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Motivation: Why approximate the spectral norm?

Spectral norms can be used as an error estimator when trying to
approximate matrices.

Remark 2.1 (Martinson et. al., 2020)

For example, let us consider a variant of the spiked covariance model that
is common in statistics applications. Suppose we need to approximate a
rank-one matrix contaminated with additive noise: A = u⃗u⃗∗+ ∈ Rn×n,
where ∥u⃗∥ = 1 and G ∈ Rn×n has independent entries from N (0,n−1)
entries. With respect to the Frobenius norm, the zero matrix is almost as
good an approximation of A as the rank-one matrix uu∗:

E[∥A − u⃗u⃗∗∥2F ] = ε2n and E[∥A − 0∥2F ] = ε2n
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An Existing Approach: Power Method

Liberty et. al., (2007)

Suppose A is an m × n complex-valued matrix and ω⃗ is a n × 1 column
vector with i.i.d. entries from a complex gaussian distribution. With
ν⃗ = ω⃗

∥ω⃗∥2
, we define

pj(A) =
¿
ÁÁÀ ∥(A∗A)j ν⃗∥2
∥(A∗A)j−1ν⃗∥2

.

Then pj(A) ≥ ∥A∥/10 with probability greater than 1 − 4
√
n/(j − 1)100−j ,

and pj(A) ≤ ∥A∥ for all j .
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Streaming Data

Let A be an m × n matrix of data, and suppose we went to append it with
an m × k dataset B.

C = [A B] = [A 0m×k] + [0m×n B] = A′ +B ′

By writing C = A′ +B ′ as above, we run into a potential storage issue. We
must store both the old data A and new data B in order to calculate the
spectral norm approximation:

pj(C) =

¿
ÁÁÁÀ ∥((A′ +B ′)∗(A′ +B ′))j ν⃗∥2
∥((A′ +B ′)∗(A′ +B ′))j−1ν⃗∥2
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A Different Approach:

Lemma 4.1 (Halko et. al., 2011)

Let A be a real m × n matrix. Fix a positive integer r and a real number
α > 1. Draw an independent family {ω⃗i ∶ i = 1,2, ...,N} of standard
Gaussian vectors. Then

∥A∥ ≤ α max
i=1,2,...,N

∥Aω⃗i∥

except with probability α−N
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Efficient Storage for Streaming Data

Let ΩA = [ω⃗1 ω⃗2 ... ω⃗N] be an n ×N matrix whose columns are
independent standard Gaussian vectors, and define

YA = AΩA = [Aω⃗1 Aω⃗2 ... Aω⃗N] .

To achieve the bound on the previous slide, calculate maxi=1,2,...,N ∥Aω⃗i∥

Suppose now that we append the m × k matrix B to A to get C = [A B].
We let ΩB be a k ×N matrix whose columns are independent standard

Gaussian vectors, and define ΩC = [
ΩA

ΩB
] . Then

YC = CΩC = [A B] [ΩA

ΩB
] = AΩA +BΩB = YA +BΩB ,

implying that we only need to calculate BΩB after storing the m ×N
matrix YA.
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Frobenius Norm is off by factor of r 1/2

We can write the Frobenius norm as the ℓ2-norm of the singular values:

∥A∥F =
√
∑r

i=1 σ
2
i . Using this and the fact that the spectral norm of A is

the largest singular value of A, we have

∥A∥ ≤ ∥A∥F ≤ r1/2∥A∥

since

σmax ≤ (
r

∑
j=1

σ2
r )1/2 ≤ r1/2σmax.

This tells us that the Frobenius norm can be off from the spectral norm by
a factor of r1/2.
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Estimate is greater than Frobenius norm

We show E[∥Aω⃗∥2] = ∥A∥2F :

E[∥Aω⃗∥2] = E[ω⃗TATAω⃗] = Tr(E[ω⃗TATAω⃗]) = E[Tr(ω⃗TATAω⃗)]

= E[Tr(ATAω⃗ω⃗T )] = Tr(E[ATAω⃗ω⃗T ]) = Tr(ATAE[ω⃗ω⃗T ])

= Tr(ATA) = ∥A∥2F
Analyzing the bound given by Halko et. al. (2011), we see

E[ max
i=1,2,...,N

∥Aω⃗i∥2] ≥ E[
1

N

N

∑
i=1

∥Aω⃗i∥2] =
1

N

N

∑
i=1

E[∥Aω⃗i∥2] = ∥A∥2F
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Plot of Error
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The ℓ4 norm is better

By the same arguement as before,

∥A∥ ≤ ∥σ⃗∥4 ≤ r1/4∥A∥.

One idea is to approximate the ℓ4-norm of the singular values since this is
a tighter bound.

