Exact linesearch for LASSO

Stephen Becker, University of Colorado Boulder*

Original version 2011, last updated May 19, 2016

Abstract

A method for computing the exact linesearch for LASSO problems is described. For vectors of size n, the method requires sorting n numbers and a few $\mathcal{O}(n)$ operations. The algorithm is similar in spirit to fast projections onto the ℓ_{1} ball, and falls into a broader class of algorithms which have efficient solutions (cf. P. Brucker (1984) ${ }^{1}$). As such, the algorithm is not novel and variants have likely been derived, but it is not easy for a non-specialist to find a description or code, which motivates the present note. As a companion to this note, MATLAB code is released at https://github.com/stephenbeckr/ exactLASSOlinesearch

Consider the LASSO problem

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\widetilde{\mathbf{b}}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1} \tag{1}
\end{equation*}
$$

for $\mathbf{x}=\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}$, which we will rewrite in a slightly more amenable form

$$
\begin{align*}
& =\frac{1}{2}\langle\mathbf{x}, \underbrace{\mathbf{A}^{T} \mathbf{A}}_{\mathbf{A}} \mathbf{x}\rangle-\langle\mathbf{x}, \underbrace{\mathbf{A}^{T} \tilde{\mathbf{b}}}_{\mathbf{b}}\rangle+\frac{1}{2}\|\widetilde{\mathbf{b}}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1} \\
& =\frac{1}{2}\langle\mathbf{x}, \mathcal{A} \mathbf{x}\rangle-\langle\mathbf{x}, \mathbf{b}\rangle+\lambda\|\mathbf{x}\|_{1}+\text { constant } . \tag{2}
\end{align*}
$$

In the process of minimizing f using gradient methods, we have a given reference point \mathbf{x}, and a search direction \mathbf{p}, where $\mathbf{p}=-\nabla f(\mathbf{x})$ if we use standard gradient descent. We can then form the 1 D function φ and minimize φ to find the optimal stepsize $t^{\star}=\operatorname{argmin}_{t} \varphi(t)$ ("exact linesearch") where

$$
\begin{align*}
\varphi(t) & \stackrel{\text { def }}{=} f(\mathbf{x}+t \mathbf{p}) \tag{3}\\
& =\frac{1}{2}\langle\mathbf{p}, \mathcal{A} \mathbf{p}\rangle t^{2}+(\langle\mathbf{x}, \mathcal{A} \mathbf{p}\rangle-\langle\mathbf{b}, \mathbf{p}\rangle) t+\lambda\|\mathbf{x}+t \mathbf{p}\|_{1}+\mathrm{constant} \\
& =\frac{1}{2} c_{1} t^{2}+c_{2} t+\lambda\|\mathbf{x}+t \mathbf{p}\|_{1}+\text { constant }
\end{align*}
$$

for constants c_{1} and c_{2}. The optimal solution t^{\star} will satisfy

$$
\begin{align*}
0 & \in \partial \varphi\left(t^{\star}\right) \tag{4}\\
& =c_{1} t^{\star}+c_{2}+\langle\mathbf{p}, \partial \underbrace{\left\|\mathbf{x}+t^{\star} \mathbf{p}\right\|_{1}}_{\mathbf{s}}\rangle
\end{align*}
$$

where $\partial \varphi$ is the subdifferential of φ. Hence we need to solve the 1D equation

$$
\begin{equation*}
t^{\star}=-c_{2} / c_{1}-\lambda / c_{1}\langle\mathbf{p}, \mathbf{s}\rangle \tag{5}
\end{equation*}
$$

where $\mathbf{s}=\mathbf{s}(t)$. In order for f to be convex, we need $\lambda \geq 0$, and furthermore since $\mathcal{A} \succeq 0$ we have $c_{1} \geq 0$, so $\lambda / c_{1} \geq 0$. For convenience, we will absorb a factor of $1 / c_{1}$ into c_{2} and λ, so our optimality equation is now

$$
\begin{equation*}
t^{\star}=-c_{2}-\lambda\langle\mathbf{p}, \mathbf{s}\rangle=g\left(t^{\star}\right) \tag{6}
\end{equation*}
$$

