,” 2018.

[3] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “A kernel-based method for data-driven Koopman spectral analysis,” Journal of

Computational Dynamics, 2015.

[4] S. Klus, I. Schuster, and K. Muandet, “Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces,” Journal of

Nonlinear Science, pp. 283–315, 2020.

April 24, 2020 DRAFT

7

0 5 10 15

-0.5

0

0.5

0 5 10 15
-2

-1

0

1

-0.5 0 0.5
-2

-1

0

1

0 5 10 15

-1

-0.5

0

0.5

1

Fig. 3: Inverted pendulum without friction and MPC feedback controller.

VI. CONCLUSIONS

We reproduced the desired results for the damped Duffing oscillator steering its output with a MPC controller.

Additionally, we were able to track the same reference but for an inverted pendulum, which usually is a more

problematic setup since it is not a normalized system. This MPC shows robustness to model errors and a fast

computing complexity given the dense form of the optimization problem.

REFERENCES

[1] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica,

vol. 93, pp. 149–160, jul 2018.

[2] M. Korda and I. Mezic, “Optimal construction of koopman eigenfunctions for prediction and control,” 2018.

[3] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “A kernel-based method for data-driven Koopman spectral analysis,” Journal of

Computational Dynamics, 2015.

[4] S. Klus, I. Schuster, and K. Muandet, “Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces,” Journal of

Nonlinear Science, pp. 283–315, 2020.

April 24, 2020 DRAFT

PAC-Bayesian Framework
(Ayoub Ghriss)General PAC-Bayes theorem

� : [0, 1]⇥ [0, 1] 7! R is a convex function

General theorem (Bégin et al, Germain (2014,2015)

For any prior P, any �, and any �, we have w.p � 1 � �:

8Q on H : �(Rout(Q),Rin(Q))
1

m

⇥
DKL(Q k P) + log

J�(m)

�

⇤
,

where

J�(m) = sup
r2[0,1]

⇥ mX

k=0

✓
m

k

◆
r k(1 � r)m�k expm�(k/m, r)

⇤

Ayoub Ghriss (University of Colorado, Boulder) PAC-Bayesian Framework 7 / 18

Analysis of Least Squares Support Vector Machines for
Learning Solutions to Partial Differential Equations

(DeAnna Gilchrist)8 DEANNA GILCHIRST

Figure 4. Analytic solution shown with training, validation, and test so-
lutions for � = 100 and � = 1014.

4.2. Discussion. Overall, this was an interesting topic that was a nice match between my
typical research areas of discretizing and solving PDEs the topics covered in the theoretical
machine learning class. I was not thrilled that the results I produced did not match that of
the original work, however, not all parameters were reported in the paper. The results I did
observe appeared to generalize well, despite having high errors. Additionally, I applied this
method to the Poisson equation on a circular domain, and observed the complete opposite
trend. That is, I observed relatively low errors in training, but validation yielded errors
on the same order as the solution. Hence, I did not include the analysis here (also this
is already a really long report considering the 4 page requirement). A more exhaustive
validation study should have produced the optimal values of � and �. Those were the only
parameters that were not determined directly for the optimization problem.

With a longer timeline it would have been a good study to explore other kernels and
compare to other machine learning methods. Many of the results in the original paper, [1],
were compared to other work including results of neural networks and genetic programming.
Studying this further may have been useful in determining the optimal model parameters.

8 DEANNA GILCHIRST

Figure 4. Analytic solution shown with training, validation, and test so-
lutions for � = 100 and � = 1014.

4.2. Discussion. Overall, this was an interesting topic that was a nice match between my
typical research areas of discretizing and solving PDEs the topics covered in the theoretical
machine learning class. I was not thrilled that the results I produced did not match that of
the original work, however, not all parameters were reported in the paper. The results I did
observe appeared to generalize well, despite having high errors. Additionally, I applied this
method to the Poisson equation on a circular domain, and observed the complete opposite
trend. That is, I observed relatively low errors in training, but validation yielded errors
on the same order as the solution. Hence, I did not include the analysis here (also this
is already a really long report considering the 4 page requirement). A more exhaustive
validation study should have produced the optimal values of � and �. Those were the only
parameters that were not determined directly for the optimization problem.

With a longer timeline it would have been a good study to explore other kernels and
compare to other machine learning methods. Many of the results in the original paper, [1],
were compared to other work including results of neural networks and genetic programming.
Studying this further may have been useful in determining the optimal model parameters.