Let ω⃗, ν⃗ ∈ N (0, Ir) be independent gaussian random vectors. Define the
random variable X = (Aω⃗)TAν⃗. We will show E[X 2] = ∥σ⃗∥44
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WLOG, use diagonal matrices

Let A = UΣV T be the singular value composition of our m × n matrix A.
By orthogonality,

E[X 2] = E[((Aω⃗)TAν⃗)2] = E[(ω⃗TATAν⃗)2] = E[(ω⃗TVΣUTUΣV T ν⃗)2]

= E[(ω⃗TVΣ2V T ν⃗)2] = E[((V T ω⃗)TΣ2V T ν⃗)2]

Since ω⃗, ν⃗ ∈ N (0, In), we have that V T ω⃗,V T ν⃗ ∈ N (0,V TV ) = N (0, In).
Thus,

E[((Aω⃗)TAν⃗)2] = E[((Σω)TΣν)2]

Furthermore, since Σ only has r non-zero values along it’s diagonal,
without loss of generality, we can let Σ be an r × r diagonal matrix from
here on and have ω⃗, ν⃗ ∈ N (0, Ir), and later on we will asume A to be the
same.
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Calculating the ℓ4 norm:

E[X 2] = E[((Σω⃗)TΣν⃗)2] = E[(
r

∑
j=1

σ2
j ωjν j)2]

= E[
r

∑
j=1

r

∑
k=1

σ2
j σ

2
kωjωkν jνk] =

r

∑
j=1

r

∑
k=1

σ2
j σ

2
kE[ωjωkν jνk]

=
r

∑
j=1

r

∑
k=1

σ2
j σ

2
kE[ωjωk]E[ν jνk] =

r

∑
j=1

σ4
j = ∥σ⃗∥44.

Practically speaking, we draw random vectors from a Gaussian distribution
to create a sample mean to approximate E[X 2]. Thus, we would like to

show that the difference ∣ 1N ∑
N
j=1X

2
j −E[X 2]∣ is small with high probability.
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Sub-Weibull Random Variables

We define X to be sub-Weibull random variable with tail parameter θ if

P(∣X ∣ ≥ x) ≤ a exp(−bx1/θ) for all x > 0, for some θ, a,b > 0

Equivalently, a random variable is a sub-Weibull with tail parameter θ if
there exists some constant K2 > 0 such that

∥X ∥p ∶= (E[∣X ∣p])1/p ≤ K2p
θ

for all p ≥ 1.

Examples

Sub-Gaussian random variables have θ = 1/2
Sub-Exponential have θ = 1
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X = (Dω⃗)TD ν⃗ is sub-exponential

Let A be a diagonal r × r matrix with positive diagonal entries σi , and let
ωi , νi ∈ N (0,1). Since ωi , νi are sub-Gaussian, there exists a constant k
such that for all p ≥ 1,

∥ωi∥p ≤ kp1/2.

Since ∥ ⋅ ∥p is a norm, we can use the triangle inequality on X :

∥X ∥p = ∥
r

∑
i=1

σ2
i ωiνi∥p ≤

r

∑
i=1

σ2
i ∥ωiνi∥p =

r

∑
i=1

σ2
i (E[∣ωi ∣p ∣νi ∣p])1/p.

By independence, the above equals

r

∑
i=1

σ2
i (E[∣ωi ∣p])1/p(E[∣νi ∣p])1/p ≤

r

∑
i=1

σ2
i (kp1/2)(kp1/2) = k2p∥A∥2F
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We care about X 2, but there’s a problem

X 2 = ((Dω⃗)TD ν⃗)2 is sub-Weibull with parameter θ = 2:

∥X 2∥p = (E[∣X 2∣p])1/p = ((E[∣X ∣2p])1/2p)2 = (∥X ∥2p)
2

≤ (∥A∥2Fk2(2p))
2 = 4k4∥A∥4Fp2.

We would like to use concentration properties of sub-Weibull random

variables to show the difference ∣ 1N ∑
N
j=1X

2
j −E[X 2]∣ is small with high

probability.
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Sub-Weibull Theorems

Corollay 3.1 (Vladimirova et. al., 2020)

Let X1, ...,Xn be identically distributed sub-Weibull random variables with
tail parameter θ. Then, for all x ≥ NKθ, we have

P(∣
N

∑
i=1

Xi ∣ ≥ x) ≤ exp(−(
x

NKθ
))

for some constant Kθ dependent on θ.

