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Why optimization?

Why optimization?

ACM: PDE, geometry, signal processing, optimization

convex optimization, relaxations.

non-convex optimization: heuristics (e.g. genetic algorithms)

Why this seminar?

Taught haphazardly: high school (Lagrange multipliers, Newton’s
Method), college, grad school

Field changing quickly
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Definitions

Convexity

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), ∀ 0 ≤ α ≤ 1

If f is differentiable, then an equivalent definition is:

Convexity

f (x + h) ≥ f (x) + 〈∇f (x), h〉

If f is twice differentiable, then an equivalent definition is:

Convexity

∇2f (x) � 0
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Subgradient and subderivative

Recall if f is differentiable and convex, then

Convexity

f (x + h) ≥ f (x) + 〈∇f (x), h〉

This means the first order Taylor expansion is an understimate of the
function. This is global, not just local!
If a vector g satisfies the following equation

Subgradient

f (x + h) ≥ f (x) + 〈g , h〉

then we say that g is a subgradient of f (at x). If there is only one such g ,
then g = ∇f (x) and f is differentiable at this point x . The subdifferential
of f at x , written ∂f (x), is the set of all subgradients of f at x .
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Optimization problem

Optimization

min
x

f0(x)

subject to

fi (x) ≤ 0 ∀i = 1, . . . , p inequality constraints

hj(x) = 0 ∀j = p + 1, . . . ,m equality constraints

f0 is known as the objective, and often written as just f .

Assume f is a functional, i.e. f : Rn → R
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Convex Optimization problem

A convex optimization problem requires two things:

1 The objective f0 is a convex function

2 The inequality constraints fi are convex functions

Note that an equality constraint h(x) = 0 is the same as two inequality
constraints. So h and −h are both convex. So, h is affine.

Write h(x) = 0 as Ax − b = 0.

For concave maximization, what changes?
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(NEW) Why convexity?

Consider
min

x
f (x) subject to x ∈ C

where both the function f and the set C are convex.

Theorem (All local minima are also global minima)

Proof: Let x? be a local minimum, so there is some ε > 0 such that
f (y) ≥ f (x?) for all y ∈ Bε(x

?) ∩ C. Now suppose x? is not a global
minima, so there is some point z ∈ C with f (z) < f (x?). Then pick α > 0
small enough so that w ≡ αz + (1− α)x? is in Bε(x

?). By convexity of C ,
we have w ∈ C. Then by convexity of f , we have

f (w) ≤ αf (z) + (1− α)f (x?) < f (x?)

a contradiction to the fact x? is a local minimum.

If C = {x : fi (x) ≤ 0, i = 1, . . . ,m}, then C is convex if fi is convex for all
i .
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Conic programming, standard form

Conic Programming in standard form

min cT x subject to Ax = b, x ∈ K

Linear programming: K = R
n
+, so x ≥ 0. (what does this mean?)

Semidefinite programming: K = Sn
+, so x is positive semidefinite.

Second-order cone programming: K = {(y , t) : ‖y‖2 ≤ t} (Quadratic
programming)
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Tricks
equivalent problems are not identical

slack variables

fi (x) ≤ 0 ⇐⇒ fi (x) + si = 0, si ≥ 0

eliminate equality constraint (null space; discussed later)
or, write as two inequalities (seldom useful in practice)

introduce equality constraint

min ‖Ax − b‖2 ⇐⇒ min ‖r‖2, r = Ax − b

equivalent differentiable form

min ‖Ax − b‖2 ⇐⇒ min ‖Ax − b‖22

epigraph
min ‖x‖1 ⇐⇒ min t, ‖x‖1 ≤ t
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Pervasive example: linear inverse problem

Unknown signal x? ∈ Rn

Linear measurements b = Ax? + z , A is a m x n matrix.

