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ABSTRACT

This thesis presents the results of extensive simulations of the ST2 model of

water designed to explore both thermodynamic and dynamic properties in super-

cooled states. Constant volume simulations were performed at 1,233 state points,

with densities ranging from 0.80 g/cm3 to 1.20 g/cm3 in steps of .01 g/cm3; along

these isochores, simulations were run at temperatures from 250 K to 400 K in 5 K

intervals. Our results qualitatively reproduce many of the expected properties

of supercooled water such as the density anomaly and a novel low-temperature

phase transition between two liquid states. The Stokes-Einstein and Debye-Stokes-

Einstein equations provide a simple hydrodynamic relation between viscosity and

diffusion. These relations hold for simple liquids, but are known to fail near a

glass transition. For ST2 water, we find that the Debye-Stokes-Einstein equation

does not hold at low temperatures. Furthermore, the data indicate that rotational

diffusion is enhanced at low temperatures relative to translational diffusion. We

also uncover an unexpected connection between dynamics and thermodynamics;

specifically, we find that the structural relaxation time τα along the critical iso-

chore provides a precursor to the liquid-liquid phase transition at temperatures

up to 150 K above the critical temperature. We observe a nearly identical sig-

nature in τα at a higher density which may indicate a second liquid-liquid phase

transition, adding credibility to the recent idea that there may be more than one

liquid-liquid critical point.
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Chapter 1

Introduction

1.1 Stable, Metastable and Glassy Water

1.1.1 Water in Nature: Motivation for Study

Water is abundant in the natural world and is the most important chemical for

human life. While it is mostly found in stable forms on Earth - the only chemical

compound that naturally occurs in all three phases - water can also appear in

metastable forms such as supercooled water or glassy water. Supercooled and

glassy water have liquid-like structures, which is why they are essential to many

biological processes. Crystallization of liquid water into ice nearly always kills

biological cells, and therefore living creatures that live in subfreezing temperatures

need some mechanism to prevent the crystallization of their internal water-based

fluids. Many organisms introduce chemicals or proteins as a sort of anti-freeze into

their blood in order to prevent the onset of heterogeneous nucleation, and thus

live with “supercooled blood.” For example, coldwater fish live with their blood

permanently at−1.5◦C, a full degree below the freezing point of blood [1]. Freezing

poses a problem for plants as well. Cryo-preservation techniques in the laboratory

require cold temperatures without crystallization. Glasses are responsible for the

suspension of desert insect life during drought [2].

Supercooled water is important in non-biological processes as well. Pharma-

1



2 CHAPTER 1. INTRODUCTION

ceutical companies may be concerned with whether amorphous drugs will crys-

tallize over time, and food companies may be similarly concerned about food

products. Supercooled water is also important in preventing hydrate formation

in natural gas pipelines [3]. Clouds are the largest reservoir of supercooled water

naturally occurring on Earth. The form of water in clouds is important for climate

models, as the radiative and reflective properties of water depend on its phase [1].

Supercooled water and glassy water may also occur on extraterrestrial objects; it

is believed that most of the water in the universe is glassy water that makes up

comets.

An understanding of supercooled and glassy water would help with under-

standing the glass transition in general. Glasses are ubiquitous in nature, and

found as well in the processing of foods, the commercial stabilization of labile

biochemicals, ordinary window glass, optical fibers, plastics, some kinds of silicon

photovoltaic cells and even in metals [4, 5]. On the Earth, glass is formed naturally

by volcanic events, including the well-known glass obsidian [2]. The transition be-

tween glasses and supercooled liquids is not completely well-understood yet, and

studying supercooled water gradually adds to our knowledge of the supercooled

and glassy phases of all materials. See references [3] for a brief survey of super-

cooled and glassy water, and [4, 2] for surveys on glass in general.

Furthermore, it was suggested in 1992 [6] that water has a liquid-liquid transi-

tion and in 2003 [7] that it has several liquid-liquid transitions. It is not yet known

which substances have liquid-liquid transitions, or even if all substances have them.

It is suggested since 1963 that carbon has such a transition [8, 9, 10, 11, 12, 13],

and recently there has been evidence for such transitions in silicon, phosphorus

and SiO2, which have similar tetrahedral geometry to water [14], as well as for Ge

and GeO2 [15]. However, it does not appear that tetrahedral geometry is neces-

sary for such transitions [14], and atomic liquids such as Se, Te, Rb and Cs have

been suggested as potentially having liquid-liquid transitions [15]. Studying the

liquid-liquid transition in water will hopefully elucidate the nature of liquid-liquid

transitions in general.
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1.1.2 Water at 1 Atm.

A molecule of water is comprised of one oxygen atom and two hydrogen atoms.

The hydrogen atoms bond to the strongly electronegative oxygen atoms and there-

fore have a slightly positive charge. The intramolecular OH bond distance is

0.957 Å and is approximately 1/3 ionic and 2/3 covalent in character [16]. The

HOH angle is 104.5◦, close to the tetrahedral angle of ≈ 109.5◦. As a result,

water tends to form hydrogen bonds with other atoms. In bulk water, the hydro-

gen atoms form strong (compared to the London dispersion force) inter-molecular

hydrogen bonds with oxygen atoms from other molecules; each oxygen atom hy-

drogen bonds with two hydrogen atoms from other molecules. Because of this,

water forms tetrahedral networks, either in a crystal lattice, as in ordinary ice, or

in a distorted form without long-range order, as in the liquid. These tetrahedral

networks are open, meaning they are less dense than random configurations, but

are organized and therefore have less entropy. At low temperatures, energy and

entropy are therefore negatively correlated with volume, in contrast to typical

liquids [16].

Water, like most substances, has three standard phases: crystal, liquid and

gas. The behavior of water at atmospheric pressure (1 Atm.) is shown in Figure

1.1. The melting and boiling temperatures of water depend on the pressure and

are shown in Figure 1.5. There are polyamorphic forms of the crystal, meaning

that there are more than one stable crystalline structures. In fact, water has over

a dozen crystal forms, including nine stable states (ices II, III, V, VI, VII, VIII,

X, XI and ordinary hexagonal ice Ih) and four metastable states (ices IV, IX, XII

and cubic ice, Ic) [16]. Slow cooling of water at atmospheric pressure results in Ih.

Water can be heated above the boiling temperature without boiling or cooled

below the freezing temperature without freezing, and water in these states is

referred to as superheated or supercooled, respectively. Superheated and super-

cooled water are known as “metastable,” meaning that they are not in the lowest

free energy state. In the case of supercooled water, the lowest free energy state

is always a crystal lattice. The discrepancy in energy between the crystalline
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Figure 1.1: Water at 1 Atm.