THEORETICAL MACHINE LEARNING FINAL PROJECT:LEAST SQUARES SUPPORT VECTOR MACHINES FOR LEARNING SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS5

4.1. Poisson Equation on Rectangular Domain. This set of reproduced results comes
from the singular linear second-order partial di↵erential equation defined on a rectangular
domain. That is,

(14) r2u(x, y) = exp(�x)(x� 2 + y3 + 6y)

with x, y 2 [0, 1] and Dirichlet boundary conditions

u(0, y) = y3

u(1, y) = (1 + y3) exp(�1)

u(x, 0) = x exp(�x)

u(x, 1) = (x+ 1) exp(�x)

With exact solution
u(x, y) = exp(�x)(x+ y3)

4.1.1. Training. The training points were 100 evenly spaced collocation points as described
in the original work ([1]). It is worth mentioning that the boundaries are only included in
the training process as a constraint in the optimization model, 11. Training solution and
error is computed along with the validation step to determine the correct choice of �,�.
The training error for possible values �,� are shown in Figure 1. Error results compared
to validation and testing are shown in Figures 2 and 3. Results of the trained solution are
shown along side the validation and test results in Figure 4.

4.1.2. Validation. Performance of this LS-SVM method depends on the choice of the pa-
rameters � and �, the kernel bandwidth and the regularization parameter, respectively.
The original work, [1], does not share their validation steps to tune such parameters. In-
stead, they share that a large value of � is used because in the case of solving PDEs, there
is no noise and there are no target values. A “large” value of � such that the optimization
problem is sharply minimized, with no magnitude given on “large”. Regarding �, [1] (in
Figure 3) shares only the validation results for one of their example cases - not the example
case I replicated.

Thus, for the equation studied here, 14, validation was performed on a grid of (�, �)
pairs formed from:

� = [0.1, 1, 10, 100, 103]

� = [1, 103, 107, 1010, 1014],

where these values are inspired by Figure 3 of [1], and various possible “large” values of
�. Grid values for validation are the same number of points as in testing, however they
were o↵set such that there was no overlap in training and validation points. The validation
results here are shown in Figure 5. From these results, the �, � used for testing were
chosen from the intersection of the lowest training and validation error. Thus, testing was
performed with � = 100 and � = 1014.

Analytic
solution

Training
solution

Testing
solution

Empirical Evidence for the Double Descent Curve
(Aidan Bohenick and Evan Gorman)

non-linear predictors, that have very low or zero training risk. It seems as, even
though the function class is very large and there is near-zero loss on the train-
ing data, these predictors often give very accurate results on new unseen data.
When the function class capacity is below the interpolation threshold, learned
predictors exhibit the classical U -shaped curve from Figure 1. The bottom of
the U is achieved where the fit to training data balances with the susceptibility
to over-fitting. If we increase the function class capacity high enough (e.g., by
increasing the number of features or the size of the neural network architecture),
the learned predictors can achieve a near perfect fit to the training data. How-
ever, where we would now expect to have a large true risk due to over-fitting,
our risk actually becomes lower. This idea is shown in Figure 2. The decrease
in true risk can even go below the minimum risk achieved at the optimal point
in the classical regime.

Figure 2: The double descent risk curve is a combination of the U -shaped risk
curve with observed behavior from using high capacity function classes[1].

In the remainder of this paper, we discuss empirical evidence for the double
descent curve through the use of Random forests.

2 Random Forests

Random forests are an ensemble learning method for classification, regression,
and other tasks. A Random forest is made by first constructing a multitude of
decision trees. After, the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees will be taken as the output.
The mode or mean is used because trees that are constructed to be very deep
tend to learn highly irregular patterns. That is, they over-fit their training sets.
The Random forests correct for this habit of over-fitting to their training set.

As stated, Random forests are a way of averaging multiple deep decision
trees, trained on di↵erent parts of the same training set, with the goal of reducing
the variance. This comes at the expense of a small increase in the bias and some
loss of interpretability. However, this averaging generally greatly boosts the

3

A Review of “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks” by Finn et. al.

(C. Alexander Hirst)
“Learning to learn”: How can we make machine learning algorithms flexible, able to adapt to
new tasks quickly (with little training data)?
• A hallmark of human intelligence, we are able to leverage relevant past experiences to

quickly learn (i.e. driving in town, with small car -> driving in city, with SUV)
• For AI agents deployed to the real-world, they will have to adapt to unseen data quickly

and safely
• “Life-long Learning”
• Few-shot Meta-Learning: Train a model that can quickly adapt to a new task using only a

few training points and training iterations.