If A is overcomplete or invertible, then a good idea might be least
squares: minx ‖b − Ax‖.
If A is underdetermined, ill-posed (because we don’t have enough
information)

Need a prior assumption on x? to reduce the degrees of freedom

Basis Pursuit

min
x
‖x‖1 subject to Ax = b
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Pervasive example: linear inverse problem

The exact form of the example that we will use is a simpler version. Most
compressed sensing algorithms solve this version:

Basis Pursuit (Lagrangian relaxation)

min
x
‖x‖1 +

µ

2
‖Ax − b‖22

Write f (x) = ‖x‖1 + µ
2‖Ax − b‖22. Then

∂f (x) = ∂‖x‖1 + µAT (Ax − b)

Calculating ∂‖x‖1 is fast (O(n)), so the dominant cost is multiplying A
and AT times a vector. For a general matrix A, not using Strassen
multiplication or anything fancy, the cost of Ax is O(mn). However, if A
has a fast transform like the FFT, the cost is more like O(n log n).
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The Lagrangian and dual function

Consider the following problem (need not be convex)

min
x

f0(x) subject to fi (x) ≤ 0 ∀i = 1, . . . ,m, Ax = b

Let p? denote the optimal value, p? = f0(x
?).

Lagrangian

L(x , λ, ν) = f0(x) +
∑

i

λi fi (x) + νT (Ax − b)

Dual function

g(λ, ν) = inf
x
L(x , λ, ν)
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Weak duality and the dual problem

Pick an λ ≥ 0 and any ν.

g(λ, ν) = inf
x

(
f0(x) +

∑
i

λi fi (x) + νT (Ax − b)

)

≤ inf
x feasible

(
f0(x) +

∑
i

λi fi (x) + νT (Ax − b)

)
≤ inf

x feasible
f0(x) = p?

So λ ≥ 0 and ν give a bound on p?. To find the best bound, we can
solve. . .

Dual problem

max
λ≥0

g(λ, ν)
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Weak duality and strong duality

Fact: dual problem is convex, even if primal isn’t.

Let d? be the value of to
max
λ≥0

g(λ, ν)

We just saw that d? ≤ p?. If in fact d? = p?, we call this strong duality.
This is VERY useful. For convex problems, we usually have strong duality.
Prove via constraint qualificiation.

Slater condition (for a convex problem)

If there is a point x that is strictly feasible, i.e. fi (x) < 0∀i = 1, . . . ,m,
then strong duality holds
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KKT conditions, (1)

Assume strong duality holds. Let x? be the optimal primal point, so
fi (x

?) ≤ 0 and Ax? − b = 0.

f0(x
?) = g(λ?, ν?)

= inf
x

(
f0(x) +

∑
k

λ?
i fi (x) + ν?(Ax − b)

)
≤ f0(x

?) +
∑
k

λ?
i fi (x

?) + ν?(Ax? − b)

≤ f0(x
?)

Hence must be equalities. Hence λ?
i fi (x

?) = 0 for all i . So this is a
necessary condition. Called complementary slackness. Only for inequality
constraints!
Also, this proves x? = argminx L(x , λ?, ν?).
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KKT conditions, (2)

Recall x? = argminx L(x , λ?, ν?). So, by necesary first-order condition
(assuming f0 and fi differentiable),

0 = ∇xL(x?, λ?, ν?)

= ∇x f0(x
?) +

∑
i

λ?
i∇x fi (x

?) + ATν?

Called stationarity condition.
The other two KKT conditions are obvious:

primal feasibility Ax? = b and fi (x
?) ≤ 0

dual feasibility λ? ≥ 0, no constraint on ν?

Fact: if problem is convex (and differentiable), KKT are also sufficient.
Proof: Lagrangian is convex, so stationarity condition implies x? is the
global minimizer. Using same setup as last page, we see the duality gap is
zero.
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KKT conditions, inequality constraints only

Consider a 1D problem,

min f (x) subject to a ≤ x ≤ b

Assume f differentiable.

Then KKT conditions reduce to the following:

either f ′(x?) = 0, or x = a, or x = b

which should look familiar.
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KKT conditions, equality constraints only

Assume equality constraints Ax = b but no inequality constraints.
The 4 KKT conditions are now just 2:

0 = ∇x f0(x
?) + ATν?

Ax? = b

This is the “Lagrange Multipliers” technique you may have learned in your
first calculus class.
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Lagrange Multipliers: connections with your past

Remember this from calculus?