The Phase Diagram of Water at 1 Atm., from [17].TB is the boiling temperature,

TM is the melting temperature, TH is the homogeneous nucleation temperature,

TX is the temperature where glasses crystallize upon heating, and Tg is the glass

transition temperature. 1 Atm. =m 760 torr = 1.013 bar = 0.1013 MPa.
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and liquid state increases as the temperature is lowered; hence, the typical time

needed for crystallization, τx, decreases as the temperature is lowered. Thus there

are practical limits as to how much the liquid can be cooled. At atmospheric

pressure, water can be superheated up to about 280◦C and supercooled down to

about −42◦C [1].

As in all liquids, the onset of crystallization can be shifted to lower temper-

atures by reducing the number of nucleation-inducing impurities [16]. This is

achieved by both purifying the sample and reducing the size. Water is cooled to

−42◦C by reducing impurities to 1012 l−1 and using droplets 5µm in diameter. On

average, such a drop will contain only one impurity, but even so the droplet will

remain liquid for only 10−5 s [16]. Such conditions actually exist in cirrus clouds,

and liquid water has been observed as low as -40◦C in these clouds [1]. When water

crystallizes due to impurities, the process is called heterogeneous nucleation. At

low enough temperature, τx is so short that it does not remain liquid long enough

to be studied. At this point, water is said to have homogeneously nucleated, and

there is an experimentally defined pressure-dependent homogeneous nucleation

temperature TH . In this regime, any random occurrence of a tetrahedral shape

among only a small cluster of molecules is enough to seed a whole lattice.

At cold enough temperatures, the structural relaxation time τα becomes much

longer than τx due to the inherent sluggishness of the molecules at low temper-

atures. Thus, if water is cooled quickly enough - faster than τx - and to a low

enough temperature (below the glass transition temperature Tg), it becomes a

vitreous liquid known as a glass. Most liquids will form into a glass; some liq-

uids vitrify easily (i.e. they can be cooled slowly and still form a glass, like SiO2)

while others do not. Glasses can also be made by compressing crystals. A glass

is structurally similar to a liquid but because it is colder, it relaxes so slowly that

it behaves like a solid on experimental time scales. Glasses will expand to take

on the shape of their containers just like liquids, only it may take 105 years to

do so, as in the case of ordinary window glass. It is hard to create a well-defined

criterion for distinguishing between a liquid and a glass, but a practical definition

is to call the material a glass when the viscosity is greater than 1013 poise [2].



6 CHAPTER 1. INTRODUCTION

A nearly equivalent definition is that a material is a glass when the structural

relaxation time Tα is 100 seconds or greater. The glass transition temperature

defined by these criteria is a kinetic event and not a fundamental thermodynamic

event. The glass transition temperature for water at atmospheric pressure has

long been believed to be around 136 K [18, 19], though recent work has argued

that it is 165 K [20, 21].

Upon heating, glasses gain enough mobility to sample more configurations and

will therefore lower their energy by crystallizing. For glassy water, this pressure-

dependent temperature is referred to as Tx and is around 150 K at atmospheric

pressure [16]. Hence there is a “no-man’s-land” between Tx and Tg where liquid

water can exist but only ephemerally and therefore no experiments have been

done in this regime.

In the past two decades, computational and experimental evidence has shown

that water has two distinct phases in the liquid and glass regime, known as either

high-density liquid (HDL) and low-density liquid (LDL) or high-density amor-

phous ice (HDA) and low-density amorphous ice (LDA), depending on the tem-

perature [16, 22]. As a result, there is a second critical point, C ′ (located below

0 K, since no such phase transition is observed in ordinary conditions) [6]. There

is much unknown about supercooled and glassy water because it is hard to ex-

periment with and time-consuming to simulate. It is the purpose of this thesis to

simulate supercooled water and explore various dynamical quantities, which we

will define later.

1.2 Thermodynamics

1.2.1 Typical Liquids

Common thermodynamic state variables include pressure, P , temperature, T ,

number of particles, N , volume, V , energy, U , and entropy, S. The density is

defined ρ = N/V . The terms “isochore”, “isobar”, and “isotherm” refer to con-

ditions of constant density, pressure, or temperature, respectively. The quantity



1.2. THERMODYNAMICS 7

G, called the Gibbs free energy, is defined G ≡ U − TS + PV . A consequence of

thermodynamic laws is that substances “seek” to minimize G given a particular T

and P . V , N , G, U , and S are extensive variables, meaning that, for example, if

two identical systems are combined, the new system has twice the volume, twice

the number of particles and twice the free energy. Such a system would not have

twice the prior temperature nor twice the prior pressure, and thus T and P are

known as intensive variables.

The following relations concerning G hold:

(
dG

dT

)
N,V

= −S,
(
dG

dP

)
N,T

= −V,
(
dG

dN

)
P,T

= −µ, (1.1)

where µ is the chemical potential. Phase transitions (e.g. liquid to crystal) involve

discontinuities in S, V and µ, and are conventionally referred to as 1st order

transitions because S, V and µ are first derivatives of G. These variables can in

turn be used to define response functions such as isothermal compressibility, KT ,

specific heat at constant pressure, CP , and the thermal expansion coefficient, αP .

These variables are defined as

KT = − 1

V

(
dV

dP

)
T

, CP = T

(
dS

dT

)
P

, αP =
1

V

(
dV

dT

)
P

, (1.2)

and are thus defined in terms of the second derivative of G. Transitions involving

discontinuities in these variables are known as second-order transitions. A major

concern with interpreting data is whether thermodynamic variables change con-

tinuously or discontinuously. Due to experimental limitations, this is not always

straightforward.

The familiar ideal gas law, PV = NkT , where k is Boltzmann’s factor, is an

example of an equation of state. An improved equation of state, know as the Van

der Waals equation of state, predicts phase changes as show in Figure 1.2. The

Van der Waals equation is

(
P +

N2a

V 2

)
(V −Nb) = NkT (1.3)

or equivalently,
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(
P ∗ +

3

(V ∗)2

)(
V ∗ − 1

3

)
=

8

3
T ∗ (1.4)

where b is the volume of each particle, a is a mean-field attraction between par-

ticles, and P ∗ = P/Pc, V
∗ = V/Vc and T ∗ = T/Tc are unitless pressure, volume

and temperature, respectively, as seen in Figure 1.2. The Van der Waals equation

provides a qualitative description of many liquids, though it fails in cases of liquids

like water.

