
University of Colorado Boulder Technical Report, Department of Applied Mathematics

Exact linesearch for LASSO
Stephen Becker, University of Colorado Boulder∗

Original version 2011, last updated May 19, 2016

Abstract
A method for computing the exact linesearch for LASSO problems is described. For vectors of size

n, the method requires sorting n numbers and a few O(n) operations. The algorithm is similar in spirit
to fast projections onto the `1 ball, and falls into a broader class of algorithms which have efficient
solutions (cf. P. Brucker (1984)1). As such, the algorithm is not novel and variants have likely been
derived, but it is not easy for a non-specialist to find a description or code, which motivates the present
note. As a companion to this note, MATLAB code is released at https://github.com/stephenbeckr/
exactLASSOlinesearch

Consider the LASSO problem

f(x) = 1
2‖Ax− b̃‖2

2 + λ‖x‖1 (1)

for x = (xi)n
i=1 ∈ Rn, which we will rewrite in a slightly more amenable form

= 1
2 〈x,A

T A︸ ︷︷ ︸
A

x〉 − 〈x,AT b̃︸ ︷︷ ︸
b

〉+ 1
2‖b̃‖

2
2 + λ‖x‖1

= 1
2 〈x,Ax〉 − 〈x,b〉+ λ‖x‖1 + constant. (2)

In the process of minimizing f using gradient methods, we have a given reference point x, and a search
direction p, where p = −∇f(x) if we use standard gradient descent. We can then form the 1D function ϕ
and minimize ϕ to find the optimal stepsize t? = argmint ϕ(t) (“exact linesearch”) where

ϕ(t) def= f(x + tp) (3)

= 1
2 〈p,Ap〉t2 +

(
〈x,Ap〉 − 〈b,p〉

)
t+ λ‖x + tp‖1 + constant

= 1
2c1t

2 + c2t+ λ‖x + tp‖1 + constant

for constants c1 and c2. The optimal solution t? will satisfy

0 ∈ ∂ϕ(t?) (4)
= c1t

? + c2 + 〈p, ∂ ‖x + t?p‖1︸ ︷︷ ︸
s

〉

where ∂ϕ is the subdifferential of ϕ. Hence we need to solve the 1D equation

t? = −c2/c1 − λ/c1〈p, s〉 (5)

where s = s(t). In order for f to be convex, we need λ ≥ 0, and furthermore since A � 0 we have c1 ≥ 0, so
λ/c1 ≥ 0. For convenience, we will absorb a factor of 1/c1 into c2 and λ, so our optimality equation is now

t? = −c2 − λ〈p, s〉 = g(t?) (6)
∗stephen.becker@colorado.edu
1“An O(n) algorithm for quadratic knapsack problems”, Oper. Res. Let., 3(3) pp. 163–166

1

https://github.com/stephenbeckr/exactLASSOlinesearch
https://github.com/stephenbeckr/exactLASSOlinesearch
stephen.becker@colorado.edu


University of Colorado Boulder Technical Report, Department of Applied Mathematics

-0.1 0 0.1 0.2 0.3 0.4 0.5

stepsize t

8300

8400

8500

8600

8700

8800

ϕ(t)
optimal value found by code

10
3

10
4

10
5

10
6

size of problem n

10
-4

10
-3

10
-2

10
-1

10
0

ti
m
e
(i
n
se
c.
),

av
g
ov
er

20
ru
n
s

empirical timings
O(n)
O(n log n)
O(n2)

Figure 1: Left: for a sample n = 80 problem, the function ϕ and the optimal value found by the proposed
algorithn. Right: for a range of n, showing the average time to solve, on problems with random data, which
suggests average complexity is no more than O(n logn).

for λ ≥ 0 (c2 may be any sign). We now look for a root of t 7→ t− g(t).
Since s is the subdifferential, it depends only on the sign of x+tp, and this sign changes only at n “turning

points” given by ti = −xi/pi for i = 1, . . . , n. For convenience, we will assume that t1 ≤ t2 ≤ . . . ≤ tn; in
practice, we will need to sort n numbers, then use the new sorting index to re-order other relevant quantities.2

For t < t1, we can calculate s and hence g(t). Denote this value of t as t0, and s0
def= s(t0).

If we increase t to t1 < t < t2, exactly one term in s changes sign (from −1 to +1 or from +1 to −1), and
g(t) changes by ±2λs1. Moving to t2 < t < t3, exactly one more term in s changes sign, and g(t) changes by
±2λs2. This process can be efficiently computed by pre-computing the cumulative sum of ps0 (ps0 being
the element-wise product of p and s0), and as t moves past the next turning point, g is increased by 2λ
times the next term in the cumulative sum. The cumulative sum takes O(n) operations.

Examining each ith term of ps0 we have

pisign (xi + t0pi) (7)

and by construction, t0 < ti
def= −xi/pi for all i. If pi ≥ 0 this means

xi + t0pi < xi + (−xi/pi)pi = 0 (8)

hence pisign (xi + t0pi) ≤ 0. If pi ≤ 0 then the sign is positive and we still have pisign (xi + t0pi) < 0.
Overall, this means that the cumulative sum is monotonically decreasing in value, so as we move from
one break point to the next, g(t) decreases while t increases, and this enables us to quickly find the right
break-point region for t. There is a chance that t? falls exactly on a break-point, which can be checked for.

In an actual code, there are some boundary cases and concerns about underflow (since near convergence
of an algorithm, ‖p‖ may be very small), which we do not describe in this note but are handled in the
companion code.

2 It may be possible, as in the case of projecting onto the `1 ball, that one can avoid the sort using median finding algorithms,
since finding the median of n numbers can be done on O(n) time. However, this seems to have little practical use because such
optimal-in-the- worst-case algorithms are seldom used, and typical efficient median finding algorithms (i.e., those with small
constants and optimized implementations) are not O(n) worst-case, hence we see little benefit over using a sorting algorithm
especially since sorting algorithms are highly optimized.

2