Lagrange Multipliers (one constraint, 2D)

Let f (x , y) and g(x , y) be functions with continuous first-order partial
derivatives. If the maximum (or minimum) value of f subject to the
condition g(x , y) = 0 occurs at a point P where ∇g(P) 6= 0, then

∇f (P) = λ∇g(P)

for some constant λ.

Edwards & Penney, 5th ed., Calculus, with analytic geometry; Early Transcendentals, Prentice Hall 1997.

Extension to 2 constraints, and 3D.
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Lagrange Multipliers: connections with your past

Proof: By the implicit function theorem, and
the nonzero gradient of g at P, we can
represent the curve g(x , y) = 0 by a parametric
curve r(t) (locally, near P), such that r has a
nonzero tangent vector r ′ near P. Let t0 be the
value such that r(t0) = P.
Let f (x , y) attain its max value at P.

If we parameterize f by r(t), then f (r(t)) attains its maximum value at t0,
so ∂t f (r(t)) is zero at t = t0. This gives, by the vector chain rule,

∇f (P) · r ′(t0) = 0

Since r is defined such that g(r(t)) ≡ 0, then ∂tg(r(t)) ≡ 0, so

∇g(P) · r ′(t0) = 0

Thus both ∇f (P) and ∇g(P) are perpendicular to the nonzero vector
r ′(t0), which means they must be linearly dependent.
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(NEW) Euler Conditions
Consider a convex problem with differentiable objective f and feasible set
C . Then

Theorem (Euler condition)

x? is optimal if and only if x? ∈ C and

∇f (x?)T (y − x?) ≥ 0 ∀y ∈ D

i.e. −∇f (x?) defines a supporting hyperplane to C .

Unconstrained minimization

x? is optimal if and only if
∇f (x?) = 0

Equality constraints, Ax = b

∇f (x?) ⊥ N (A), or
∇f (x?) ∈ R(AT )
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What’s wrong with gradient descent?
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Boyd & Vandenberghe

minx
1
2(x2 + γy2)

Gradient Descent
xk+1 = xk − tk∇f (xk)

Convergence rate (assume ∇f is Lipshitz)

f (xk)− f (x?) ≤ C

k

Stephen Becker (Caltech) Convex Optimization ACM Tea 26 / 66



Convergence Rates
ek is error at kth iteration

(Q) linear convergence: ek+1

ek
≤ β eventually, i.e. limk→∞ ek = βk

β = 0 is superlinear, β = 1 is sublinear.
Quadratic convergence: ek+1

e2
k
≤ C
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Convergence Rates

ε-solution: x feasible and f (x)− f (x?) ≤ ε

ek = 1√
k
. ε-solution in 1

ε2 iterations. Sub-linear convergence.

ek = 1
k . ε-solution in 1

ε . Sub-linear.

ek = 1
k2 . ε-solution in 1√

ε
. Sub-linear.

ek = βk . ε-solution in log(1/ε)
log(1/β) . Linear.

ek = 1
k

k
. Super-linear convergence, but not quadratic.

ek = β2k
. ε-solution in C log(log(1/ε))

log10(log10(
1

10−100 )) = 2. Quadratic convergence.
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Convergence rate of first-order methods

(sub)-gradient descent

xk+1 = xk − tkd

d = ∇f (xk) or d ∈ ∂f (xk)
O( 1

k ) for gradient descent, O( 1√
k
) for sub-gradient descent

Can we do better?

Nesterov’s optimal method

xk = yk−1 − tk∇f (yk−1)

yk = xk +
k

k + 3
(xk − xk−1)

Many variants Nesterov ’83,’04,’05; Auslender, Teboulle ’06; Tseng ’08; Lan, Lu, Monteiro ’08; Beck, Teboulle ’09

Need f differentiable, with ∇f Lipshitz.
O( 1

k2 ) convergence!
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First order methods with constraints

Can sometimes handle very easily by projecting point x onto the feasible
set Q via PQ . Might destroy some proofs of convergence. Projection may
not need to be exact

gradient descent

xk+1 = xk − tk∇f (xk)

projected gradient descent

xk+1 = PQ(xk − tk∇f (xk)

or
xk+1 = xk + sk(PQ(xk − tk∇f (xk))− xk)