In Figure 1.2, there is no distinction between phases when T ∗ > 1. Any gas

with attractive interactions will have such critical points between the gas and

liquid phases. At lower temperatures, the substance can no longer follow the

equation of state trajectory because it involves the unphysical unstable region

where KT becomes negative, meaning that volume increases with pressure. When

V ∗ < 1, the substance is a liquid, and when V ∗ > 1 it is a gas. Upon expansion,

the substance “skips” abruptly at constant pressure (hence with a discontinuity

in volume) to the other side of the unstable area. Note that if the volume were

to be fixed inside this unstable region, one observes the coexistence of the stable

gas and liquid. Liquids “prefer” to change states at the coexistence line because

this would lower their Gibbs free energy, but there is no kinetic requirement that

they do so, and they can continue to exist in the metastable regime until KT

becomes negative (the statepoints where this happens form the “spinodal” line).

Such spinodal lines exist only for the liquid-gas transition; however, it has been

suggested that the liquid-gas spinodal line “reappears” below Tg which would

explain the existence of HDA and LDA [23]; this theory is known as the stability

limit conjecture. There are actually other explanations for abrupt density change

between HDA and LDA [16], including the singularity-free scenario [24, 25, 26].

However, experimental evidence suggests that the second critical point scenario is

the most likely explanation [27, 28, 29].

Figure 1.3 shows a pressure-temperature diagram for a generic substance. TC ,

PC and ρC denote the temperature, pressure and density at the critical point,

respectively. At temperatures and pressure above TC and PC , there is no distinc-

tion betwen a liquid and a gas. In this range, increasing the pressure along an
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isotherm, as in Figure 1.2, will result in only continuous changes in volume. More

on thermodynamics can be found in a multitude of thermodynamic textbooks and

also in statistical mechanics books such as refs [30, 31].
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0.5 1 1.5 2 2.5
V* (reduced units)

0

0.5

1

1.5

P
* 

(r
ed

uc
ed

 u
ni

ts
)

coexistence line
spinodal line

T=1.05

T=.85

critical point

unstable

stable

metastable

(δV/δP)T > 0

gas

fluid

liquid

Figure 1.2: PV Diagram for Van der Waals equation of state

Isotherms of the Van der Waals equation of state. Substances with pressures

and volumes within the lightly shaded regions are metastable (i.e. supercooled or

superheated) while substances in the darkly shaded region are unstable. In the

unstable region, substances expand when pressure is increased, which is unphysi-

cal. All units are in reduced units, where P ∗ = P/Pc, V
∗ = V/Vc and T ∗ = T/Tc.
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Figure 1.3: Generic PT Diagram

Show above are qualitative features of a generic PT diagram for a substance. Not

all substances have a homogeneous nucleation temperature (Th), meaning that

a supercooled liquid can exist until it kinetically changes into a glass. Tb is the

boiling temperature, Tm is the melting temperature, Tsublimation is the sublimation

temperature and Tg is the glass transition temperature.
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1.2.2 The Case of Water

(a)                                              (b)                                                (c)

Figure 1.4: Anomalous behavior of water

Dashed curves are representative of typical liquids, while solid curves are quali-

tative estimates of water’s behavior. The unexpected divergence of water’s ther-

modynamic quantities is one reason behind suspecting the existence of a second

critical point C ′. The text boxes show the fluctuations that are related to the

given thermodynamic quantity. From [32].

Water exhibits many uncommon thermodynamic properties, mostly due to

hydrogen bonding. One familiar property is a density maximum (corresponding

to a zero in αP ) at 4◦C. It is also well-known that the liquid state is denser than the

usual solid state (Ice Ih) since ice floats. This is uncommon, as most substances

continually shrink upon cooling, shown by a positive thermal expansion coefficient

- see Figure 1.4 part (c). Though data are missing for lower temperatures due to

crystallization, αP can be fit by a power law which surprisingly suggests that it

diverges to infinity around 228 K [33].

Each of the response functions can be associated with a corresponding fluctu-

ation [16]:

〈(δV )2〉 = V kTKT , 〈(δS)2〉 = NkcP , 〈(δSδV )〉 = V kTαP (1.5)

where N is always fixed and V = 〈V 〉. For any quantity Q, the fluctuations

in Q, 〈(δQ)2〉, can be thought of as the standard deviation in Q, which is easily

calculated by σ2
Q = 〈Q2〉−〈Q〉2. 〈(δSδV )〉 measures the correlation of volume and
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entropy fluctuations; it is positive if the fluctuations are correlated, 0 if they are

perfectly uncorrelated, and negative if they are anti-correlated. In typical liquids,

fluctuations in volume and entropy decrease upon cooling, while the opposite

happens in water. Fluctuations in volume and entropy are positively correlated

in typical liquids, while in water they become negatively correlated below the

temperature of maximum density (4◦ C at atmospheric pressure). This means a

decrease in volume will increase the entropy, which is a consequence of hydrogen

bonding. This is because the highly ordered, low entropy tetrahedral shapes found

in supercooled water take up more space than unordered arrangements.

These effects are exaggerated as the temperature is lowered, and all three

response functions are expected to diverge in the vicinity of 228 K [33]. See

Figure 1.4 (a) and (b). This is what would be expected were water to have a

liquid-liquid critical point, though it is not proof. The reason for such divergences

is easy to see on a P − V diagram. At a critical point, such as along the T = 1

isotherm in Figure 1.2, the slope dP/dV is flat, and thus KT is infinite. Along

isotherms of T >∼ 1, the response functions have huge maxima, though the functions

no longer diverge. The locations of such maxima are known as Widom lines. Each

response variable has a corresponding Widom line leaving a critical point, and the

various Widom lines need not coincide. See Figure 1.7.

The liquid-gas critical point C of water is located at TC = 647 K and PC = 22

MPa (see Figure 1.5). Water is stable as a gas above the boiling line Tb, which

is T = 377 K at atmospheric pressure, and water is stable as a crystal below the

melting line Tm, which is T = 273 K at atmospheric pressure; see Figure 1.1. On

a T − P diagram, the melting line of water is negatively sloped until about 200

MPa, at which point is becomes positively sloped like most liquids. This accounts

for pressure-induced melting of ice if the temperature is just below freezing.