Review of Error Bounds for Gaussian Process Regression
(John Jackson)

Exploration of the Bias-Variance Trade-off with Respect to the
Size and Training Regularization of a Reservoir Computer

(Nicholas Landry)
An RC that is used to predict future behavior of a dynamical system accepts a time-series of data sampled
from the dynamical system at a constant rate which is used as ground truth.

We divide a reservoir computer into three components – the input layer, the reservoir, and the output
layer which we can see in Figure 1.

Figure 1: Illustration of the structure of a reservoir computer[2]

2.2.1 Input Layer

The input layer is a fixed-weight, single-layer network that maps an NS-dimensional input from the time
series to NR nodes in the reservoir. This input layer can be constructed using a variety of methods, but
the general principle is to provide a diverse range of linear combinations of the input data to the reservoir
nodes. Oftentimes random entries and weights are used to ensure that the reservoir nodes receive many
di↵erent combinations of the input data. This layer is not changed during training of the RC. It is encoded
in a NR ⇥NS adjacency matrix Win.

2.2.2 Reservoir Layer

The reservoir layer is a weighted, directed, random network. In training, no edges are added or removed
and no weights are changed. It is weighted like a standard RNN, with the exception that once the weights
are chosen, they do not change. In addition, it is directed like standard RNNs. Oftentimes, the weights and
edges are chosen randomly.

2.2.3 Output layer

The output layer is a single-layer all-to-all network that maps the activation outputs of the NR reservoir
nodes to the N outputs. This is the only layer that is trained within this framework. We train this single-
layer network by finding the ERM for a given risk minimization problem. Because this is the only trained
component, the cost is drastically reduced compared to training an RNN.

2.3 How do you train a reservoir computer?

As mentioned prior, we only train the output layer. The single-layer output network is encoded in a NS⇥NR

adjacency matrix, Wout. As seen in Figure 2a, the procedure for training the RC over a time range [0, T] is
as follows:

First, we define an input time series generated from a dynamical system as

U = {u(0),u(�t),u(2�t), . . . ,u(n�t)} = {u0,u1,u2, . . . ,un}

where T = n�t.

2

Figure 4: Reservoir computer prediction (red) and the true dynamical system (blue)

Figure 5: 3D plot of the RC predicted time series compared with the true system

5

Multiclass Problems and Linear Multiclass Predictors
(Stevan Maksimovic)

Multiclass Problems and Linear Multiclass Predictors

Stevan Maksimovic
APPM 7400 Project

April 24, 2020

1 Introduction

For this project I want to explore a topic we did not go over in class: multiclass classification.
Throughout this course, we mostly focused on binary classification. However, in most real world
classification problems, the number of classes is greater than two. Multiclass classification is the
problem of classifying instances into one of several possible target classes. In binary classification,
we aim to learn a predictor h : X ! Y , where Y = {0, 1} or Y = {�1, 1}. For multiclass
classification, we aim to solve the same problem, but Y is any finite set of categories. Applications
include categorizing documents according to topic or determining which object appears in a given
image.

The multiclass learning problem has sparked the development of various approaches for ad-
dressing the task. The most straightforward approach is reducing multiclass classification to binary
classification. We will discuss two main methods for multiclass reduction as well as the drawbacks
of each approach. Then, we will discuss a family of linear predictors for multiclass problems. Using
regularized loss minimization (RLM) and stochastic gradient descent (SGD), we will explore several
algorithms for multiclass prediction.

2 Reduction to Binary Classification

The simplest approach to multiclass prediction problems is by reduction to binary classification.
The two main methods of multiclass reduction is one-versus-all (OVA) and all-pairs. Without loss
of generality, let Y = {1, . . . , k}.

2.1 One-vs-All

In the one-vs-all method, we train k binary classifiers, each of which discriminates between one class
and the rest of the classes. Given a training set S, we construct k binary training sets, S1, . . . , Sk

where Si = ((xj , (�1)1yj 6=i)|mj=1). In other words, Si is the set of instances labeled 1 if their label
in S is i, and �1 otherwise. For each i 2 [k] we train a binary predictor hi : X ! {±1} based on
Si. Then, given h1, . . . , hk, we construct a multiclass predictor using the rule

h(x) 2 argmaxi2Y hi(x) (1)

When more than one binary hypothesis predicts 1, the problem arises of how we should decide
which class to predict. One way is to arbitrarily break ties by taking the minimal index. A better

1

Implicit Acceleration by Overparameterization
(Arora, Cohen, Hazan 2018)

(Mike McCabe)

https://github.com/stephenbeckr/randomized-algorithm-class