Have accelerated versions with O( 1
k2 ) convergence

Stephen Becker (Caltech) Convex Optimization ACM Tea 30 / 66



Basic Newton’s Method

Maybe you remember this from high school as a technique to find the
intercept of a function, i.e. to solve g(x) = 0. In this “root-finding”
mode, Newton’s method just forms a linearization to f and solves this
linearization:

g(x + h) ' g(x) + g ′(x)h

Given a current point x , the next point x + h is calculated so that
g(x) + g ′(x)h = 0, which means h = −g(x)/g ′(x).
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Basic Newton’s Method

Now suppose we want to minimize a function f (x). If there are no
constraints, and if f is differentiable, this is equivalent to finding all the
roots of f ′. So, if f also has a second derivative, then we can apply
Newton’s method to g = f ′. Specifically, we move to the new point x + h
where h = −f ′(x)/f ′′(x). Because we use the second derivative, this is
known as a second-order method.
In general, x is a vector, in which case we solve the equation

Newton’s Method

hNewton = −(∇2f (x))−1∇f (x)

and update x ← x + h. Repeat until convergence. Another way to think
about this: we are minimizing the second-order Taylor series of f :

f (x + h) ' f (x) + 〈∇f (x), h〉+ 1

2
〈h,∇2f (x)h〉
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Basic Newton’s Method

There are several implications to Newton’s method. The general principle
is that the Hessian information is very useful, but it comes at a price.

The major cost of each iteration is inverting the Hessian (or, more
accurately, solving a linear system). If the Hessian has no special
structure or sparsity, this costs O(n3) operations, which is slow (we
need to do this at every iteration).

However, we will not need many iterations. Newton’s method enjoys
local quadratic convergence. This basically means that once xk is
close enough to the solution, the error f (xk)− f (x?) will become an
order of magnitude smaller at every iteration.

Newton’s method is at the heart of Interior Point Methods.
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Quasi-Newton Methods

Think: secant method, i.e. use finite differences to approximate a
derivative.

Idea: approximate exact Hessian ∇2f with Hk , using gradient
information

Hk = LI gives first-order method

Need to invert Hk every step. Update to Hk is probably simple.

Brilliant idea: keep track of H−1
k , and update this quantity.

Woodbury formula: rank 1 update to inverse is easy

Best implementation: BFGS. For large systems, use L-BFGS

Convergence rules-of-thumb:

First-order method: linear convergence at best. Use Nesterov
acceleration.

Quasi-newton method: superlinear convergence sometimes

Newton method: quadratic convergence, if close to solution
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Equality constraints vs inequality constraints

There are nice tricks for converting equality constraints to inequality
constraints, and vice-versa. In general, inequality constraints may be
trickier, and/or it may be easier to project onto a set defined by equality
constraints. But really, it’s problem dependent.

Basic form of equality constrained minimization

min
x

f (x) subject to Ax=b

Basic form of inequality problem

min
x

f (x) subject to g(x) ≤ 0

f and g convex (if we write g(x) ≥ 0, then g concave). Easy to extend to
more than one g .
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Method 1: adapt Newton’s method; equality constraints
only

Adapt Newton’s method to incorporate Ax = b. Define f̂ to be the
second-order Taylor approximation of f about x :

f̂ (x + h) = f (x) + 〈∇f (x), h〉+ 1

2
〈h,∇2f (x)h〉

Then we solve the following problem

min
h

f̂ (x + h) subject to A(x + h) = b

If we assume that Ax = b already, then the constraint is just Ah = 0.
Turns out we can solve this minimization problem exactly.
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Method 1: adapt Newton’s method; equality constraints
only

The Lagrangian is

L(h, ν) = f̂ (x + h) + νT (Ah)

so the KKT conditions reduce to the following two equations

∇hL ≡ ∇f (x) + 〈∇2f (x), h〉+ ATν = 0 (stationarity) (1)

Ah = 0 (primal feasibility) (2)

This is a system of linear equations, so it can be solved easily (though it
may be expensive). If we had no constraints, so A is gone, then this
reduces to solving h = −∇2f (x)−1∇f (x), i.e. basic Newton’s Method.