The problem is that for our situation, Kθ is proportional to 1/N.
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Sub-Weibull theorems

Theorem 3.1 (Kuchibhotla et. al., 2022)

If X1, ...,Xn are independent mean zero random variables with ∥Xi∥ψα <∞
for all 1 ≤ i ≤ n and some α > 0, then for any vector (a1, ..., an) ∈ Rn, then
we have

P(∣
n

∑
i=1

aiXi ∣ ≥ 2eC(α)∥b∥2
√
t + 2eL∗n(α)t1/α∥b∥β(α)) ≤ 2e−t

for all t ≥ 0, where b = (a1∥X1∥ψα , ..., an∥Xn∥ψα) ∈ Rn.
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Another attempt

Theorem:

Let A be an m × n real-valued matrix with rank r > 16. Draw ω⃗i and ν⃗i
independently from N (0, In) for all i ∈ {1, ...,N}. If we define
Xi = (Aω⃗i)TAν⃗i , then there exists a constant K > 0 such that for any t > 0,

∣ 1
N

N

∑
i=1

∣Xi ∣
1/2 − ∥A∥∣ ≤ (r1/4 − 1)∥A∥ + t,

with probability greater than 1 − 2 exp(− Nt2

Kr∥A∥2
).

This theorem is far from ideal.
If ∥A∥ ≤ 1

N ∑
N
i=1 ∣Xi ∣

1/2
, we have that 1

N ∑
N
i=1 ∣Xi ∣

1/2 ≤ r1/4∥A∥ + t and is

actually a slightly better approximation than our estimator 1
N ∑

N
i=1X

2
i .

However, it is not guaranteed that ∥A∥ ≤ 1
N ∑

N
i=1 ∣Xi ∣

1/2
.
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(Proof) Concave Jensen

We use the concave version of Jensen’s inequality:

E[∣X ∣1/2] = E[∣X ∣2/4] ≤ (E[X 2])1/4 = ∥σ⃗∥4

If ∥A∥ ≤ E[∣X ∣1/2],

E[∣X ∣1/2] − ∥A∥ ≤ r1/4∥A∥ − ∥A∥ = (r1/4 − 1)∥A∥,

and if ∥A∥ ≥ E[∣X ∣1/2],

∥A∥ −E[∣X ∣1/2] ≤ ∥A∥ ≤ (r1/4 − 1)∥A∥

Thus we have a bound on the absolute value of the error.
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(Proof) X 1/2 is sub-Gaussian

The advantage of using ∣X ∣1/2 is that it is sub-Gaussian with constant
proportional to ∥A∥F . Using Jensen’s inequality again, we see

∥∣X ∣1/2∥p = (E[∣X ∣p/2])1/p ≤ ((E[∣X ∣p])1/p)
1/2 = (∥X ∥p)

1/2 ≤ k∥A∥Fp1/2

Thus, we will apply general Hoeffding’s inequality to show E[∣X ∣1/2] can
be closely approximated by 1

N ∑
N
j=1 ∣Xj ∣

1/2
with high probability.
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(Proof) General Hoeffding’s Inequality

Given a random variable X , we define the sub-Gaussian norm of X to be

∥X ∥ψ2 = inf{t > 0 ∶ E[exp(X 2/t2) ≤ 2]

General Hoeffding’s Inequality (Vershynin, 2018)

Let X1,X2, ...,XN be independent, mean zero, sub-gaussian random
variables, and a = (a1, a2, ..., aN) ∈ RN . Then for every t ≥ 0

P(∣
N

∑
j=1

ajXj ∣ ≥ t) ≤ 2 exp( −
ct2

K 2∥a∥22
)

where K = maxj ∥Xj∥ψ2
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(Proof) Applying Hoeffding

Using the triangle inequality,

∥∣X ∣1/2 −E[∣X ∣1/2]∥p ≤ ∥∣X ∣1/2∥p + ∥E[∣X ∣1/2]∥p ≤ k∥A∥Fp1/2 +E[∣X ∣1/2]

≤ k∥A∥Fp1/2 + r1/4∥A∥p1/2 ≤ r1/2(k + 1)∥A∥p1/2.

We can assert that ∥∣X ∣1/2 −E[∣X ∣1/2]∥ψ2 = Cr1/2(k + 1)∥A∥ for some
constant C > 0.
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Applying Hoeffding

This lets us apply Hoeffding to the subgaussian random variables
X̃j = ∣Xj ∣1/2 −E[∣X ∣1/2] with aj = 1/N for all j and K = C 2(k + 1)2/c :

P(∣ 1
N

N

∑
j=1

∣Xj ∣1/2 −E[∣X ∣1/2]∣ ≥ t) ≤ 2 exp( −
Nt2

Kr∥A∥2)
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(Proof) Conclusion

Finally, by the triangle inequality,

∣ 1
N

N

∑
i=1

∣Xi ∣
1/2 − ∥A∥∣ ≤ ∣E[∣X ∣1/2] − ∥A∥∣ + ∣ 1

N

N

∑
i=1

∣Xi ∣
1/2 −E[∣X ∣1/2]∣

≤ (r1/4 − 1)∥A∥ + t

with probability greater than 1 − 2 exp(− Nt2

Kr∥A∥2
).
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Conclusion
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Highlighting text

In this slide, some important text will be highlighted because it’s
important. Please, don’t abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is “Examples”.
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