Water can be supercooled at atmospheric pressure to approximately 235 K,

at which point it homogeneously nucleates into a crystal regardless of the sample

size or purity. The homogeneous nucleation temperature is shown by the curve

Th on Figure 1.5. If water is quenched (cooled rapidly) to a temperature below

Tg, it can “bypass” crystallization and become a glass, meaning that it no longer
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crystallizes within observable times. If water is quenched at atmospheric pressure,

it forms a low density glass known as LDA. There is actually a range of forms

of glassy water at atmospheric pressure; for simplicity, we categorize them all as

LDA (it is expected that they are all of the same phase). Upon compression,

LDA can form a distinct phase of glass with density roughly 30% greater, known

as HDA [22]. Likewise, HDA can be decompressed and turn into LDA. There may

also be a distinct form of HDA called VHDA, for very high density amorphous

solid, but it is not know whether this is a distinct form or whether the change

from HDA to VHDA is continuous [34, 16]. Part of the difficulties of probing

glasses is that they are non-equilibrium materials, meaning that their properties

depend on how they are formed. Hence HDA formed by compressing LDA shows

slightly different properties than HDA formed by quenching compressed liquids.

Upon heating either form of the glass, enough mobility is gained at TX such that

the liquid can relax to form a crystal. This occurs around 150 K, though depends

on pressure (see Figure 1.5).
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Figure 1.5: Known phase diagram of water

The liquid-gas critical point, C, is shown by the large open dot at T = 647 K.

The unlabeled solid line is the liquid-gas coexistence line and the unlabeled dotted

line leaving the critical point is the liquid-gas spinodal line. TMD is the line of

maximum density, and is 4◦C at atmospheric pressure. The Roman numerals refer

to polymorphs of ice; common ice is a type of ice I. The solid line at 200 MPa

is the LDA-HDA coexistence line. Not show are the LDA-HDA and HDA-LDA

spinodals. The ◦ are the loci of extrapolated singularities of KT and the • are the

loci of extrapolated singularities of D−1(D is the translational diffusion constant,

to be defined in the next section) From [32].
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Figure 1.6: Proposed phase diagram of water according to liquid-liquid transition

hypothesis

The © is the liquid-liquid critical point C ′. The solid line leaving the critical

point is the LDA-HDA coexistence line, and the dashed lines are the LDA-HDA

and HDA-LDA spinodals. The region of temperatures below TH and above TX is

difficult to study and experiments at C ′ cannot be performed. From [32]



1.2. THERMODYNAMICS 17

200 240 280 320 360 400
T (K)

-200

-100

0

100

200

300

400

500

P
 (

M
P

a)

HDL spinodal
liquid spinodal
density maximum
density minimum
KT maximum (Widom line)

CP maximum (Widom line)

liquid - ice Ih coexistence

0.91 g/cm
3

1.04 g/cm
3

liquid

gas

LDL

HDL

0.80 g/cm
3

1.30 g/cm
3

liquid-liquid
critical point

Figure 1.7: Phase diagram for ST2

The experimentally known phase diagram for ST2 water. In general, thermody-

namic events in ST2 water happen roughly 30 K and 80 MPa higher than in real

water. The liquid-gas spinodal is shown, as well as one of the spinodals from the

liquid-liquid critical point. The KT maxima indicate the KT Widom line, and the

CP maxima indicate the CP Widom line; the KT and CP Widom lines are distinct

and do not fall on isochores. Data from P.H. Poole (private communication).
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1.3 Dynamics

1.3.1 Mean-Squared Displacement

As state earlier, the aim of this thesis is to characterize dynamic properties of su-

percooled water. Dynamical quantities can be described by microscopic variables

based on the positions {ri} and velocities {vi} of all the particles. One of the

most fundamental dynamical variables is the mean-squared displacement (MSD)

〈r2(t)〉 ≡ 〈|r(t+ t0)− r(t0)|2〉, (1.6)

where the brackets denote averaging over all N particles and over all times t0 [35].

In this thesis, the mean squared displacement always refers to the displacement

of the oxygen atom. An example of 〈r2(t)〉 is show in Figure 1.8 part (a).

When tracking the motion of a single particle, the particle at first moves

without hitting other particles and the motion is said to be ballistic because

r = vrmst, hence r2 ∝ t2 so we expect the MSD to have a slope of 2 on a log-log

plot. At intermediate times, the particle starts colliding with other particles. At

high temperatures, the particle begins diffusive motion and the log-log slope is 1.

At lower temperatures, the particle may be “caged-in” and will take much longer

before it begins to diffuses.

The positions and velocities of all 3N atoms determine a set of N solid an-

gles, {φi}, and angular velocities, {ωi}. We define the rotational mean-squared

displacement 〈φ2(t)〉 (referred to as the rotational MSD) to be

〈φ2(t)〉 ≡ 〈|φ(t+ t0)− φ(t0)|2〉 (1.7)

but need to carefully define the angular coordinates by

φ(t+ t0)− φ(t0) =
∫ t′

t0
ω(t′)dt′ (1.8)

because φ itself is limited to values on the unit sphere and we don’t want to

limit the rotational changes to unit sphere values. 〈φ2(t)〉 shows qualitatively
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similar behavior to 〈r2(t)〉, but the form of the time and temperature dependence

is quantitatively different.

The translational self-diffusion constant, written as D or Dtrans, measures the

rate at which particles diffuse. A higher value corresponds to increased mobility,

and hence for most liquids Dtrans will decrease upon application of pressure or

cooling. Likewise, Drot measures the “diffusion” of the angle of a particle. The

Einstein relation

Dtrans = lim
t→∞

〈r2(t)〉
6t

(1.9)

and the Debye-Einstein relation

Drot = lim
t→∞

〈φ2(t)〉
4t

(1.10)

give methods for determining the translational and rotational diffusion constants

Dtrans and Drot from the respective mean squared displacements [35]. The be-

havior of a substance is called “diffusive” when 〈r2(t)〉/t is constant (i.e. a slope

of one on a log-log plot of the mean square displacement) and thus D can be

calculated without requiring that t→∞.

The Stokes-Einstein (SE) approach allows one to relate mass transport, mea-

sured by diffusion constants, to momentum transport, measured by viscosity η. If

one assumes spherical molecules, the SE equation predicts

Dtrans =
kBT

γπdη
, i.e.

Dtransη

T
= constant (1.11)

where γ is either 2 or 3, depending on if “slip” or “stick” conditions hold (see

[36]). Similarly, the Debye-Stokes-Einstein (DSE) equation predicts

Drot =
3kBT

γπd3η
, i.e.