Stephen Becker (Caltech) Convex Optimization ACM Tea 38 / 66



Method 2: trickery; equality constraints only

To enforce the constraint Ax = b, we find a matrix G such that AG = 0
and the columns of G span the null space of A. In coding theory, this is
called a parity-check matrix. Now, borrowing terminology from PDE, let x̂
be a particular solution, meaning that it is any solution to Ax̂ = b (there
are an infinite choice of these). Thus, for any feasible x that satisfied
Ax = b, we can uniquely write

x = x̂ + Gy

for some y . The minimization problem is now unconstrained:

Null space method for equality constraints

min
y

f (x̂ + Gy)

Of course, f (x̂ + Gy) could be difficult to work with, or it may be hard to
find G . . .
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Method 3: solve the dual, equality constraints

[ the dual function is usually g , but I am using g for the inequality
constraint, so use G for the dual ]
The dual problem of minx f (x) subject to Ax = b is

max
ν

G (ν)

where
G (ν) = −bTν + inf

x
(f (x) + νTAx)

which can be expressed in terms of the conjugate function
f ∗(z) ≡ supx zT x − f (x).
Caveats:

f smooth doesn’t imply G smooth

even if we have a dual optimal point ν?, it’s not always possible to
recover the primal optimal point x?

it may be hard or impossible to calculate f ∗.
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Method 3: solve the dual, inequality constraints

[ the dual function is usually g , but I am using g for the inequality
constraint, so use G for the dual ]
The dual problem of minx f (x) subject to g(x) ≤ 0 is

max
λ

G (λ) subject to λ ≥ 0

Advantages:

Projecting x onto {x : g(x) ≤ 0} may be difficult, but projecting λ
onto {λ : λ ≥ 0} is easy.

Dual problem may for some reason be easier to solve

Caveats: same as for the equality constrained version.
Can of course combine equality and inequality constraints with this
method.
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Method 4: log-barrier, inequality constraints

One of the great ideas from the last 20 years is the development of the
log-barrier methods, which are a fundamental part of many IPM. The idea
is simple: replace the inequality constraint g(x) ≤ 0 with a term in the
objective function that penalizes the objective whenever g(x) is close to 0.
If the penalizing term is chosen well (i.e. self-concordant), then the method
has provably nice properties. Most choices involve the logarithm, hence
the name log-barrier.

Log-barrier form of inequality problem

min
x

f (x) + t log(−g(x))

A log-barrier IPM solves the above problem many times (usually, about 15
to 50 times), each time with a smaller value of t, using the previous
solution as a warm-start. Note: x is always feasible, and interior.
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Method 5a: penalty functions. Equality and inequality
constraints

Similar to the log-barrier idea, we put a penalizing term into the objective.
There are a few variants to this. Let our problem be

min f (x) subject to Ax = b, g(x) ≤ 0

Variant a: Quadratic Penalty Method

Solve
min f (x) +

µ

2

(
‖Ax − b‖22 + (bg(x)c+)2

)
For a finite value of µ, the solution will likely be infeasible. So, solve
several times, with µ→∞.
If we have no inequality constraints, this is smooth, which is good.
Problems: (1) nonsmooth b·c+ term may cause problems. (2) Becomes
ill-conditioned as µ→∞. Note: x is never feasible.
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Method 5a: penalty functions. Example

Basis Pursuit

min
x
‖x‖1 subject to Ax = b

Basis Pursuit denoising

min
x
‖x‖1 subject to ‖Ax − b‖2 ≤ ε

To solve Basis Pursuit, we can solve this for µ→∞:

Basis Pursuit (quadratic penalty)

min
x
‖x‖1 +

µ

2
‖Ax − b‖22

If we want to solve Basis Pursuit denoising, then can still solve the same
quadratic penalty, but now µ→ µε for some µε <∞. If ε→ 0, then
µε →∞. In general, µ(ε) not easy to compute.
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Method 5b: exact penalty functions. Equality and
inequality constraints

We use a different penalty function, this time with the property that there
is some µ0 <∞ such that the constrained and unconstrained versions are
the same for µ > µ0. So no longer need µ→∞. Good.
Problem: in general, an exact penalty function is necessarily nonsmooth.
Ex.