[^0]

Figure 1: Left: for a sample $n=80$ problem, the function φ and the optimal value found by the proposed algorithn. Right: for a range of n, showing the average time to solve, on problems with random data, which suggests average complexity is no more than $\mathcal{O}(n \log n)$.
for $\lambda \geq 0$ (c_{2} may be any sign). We now look for a root of $t \mapsto t-g(t)$.
Since \mathbf{s} is the subdifferential, it depends only on the sign of $\mathbf{x}+t \mathbf{p}$, and this sign changes only at n "turning points" given by $t_{i}=-x_{i} / p_{i}$ for $i=1, \ldots, n$. For convenience, we will assume that $t_{1} \leq t_{2} \leq \ldots \leq t_{n}$; in practice, we will need to sort n numbers, then use the new sorting index to re-order other relevant quantities. ${ }^{2}$

For $t<t_{1}$, we can calculate \mathbf{s} and hence $g(t)$. Denote this value of t as t_{0}, and $\mathbf{s}_{0} \stackrel{\text { def }}{=} \mathbf{s}\left(t_{0}\right)$.
If we increase t to $t_{1}<t<t_{2}$, exactly one term in \mathbf{s} changes sign (from -1 to +1 or from +1 to -1), and $g(t)$ changes by $\pm 2 \lambda s_{1}$. Moving to $t_{2}<t<t_{3}$, exactly one more term in s changes sign, and $g(t)$ changes by $\pm 2 \lambda s_{2}$. This process can be efficiently computed by pre-computing the cumulative sum of $\mathbf{p s}_{0}$ ($\mathbf{p s} \mathbf{s}_{0}$ being the element-wise product of \mathbf{p} and \mathbf{s}_{0}), and as t moves past the next turning point, g is increased by 2λ times the next term in the cumulative sum. The cumulative sum takes $\mathcal{O}(n)$ operations.

Examining each $i^{\text {th }}$ term of $\mathbf{p s}_{0}$ we have

$$
\begin{equation*}
p_{i} \operatorname{sign}\left(x_{i}+t_{0} p_{i}\right) \tag{7}
\end{equation*}
$$

and by construction, $t_{0}<t_{i} \stackrel{\text { def }}{=}-x_{i} / p_{i}$ for all i. If $p_{i} \geq 0$ this means

$$
\begin{equation*}
x_{i}+t_{0} p_{i}<x_{i}+\left(-x_{i} / p_{i}\right) p_{i}=0 \tag{8}
\end{equation*}
$$

hence $p_{i} \operatorname{sign}\left(x_{i}+t_{0} p_{i}\right) \leq 0$. If $p_{i} \leq 0$ then the sign is positive and we still have $p_{i} \operatorname{sign}\left(x_{i}+t_{0} p_{i}\right)<0$. Overall, this means that the cumulative sum is monotonically decreasing in value, so as we move from one break point to the next, $g(t)$ decreases while t increases, and this enables us to quickly find the right break-point region for t. There is a chance that t^{\star} falls exactly on a break-point, which can be checked for.

In an actual code, there are some boundary cases and concerns about underflow (since near convergence of an algorithm, $\|\mathbf{p}\|$ may be very small), which we do not describe in this note but are handled in the companion code.

[^1]
[^0]: *stephen.becker@colorado.edu
 1 "An $\mathrm{O}(\mathrm{n})$ algorithm for quadratic knapsack problems", Oper. Res. Let., 3(3) pp. 163-166

[^1]: ${ }^{2}$ It may be possible, as in the case of projecting onto the ℓ_{1} ball, that one can avoid the sort using median finding algorithms, since finding the median of n numbers can be done on $\mathcal{O}(n)$ time. However, this seems to have little practical use because such optimal-in-the- worst-case algorithms are seldom used, and typical efficient median finding algorithms (i.e., those with small constants and optimized implementations) are not $\mathcal{O}(n)$ worst-case, hence we see little benefit over using a sorting algorithm especially since sorting algorithms are highly optimized.