Drotη

T
= constant. (1.12)

Even though water is not spherical and is in a discrete medium, the SE and

DSE equation hold remarkably well over a wide range of temperatures. However,

because the geometry of water is different, these relationships are not intended to

be quantitative, though they can often be within a factor of 2 [16]. The equations



20 CHAPTER 1. INTRODUCTION

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

t (in ps)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

<
r2 >

 (
nm

2 )

Ballistic      Diffusive

P=150 MPa

(a)

T=300 K

0 0.5 1

r (nm)
0

0.0002

0.0004

0.0006

0.0008

g(
r)

P=150 MPa
T=300 K

(b)

0 50 100

k (1/nm)
0

10

20

30

s(
k)

P=150 MPa
T=280 K

(c)

10
-1

10
0

10
1

10
2

10
3

t (ps)

e
-1

0

1

.5

F
k(t

)

ρ=0.8 gm/cm
3

τ

275 K

290 K
320 K

350 K

(d)

Figure 1.8: Response functions

(a) is the mean-squared displacement at a high temperature; (b) is the radial

distribution function; (c) is the static structure factor; (d) is the intermediate

scattering function at various temperatures

predict that Dtrans/Drot should be independent of T , and this is true experimen-

tally when T > Tm for most low-viscosity liquids. Recent experimental work

has suggested that the SE equation breaks down near Tg (see the final section

in chapter 3); the data collected in this thesis allow us to test the SE and DSE

equations.

1.3.2 Correlation Functions

Correlation functions typically measure either correlations in space, time, or a

mixture of the two. The radial distribution function, g(r), is proportional to the
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probability of finding two molecules a distance r = |r| apart, and is one of the

simplest measures of spatial correlation. See Figure 1.8 part (b). We compute

g(r) by [37]

g(r) =
V

N2

〈
N∑
i=1

N∑
j 6=i

δ(r − ri,j)
〉

(1.13)

The location of the first peak in g(r) is the distance to the first nearest neigh-

bor. While g(r) cannot be directly measured experimentally, the Fourier transform

of g(r),

S(k) = 1 + ρ
∫
e−ik·rg(r)dr, (1.14)

known as the (static) structure factor, can be measured in x-ray or neutron scat-

tering experiments; see Figure 1.8 part (c). Hence g(r) can be obtained by Fourier

transforming S(k). The structure factor can also be expressed as

S(k) =
1

N
〈ρkρ−k〉 (1.15)

where

ρk =
N∑
i=1

e−ik·ri . (1.16)

The van Hove function, G(r, t), measures the probability of finding a particle

at a position r at a time t given that there was a particle at an arbitrary origin

r = 0 at time t = 0, and is given by

G(r, t) =
1

N

〈
N∑
i=1

N∑
j=1

δ [r + rj(0)− ri(t)]
〉

(1.17)

G(r, t) is a t-dependent generalization of g(r).

The intermediate scattering function is defined by the Fourier transform of the

van Hove function:

Fk(t) =
1

N

1

S(k)
〈ρk(t)ρ−k(0)〉 =

1

S(k)

∫
G(r, t)e−ik·rdr. (1.18)
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The intermediate scattering function can be measured by neutron scattering.

Note that Fk(0) = 1 and Fk(∞) = 0. In this thesis, we look at the dependence

of Fk(t) on time, keeping k fixed (using the value at the first peak of S(k)). The

quantity we actually study is Fk(t), which is Fk(t) averaged over all |k| = k.

From this, we can define a relaxation time τα by the time such that Fk(τα) =

e−1. This relaxation time is a bulk property (since we average the intermediate

scattering function over all particles), and we expect that it is proportional to the

shear viscosity η. It is possible to calculate η but it requires storing information

on velocity as well as position, which we did not record. Further extensions of

this work will calculate η and presumably verify that it is proportional to τα.

Experimentalists measure η and not τα.

1.3.3 Rotational Variables

If ui is a unit vector associated with each molecule i (for example, the normalized

dipole vector), then the dipole-dipole correlation functions are defined

Cl(t) = 〈Pl(ui(t) · ui)〉 (1.19)

where Pl is the lth Legendre polynomial [35]. The dipole-dipole correlation func-

tions are defined in terms of the Legendre polynomials because C1 can be deter-

mined by the spectral bandshapes of infrared absorption and C2 can be determined

by Raman scattering [35]. We measure C1 and C2 and focus on C2, as this is the

most commonly measured rotational variable in experiments.

Associated with Cl is a characteristic time τl, either defined as the integral of

Cl over all time or as the time it takes Cl to decay to e−1 of its original value,

in analogy to τα. Both definitions are expected to show the similar temperature

dependence. We use the latter definition because it does not require short-time

data to calculate. Figure 1.9 compares the two definitions of τl.
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Shown are two definitions of τl; they disagree at high T because the integral-

dependent definition becomes more sensitive to short-times, and data were not

collected at intervals less than 100 fs. l=1, ρ = 0.8 g/cm3
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1.3.4 Arrhenius Behavior

At high temperatures, diffusion constants and time constants are expected to

follow Arrhenius behavior [16]. Specifically, this means that at a fixed pressure,

τα = τ0e
E/kT (1.20)

where τ0 is a constant, k is Boltzmann’s constant, and E is an activation en-

ergy that varies across pressure but is not expected (in the simplest models) to

vary across temperature. As temperature lowers, the relaxation time increases

exponentially due to reduced momentum transport.

It has been known for many years that such relations do not hold for suf-

ficiently cold water [16]. Below a certain temperature TA = TA(P ), we expect

non-Arrhenius behavior of the form

τα = τ0e
E/k(T−T0) (1.21)

where T0 is a non-zero temperature at which Tα diverges to infinity. In other words,

T0 = 0 in the Arrhenius case, and τα does not diverge at positive temperature.

Our results show such non-Arrhenius behavior and we try to characterize TA in

section 3.1.3.

We also expect “caging” phenomena to become significant at lower tempera-

ture. This is expected from previous simulations and we confirm this; caging is

discused in Section 3.1.

1.3.5 Spatially Heterogeneous Dynamics

The idea that dynamics in liquids are spatially homogeneously distributed has

been implicit so far in this work as well as in much of the standard liquid theory.