Variant b: Exact Penalty Method

Solve
min f (x) + µ

(
‖Ax − b‖1 + bg(x)c+

)
Can also use ‖ · ‖∞ or ‖ · ‖2 (not ‖ · ‖22). If µ > µ0 = max(‖λ?‖∞, ‖ν?‖∞),
then it is exact.
Problems: (1) nonsmooth (2) µ0 may be large, and is unknown a priori
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Method 5c: Augmented Lagrangian. Equality constraints
only
Want to solve equality constrainted problem

min f (x) subject to Ax = b

Motivation: The Lagrangian for this problem is

L(x , ν) = f (x) + νT (Ax − b)

Strong duality is equivalent to the following saddle-point inequality:

d? = max
ν

g(ν) = max
ν

min
x
L(x , ν)

= min
x

max
ν
L(x , ν) by strong duality

= min
x :Ax=b

f (x) = p?

since

max
ν
L(x , ν) =

{
f (x) Ax = b

+∞ else
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Method 5c: Augmented Lagrangian. Equality constraints
only

if ν? is dual optimal, then by the previous equalities

min
x :Ax=b

f (x) = max
ν

min
x
L(x , ν) = min

x
L(x , ν?)

So if we knew ν?, we should solve this:

min
x

f (x) + (ν?)T (Ax − b)

But we don’t know ν?. Instead combine with the quadratic penalty
method to solve:

min
x

f (x) + νT (Ax − b)︸ ︷︷ ︸
Lagrangian term

+
µ

2
‖Ax − b‖22︸ ︷︷ ︸

quadratic penalty term

ν and µ are updated dynamically
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Method 5c: Augmented Lagrangian. Equality constraints
only
Benefits:

like quadratic penalty, it’s smooth

like the nonsmooth penalties, it’s exact. Don’t need µ→∞
Why is it exact? Problem with quadratic penalty is that we never have
feasibility for µ <∞. We have roughly

Ax − b = −ν?/µ

For Augmented Lagrangian, we get

Ax − b = −(ν? − ν)/µ

which goes to zero much faster, if we update ν well.
Problems:

need robust updating scheme for parameters

can handle inequality constraints but not very naturally

Note: aka method of multipliers
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Method 6: projection

For both equality and inequality constraints.
We keep the constraints and design a method around them. In these
methods, the advantage is that the iterates of x are actually feasible.
Usually, involves a projection, which may or may not be easy. Sometimes,
don’t need an exact projection.

The simplest method is a modification of gradient descent, called
projected gradient descent.

We already discussed this. This is a huge class of algorithms.
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Interior Point Methods (IPM)

Basic idea: apply Newton’s method. We already saw that Newton’s
method can deal with equality constraints. So, now deal with
inequalities somehow.

Similar to the log-penalties we already discussed, but some subtleties.
Can be motivated either by the log-penalty formulation or by trying
to solve a (slightly modified) version of the KKT conditions.

Have primal and primal-dual variants (and dual variants).

Key property for analysis: self-concordance. Gives bounds on number
of Newton steps. The log-penalty is self-concordant. Most common
cones have known self-concordant penalties (usually involving a
logarithm). Nesterov and Nemirovskii.

IPM are both theoretically nice (polynomial complexity, building on
Khachiyan ’79 and Karmarker ’84) and work well in practice
(Mehrotra’s predictor-corrector method, ’89)

IPM first in 1980s; theory matured around 1994.
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Interior Point Methods
A barrier method (primal). Iterates stay feasible. Pick t large.

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-4

-2

2

4

min
x

f (x) +
1

t

(
−log(−g(x))︸ ︷︷ ︸

φ(x)

)
such that Ax = b. φ is the
log-barrier term. Equivalently,
solve

min
x

t f (x) + φ(x), Ax = b

Note: ∇φ(x) = 1
−g(x)∇g(x). KKT stationarity condition is

0 = ∇L = t∇f (x) +
1

−g(x)
∇g(x) + ATν

If x? is optimal, then λ? = − 1
tg(x?) .
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Interior Point Methods

A barrier method (primal).
So, we have primal and dual points. Get a duality gap C

t . Idea: solve for
some t using Newton’s method. Increase t and repeat. So, inner and
outer iterations.
KKT interpretation:

Ax = b, g(x) ≤ 0 primal feasibility

λ ≥ 0 dual feasibility

∇f (x) + λ∇g(x) + ATν = 0 stationarity

−λg(x) =
1

t
centrality, formerly complementary slackness

It’s a primal method, meaning we force λ = −1
tg(x) , as opposed to letting λ

evolve on its own.
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Interior Point Methods

A primal-dual method.

Ax = b, g(x) ≤ 0, λ ≥ 0

∇f (x) + λ∇g(x) + ATν = 0 stationarity

−λg(x) =
1

t
centrality, formerly complementary slackness

Don’t force λ = −1
tg(x) . To compute update (∆x ,∆λ, ∆ν), linearize. Ignore

λ ≥ 0 and g(x) ≤ 0 for now (will use line search later). Ignore all ∆xT∆x
and ∆λ∆x terms. Leads to a system like∇2f (x) + λ∇2g(x) ∇g(x) AT

−λ∇g(x) −g(x) 0
A 0 0

∆x
∆λ
∆ν

 =

 rdual

rcent

rprimal


Basically, Newton’s method. For linear programming, simplifies a lot.
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Interior Point Methods

Differences between the primal log-barrier and the primal-dual methods we
just introduced:

Both methods: need line-search to keep feasible. Not a problem,
because biased toward interior. Backtracking works.

Log-barrier: solved outer loop to find a point on central path

Primal-dual version has no inner-outer iteration. t is updated every
step.

Instead, primal-dual aims roughly for central path

Primal-dual version has no exactly feasible dual point, so no exact
duality gap (can approximate it)

Need to start feasible, i.e. in the interior. Can get around this, e.g.
embedding into a larger problem. “Phase 1”, “Phase 2”
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Interior Point Methods

There are two kinds of distinctions (an algorithm can be in any of the four
possible types):

1 primal vs primal-dual

2 log-barrier vs path-following

Method 1 was a primal log-barrier method (“log-barrier” is also known as
“potential reduction”).

Method 2 was a primal-dual path-following method.

There are also primal-dual log-barrier methods. Use a log-barrier like

φ(x) = − log(−g(x)λ)
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Interior Point Methods

For the “path-following” algorithms (those that try to solve the KKT
conditions, with the complementary slackness condition changed),
there are many variations. Can control how conservative (stay very
close to central path, so update t only a little) or aggressive they are.

Usually, force solutions to be in some neighborhood of the central
path. Tight neighborhoods lead to short-step algorithms; loose
neighborhoods lead to long-step algorithms.

Can also make predictor-corrector algorithms, that alternate steps
between increasing g and getting closer to the central path. Sort of
like the inner-outer iterations, with only one inner iteration.

Most common algorithm in practice is Mehotra’s 1989 algorithm,
which controls some parameters dynamically, and makes a
second-order correction. (This is ideal for non-sparse problems, since
it makes a Cholesky factorization and uses it twice; for Lanczos-based
solvers, this benefit is gone).
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Accelerated convergence

Nesterov’s accelerated method. We already discussed. Need f to be
continuously differentiable. So, how can we apply this to non-differentiable
problems?

By smoothing. . .
Many ways to smooth. Next slide shows just one possible way, due to
Nesterov’s 2005 paper (for the case of the `1 norm and the Huber
function, there are many formulations to derive it).
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Smoothing by conjugation

-Μ1 Μ1-Μ2 Μ2

‖x‖1 = maxu∈Qd
〈u, x〉 where Qd = {u : ‖u‖∞ ≤ 1}

Define
fµ(x) = max

u∈Qd

〈u, x〉 − µ

2
‖u‖2

Then ∇fµ exists and Lipschitz, Lµ ∝ µ−1

This is just the Huber function
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Why smooth?
The `1 function is non-smooth, so we have been smoothing it to get faster
convergence. But can’t we write out a smooth formulation of BPε?

Basis Pursuit Denoising BPε

min
x
‖x‖1 subject to ‖Ax − b‖ ≤ ε

Think of x = x (+) − x (-).