However, in the 1990s, as a means to explain enhanced translational diffusion,

some authors (see [38]) suggested that liquids are not spatially homogeneous at

low temperatures. Instead, heterogeneous pockets of more mobile liquids fluctuate

in and out of existence. There have been several flavors of theories about the
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characterization of the heterogeneities (see the review papers [39, 38]), but the

simplest of them explain the enhanced translational diffusion as follows, due to

[40]: suppose that, at any given time, every local region of water is in either a

fast state, with τ2 = τfast, or in a slow state, with τ2 = τslow, and to simplify

further, assume that half the liquid is in a fast state and half is in a slow state.

We also assume that the SE and DSE equations are obeyed locally in each region.

Each region is also characterized by a translational diffusion constant D which can

take the values Dfast or Dslow. Then, in our example, τ2 = (τslow + τfast)/2 and

D = (Dslow + Dfast)/2. If τfast � τslow and Dfast � Dslow, then τ ≈ τslow/2 and

D ≈ Dfast/2. The stronger the heterogeneities, the more D is enhanced by the

Dfast region, while τ2 remains coupled to τslow. To put it simply: the correlation

time is dominated by the slow regions, while the diffusion constant is dominated

by the fast regions.

Regardless of the motivation that first suggested water was spatial heteroge-

neous, recent work has conclusively shown, using both experiments and computer

simulations, that heterogeneities do exist [39, 38].

1.4 Computer Models

Computer simulation offers advantages over real-world experiments. Samples are

of course pure, and thermodynamic variables can be rigidly controlled. The actual

positions and velocities for each particle can be recorded, allowing, in theory,

calculation of any desirable classical dynamical or thermodynamical quantity.

There are also drawbacks to using computer simulations. One major such

drawback is due to approximations in calculating the intermolecular potential.

Different approximates lead to different models of water. The computer simula-

tions in this work used the “ST2” model for water, and therefore the results only

apply exactly to ST2 water [41]. However, ST2 water has been studied for over

30 years and shows qualitatively similar behavior to water, such as exhibiting a

temperature of maximum density and showing phase transitions near their actual

location. Quantitatively, ST2 often places events at higher temperatures. For ex-
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ample, real water has a maximum density of ρ = 1 g/cm3 along the P = 0.1 MPa

isobar, with a temperature of maximum density (TMD) at 277 K = 4◦C. In ST2,

a maximum density of ρ = 1 g/cm3 is attained along the 82 MPa isobar, and

at a temperature of 312 K = 37◦C [6]. There is also evidence that the melting

temperature is elevated over that of real water [42]. These higher temperatures

and densities are due to the overemphasis of tetrahedral structure in the ST2 po-

tential. The tendency to form tetrahedral molecular arrangements is associated

with anomalous properties. The artificial tetrahedral form of the ST2 potential

creates tetrahedral molecular arrangements at higher temperatures than is pos-

sible in real water. While this is a disadvantage in terms of quantitative results,

it is an advantage in other ways, since lower temperatures are costly in terms

of computing time. Modelling ST2 at 250 K may provide a good description of

water at 220 K, without having to run simulations at 220 K (which take orders

of magnitude more time to equilibrate than simulations at 250 K). In general, by

subtracting 30 to 40 K from temperatures shown in ST2 behavior, we get a crude

estimate of the temperature of the same behavior in water. In this thesis, I use

the words “water” and “ST2 water” interchangeably, with the implicit assumption

that they are not expected to be identical.

There are other standard simulation models, and there is evidence that water’s

behavior is often found “sandwiched” by various models, that is, one model may

overestimate a quantity Q and another model may underestimate Q. In this way

computer models can define upper and lower bounds on the properties of real

water. ST2 is discussed in detail in the next chapter. Details on other water

molecules can be found in [43] for the SPC/E model, in [44] for the TIP4P model

and in [45] for the TIP5P model.

Other drawbacks of computer simulation are due to constraints in processing

power. “Computational experiments” simulate only nanoseconds or less, but may

take days to run. Lower temperatures equilibrate slower and therefore simulations

must last longer. This means there is an effective limit to how low in temperature

water can be simulated. Specifically, this means equilibrium properties with re-

laxation times >∼ 1µs cannot be probed well by simulation. Increases in processing
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speeds increase the range of temperatures where water and other liquids can be

simulated, and thus every year water can be studied to lower temperatures.

There are other undesirable effects of simulation that are introduced by vari-

ous simulation techniques. Some of these techniques are practically essential for

studying bulk liquids (like periodic boundary conditions) and others are merely

convenient time-savers (like using potential truncation) but still important. The

following chapter on computer simulation will cover these techniques and what

can be done to minimize unphysical effects.

1.5 Computational Resources

The purpose of this thesis is to investigate the dynamic properties of supercooled

liquid water. To do this, ST2 water was simulated on computers. The computing

framework at Wesleyan University was a Beowulf cluster of 50 processors running

LINUX with the MOSIX add-on. With MOSIX, programs jobs are distributed

transparently to the cluster via a central computer. Each processor had a clock

speed of around 3 GHz, and had from 512 MB to 4 GB of RAM. File storage

was centrally shared in a RAID 5 1.2 TB hard drive system. Code was written

exclusively in C.

Additional computation was done on a computer cluster at St. Francis Xavier

University in Nova Scotia. The cluster had 90 dual-CPU Opteron machines run-

ning SunOS. The simulation code was written in Fortran and analysis codes were

written in C. Most of the data presented in this thesis are the result of a series of

two-day simulations on this cluster, which used equilibrated configurations that

had been previously simulated over many days. These data were subsequently

analyzed on both clusters.

The actual simulation code was adapted from existing code. The C-code on

the Wesleyan cluster was based off the Fortran code on the Nova Scotia computer

cluster, and previous work has shown the two codes to be satisfactorily similar.

Contributers and original authors of the code include Alfons Geiger, Francesco

Sciortino, Peter Poole, Stephen Harrington, and Francis Starr. The C-codes were
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compiled using the GNU gcc compiler with the maximum possible optimization.

The main data were a series of 1,233 computer simulations run at various

fixed temperatures and volumes (i.e. densities) which took up 989 GB of hard

disk space. Subsequent analysis produced about 30, 000 files taking up 733 MB.

The densities ranged from 0.80 g/cm3 to 1.20 g/cm3 in steps of .01 g/cm3. Along

these isochores, simulations were run at temperatures from 250 to 400 K in 5 K

intervals, though not all isochores were run at the lowest temperature; see Table

1.1. At each temperature and pressure, a preliminary run was performed until

it reached equilibration. In practice, the runs were simulated for the longer of

the time needed for the mean-squared displacement to reach 1 nm2 or 100 ps.