Basis Pursuit, bound-constrained BPε

min
x(+),x(-)

1
T (x (+) + x (-)) subject to

‖A(x (+) − x (-))− b‖ ≤ ε, x (+) ≥ 0, x (-) ≥ 0

Problem: projection step is in general hard to solve

P(u, v) = argmin
x(+),x(-)

‖u − x (+)‖2 + ‖v − x (-)‖2 subject to

‖A(x (+) − x (-))− b‖ ≤ ε, x (+) ≥ 0, x (-) ≥ 0
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software
General purpose Interior Point Method solvers

SeDuMi http://sedumi.ie.lehigh.edu/. Solves all conic style
problems, including LP, QP, and SDP. Free, but based on MATLAB

SDPT3 http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
Basically interchangeable with SeDuMi.

cvxopt http://abel.ee.ucla.edu/cvxopt/. Vandeberghe’s conic
solver, in python. Has some modelling support. See also cvxmod

Environments and modelling languages

cvx http://www.stanford.edu/~boyd/cvx/. Michael Grant and
Stephen Boyd’s MATLAB front-end. Super easy to use, and
recommended. Calls either SeDuMi or SDPT3.

yalmip http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php.
Has support for about a dozen or more solvers (including some
commercial solvers, which are not free and don’t come bundled with
it). I don’t use this, but many people do.

Doing it yourself not so bad (main cost: linear algebra). MATLAB and
Mathematica’s builtin functions not so good. GSL ?
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Online resources

These two textbooks are by well-known authors in the community and are
also available online in PDF or PS form.

Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
http://www.stanford.edu/~boyd/cvxbook

Convex Analysis and Nonlinear Optimization: Theory and Examples,
Jonathan Borwein and Adrian Lewis, 2nd ed 2005.
www.cecm.sfu.ca/~jborwein/text.ps

Much of the material in these slides has come from Boyd and
Vandenberghe. (Other refs I used for these notes: Wright, and Nocedal
and Wright).
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Online resources

Other good internet resources:

Stephen Boyd has videotapes of many of his lectures
http://www.stanford.edu/~boyd/teaching.html

Lieven Vandenberghe has many notes on his website, including short
course notes. I have used his EE326C notes many times, as they are
applicable to my interests.
http://www.ee.ucla.edu/~vandenbe/index.html

(continued. . . )
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Online resources

Other good internet resources:

Dimitri Bertsekas has written about a dozen books, many related to
optimization. I use his “Convex Analysis and Optimization” and
“Nonlinear programming” (2nd ed) books from time-to-time. As far
as I know, these are not available online. He has a new book, “Convex
Optimization Theory”, out in 2009, and there is a free supplemental
chapter online called “Convex Optimization Algorithms”:
http://www.athenasc.com/convexdualitychapter.pdf

Bertsekas does have an old book of his from the 1980’s online for
free: http://web.mit.edu/dimitrib/www/lagr_mult.html

Bertsekas has his “Convex Analysis and Optimization” class on MIT’s
OCW. The lecture notes are available here: http://ocw.mit.edu/
OcwWeb/Electrical-Engineering-and-Computer-Science/
6-253Spring2004/CourseHome/index.htm
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Textbooks
Books (in addition to the free online textbooks already mentioned)

Primal-Dual Interior-Point Methods, S. Wright, 1997.

Numerical Optimization, Wright, Nocedal, 2nd ed, 2006.

Introductory Lectures on Convex Optimization, Nesterov, 2004.

Lectures on Modern Convex Optimization, Ben-Tal and Nemirovski,
2001

Interior-Point Polynomial Algorithms in Convex Programming,
Nesterov, Nemirovskii, 1994. These are the guys who developed the
self-concordant theory for IPM.

Convex Analysis and Minimization Algorithms, vols I and II,
Hiriart-Urrity, Lemarechal, 1993.

Interior Point Methods for Linear Optimization, Terlaky, Vial, 2nd ed,
2006.

A Mathematical View of Interior-Point Methods in Convex
Optimization, James Renegar, 2001.

Convex Analysis, Rockafellar, 1970.
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