Each preliminary run used the final configurations of a run at higher temperature

as its starting configuration, except for the 400 K runs which were started using

regularly spaced positions and quasi-random velocities chosen from the Maxwell-

Boltzmann distribution. Using the final configurations of the equilibrium run, a

production run was started and run until the same set of criteria was reached.

At some of the lowest temperatures and isochores, the mean-squared displace-

ment did not show diffusive behavior even after it reached 1 nm2, and thus the

diffusion constants for these runs were not included in the analysis. The simula-

tion code used a time step of 1 fs, and the positions of all the atoms were written

to disk every 100 fs. These configuration files exceed 12 GB for the longest runs,

and because this exceeds the RAM capabilities of the clusters, these files had to be

reduced to an effective spacing of 1 or 2 ps. Thermodynamic data were calculated

at the run-time of the experiment, while the dynamical variables Dtrans, Drot, C1,

C2 and Fk(t) were calculated at later times. Specifically, the pressure for each run

was recorded which gave a mapping from statepoints (T ,ρ) to statepoints (T ,P ).

Isobars of a quantity Q were calculated by fitting splines to isotherms of Q as a

function of P , then taking the value of the spline at 50 MPa intervals.
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Table 1.1: Statepoints

Shown are the statepoints simulated. The leftmost column is density in 10−2g/cm3

and the topmost row is temperature in K. The values of the table are the times

in ps that the state point was simulated for during the production run
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Chapter 2

Computer Simulation

2.1 ST2 Model

The main difficulty in creating an accurate model of water arises from defining the

intermolecular potential. Water has dipole as well as higher multipole moments,

and forms directional hydrogen bonds. Creating a model is a balance between

incorporating the physics and having a quickly computable potential. One of the

earliest and most used models of water is known as ST2, named after Stillinger [41],

its originator. It models the electrostatic interactions of water by placing four

fractional electric charges of magnitude q at predetermined sites in the molecule

and also includes a Lennard-Jones term to account for the dispersion forces. Two

+q charges model the hydrogen atoms and are each located exactly 1 Å from the

center of the oxygen molecule, at an angle θt apart, where θt is the tetrahedral

angle θt = 2 cos−1(3−1/2) ' 109◦28′. Two −q charges are placed l = .8Å from the

center of the oxygen molecule and are also θt apart; see Figure 2.1. The value of q is

.2357 e = 3.77 ·10−20 C. Because the fixed charges do not model a dipole perfectly,

the electrostatic terms of the potential are multiplied by a switching function S(r)

with continuous first derivate which reduces the effect of the electrostatic terms

when r is small (see Figure 2.2). The form of the switching function is

31
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Figure 2.1: The structure of the ST2 model, from [41]. l is .8 Å

S(r) =


0 if r < RL

(r −RL)2(3RU −RL − 2r)

(RU −RL)3
if RL ≤ r ≤ RU

1 if r < RU

(2.1)

There is also a 5th site force corresponding to the Lennard-Jones interactions

the water molecules. The Lennard-Jones potential is

VLJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
. (2.2)

ST2 uses the values ε = 5.2605 · 10−22 Joules and σ = 3.1 Å. See Figure 2.3. The

(σ/r)6 term captures attraction due to van der Waals forces, while the (σ/r)12

term provides core repulsion.

Because the point charges are in a fixed tetrahedral geometry, ST2 overem-

phasizes tetrahedral structure and does not reproduce expected liquid structure

at high pressures. However, ST2 has been used for over 30 years and is believed

to provide useful information about the dynamics and thermodynamics of water,

especially when used in conjunction with other models, such as the SPC/E model,

which significantly underemphasizes the tetrahedral structure of water.
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Figure 2.3: The Lennard-Jones potential for the ST2 model
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2.2 Molecular Dynamics

2.2.1 Integrating the Equations of Motion

Given an intermolecular potential, the problem of moving the particles still re-

mains. The physics is simple; the force is the negative gradient of the potential,

and Newton’s second law relates force to acceleration. The acceleration defines

the change in the velocities which in turn define the change in position. However,

for a given timestep δt, we want to minimize error and calculation time. There

are many finite-difference method algorithms to chose from, but the importance

of quick calculation time makes many impractical. For our simulations, we used

the “velocity Verlet” algorithm [37], which is of the form

r(t+ δt) = r(t) + δtv(t) + 1
2
(δt)2a(t) (2.3a)

v(t+ δt) = v + 1
2
δt [a(t) + a(t+ δt)] (2.3b)

The typical value of δt for water is 1 fs.

The above calculations are performed for each atom in the simulation. Because

we require that water stay in molecular form, it is necessary to maintain the

intramolecular OH-bonds. This is done via constraint dynamics, and we use the

SHAKE algorithm [37, 46], which assumes a fixed OH bond length of dαβ = 1 Å.

The idea of the process is that all atoms are free to move as if there were no

intramolecular bonds. Then, after each time step, the SHAKE algorithm is applied

which nudges the atoms until the OH-bonds are restored.

Specifically, after calculating the unconstrained positions riα(t+ δt), the posi-

tions are adjusted as follows:

r′iα(t+ δt) = riα(t+ δt) +
1

2

(
mα

µ

)−1 δr2αβ(t+ δt)− d2αβ
δrαβ(t+ δt) · δrαβ(t)

δrαβ(t) (2.4a)

r′iβ(t+ δt) = riβ(t+ δt)− 1

2

(
mβ

µ

)−1 δr2αβ(t+ δt)− d2αβ
δrαβ(t+ δt) · δrαβ(t)

δrβα(t) (2.4b)

where mα is the mass of the atom α in the molecule i, µ = mαmβ/(mα + mβ) is

the effective mass, and δrαβ(t) ≡ ri,α(t) − ri,β(t). This process is iterated until
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|δr2αβ(t+ δt)− d2αβ| < ∆ for some small tolerance ∆. SHAKE is most effective for

large molecules that do not require extremely small tolerances.

2.2.2 Starting the Simulation

Since we wish to study many statepoints extending to low temperature, where

relaxation times become large, it is advantageous to use final configurations from

higher temperatures as the initial configurations of slightly lower temperatures.

This reduces the time it takes to reach equilibrium, which is increasingly important

as the temperature is lowered. We considered statepoints of fixed density and

temperature. The simulations began with runs at 400 K at each density. When

these runs were complete, they provided the initial configurations for the 395 K

runs at their respective densities.

To start the 400 K runs, molecules were placed in a cubic lattice with random

orientations. Spacing was determined by the given density. Velocities were chosen

pseudo-randomly from an interval around the velocity vT defined by the equipar-

tition theorem equation 3kT = 1
2
mv2T , with T = 400 K, and with the restriction

that the net momentum was zero. The cubic lattice configuration results in ex-

tremely high potential energy, which is quickly converted to kinetic energy once

the simulation begins.

2.2.3 Controlling Temperature

Because the high lattice energy is converted into thermal motion, the temperature

of the system increases. In order to keep the temperature at the desired level, it

is necessary to scale the velocities. We use the Berendsen “thermal bath” to scale

the velocities [37]. This multiplies the velocities by a scale factor χ at every time

step. χ is defined

χ =

[
1 +

δt

τT

(
T0
T
− 1

)] 1
2

, (2.5)

where T0 is the desired temperature, and τT is a time constant that affects the

rate of the scaling. It usually takes a value on the order of 1 ps.
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2.2.4 Periodic Boundary Conditions

Our simulations used 1728 ( = 123) particles, a relatively large number for water

simulations. But even with 1728 particles, if we simulated a closed box, a large

fraction (over 33%) of the particles would be “on the surface,” and surface ef-

fects would be large. To avoid this, the simulation code uses periodic boundary

conditions, which create a boundary-less system. The periodic boundary condi-

tions work by having an infinite lattice of identical copies of the original “box”

of molecules around a central box. When a molecule moves in the central box,

its six corresponding images move in the surrounding boxes. When a molecule

goes through the boundary of the central box, it is as if it enters the neighboring

box and a new identical particle enters the central box from the opposite side.

Since the lattice is periodic, we need only keep track of the molecules in a single

simulation cell.

These boundary conditions create a bulk liquid with no surface. Fluctuations

that are of large length scale, or correspondingly small reciprocal lattice vectors

(on the order of π/L, where L is the length of the side of the box), will therefore

be distorted by the finite size. When N is on the order of 100 or greater, such

fluctuations do not happen except for state points extremely close to a critical

point, therefore this is not an issue in our simulations. Periodic boundary condi-

tions can also affect the rate at which a liquid nucleates, but generally produce

accurate results [37].

2.3 Efficient Implementation

2.3.1 Potential Truncation

Done näıvely, determining the potential requires 5N(5N − 1)/2 calculations (5N ,

not N , because there are five sites per molecule and N(N − 1)/2 is the number of

distinct pairs), which is O(N2) and would make simulation of 1728 particles im-

practical. However, by truncating the potential at a short-enough cutoff distance

rc, the number of calculations can be reduced to O(N). The standard practice is
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to use a value of rc around 2.5σ, which is 7.75 Å for ST2. To avoid a discontinuity

in the potential, a smooth tapering function f(r) = 1− S(r) is used.

2.3.2 Correcting the Energy

Truncating the potential will underestimate the potential energy and the virial

term of the pressure. The truncation of the Lennard-Jones term is easy to deal

with, since it decays with r−6 which is convergent. By integrating to ∞, we find

the corrections to the potential energy U and pressure P as follows:

ULJ correction =
8πσ3Nε

3V

[
1

3

(
σ

rc

)9

−
(
σ

rc

)3
]
' .5508 kJ/mole (2.6a)

PLJ correction =
16πσ3ε

3V 62

[
2

3

(
σ

rc

)9

−
(
σ

rc

)3
]
' .3986 kJ/mole (2.6b)

The correction to the energy from the Coulomb part of the potential does

not converge, since it decays with r−1. There are several methods to correct the

pressure and energy, including the Ewald and the fast multipole methods (see [37]

for a discussion). We use the computationally efficient reaction field (RF) method

due to [47]. The RF method assumes that, for a give point, all molecules more

than rc away are part of a dielectric continuum which is polarized by the dipolar

molecules inside the r < rc sphere. The polarized continuum in turn creates an

electric field, called the reaction field E i(r), inside the rc sphere, where i denotes

the index of the molecule of interest (located at the center of the sphere). The

value of the reaction field at the center of the sphere turns out to be the same as

the average value [47], which is.

〈E〉 =
1

4
3
πr3c

∫ rc

0
E(r)d3r =

ε− 1

ε+ 1
2

M i

r3c
(2.7)

where ε is the (unknown) dielectric constant of the continuum and M i is the net

dipole moment from the molecules inside the r < rc sphere centered around ri

(all in CGS units) [47, 37].

The dipole moment of the ith molecule is µi =
∑4
α=1 qαri,α, where α is the
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index of the molecular charge qα. If Si is the set of indices {j : |rj − ri| < rc},
then

M i =
∑
j∈Si

µj. (2.8)

Since i ∈ Si, M i includes the term µi · µi = µ2 which is the same for all

molecules. For each molecule with dipole moment µi, the reaction field contributes

− 1
2
µi · 〈E i〉 to the energy, so the total contribution to the energy is

U RF = − 1
2

N∑
i=1

µi · E i = −1

2

ε− 1

ε+ 1
2

N∑
i=1

∑
j∈Si

µi · µj
r3c

(2.9)

We can substitute for the dipole moments to find the energy, first noting that

the uncorrected electro-static energy term is

Uelectro-static =
N∑
i

N∑
j>i,j∈Si

4∑
α

4∑
β=1

qαqβ
δriα,jβ

(2.10)

where δriα,jβ = |ri,α − rj,β|. The j > i ensures that pairs of particles are only

counted once. In similar form, the RF correction is given

URF =
ε− 1

ε+ 1
2

N∑
i

N∑
j>i,j∈Si

4∑
α

4∑
β=1

qαqβ
r3c

(δriα,jβ)2 −N 1

2

µ2

r3c
(2.11)

where the second term is from the i = j case which is not included in the sum.

There remains the problem that ε is unknown, but its actual value is relatively

unimportant since the ratio (ε− 1)/(ε− 1
2
) is close to 1 for any reasonable choice

of ε. In practice, we tacitly assume that ε = ∞ and therefore the ratio becomes

unity. Hence the total energy due to the electro-static potential and the reaction

field (i.e. everything but the Lennard-Jones contribution) is given

Uelectro-static total =
N∑
i

N∑
j>i,j∈Si

4∑
α

4∑
β=1

qαqβ

[
1

δriα,jβ
+

(δriα,jβ)2

r3c

]
−N 1

2

µ2

r3c
(2.12)
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2.3.3 Neighbor Lists

Though truncating the potential reduces the number of calculations required to

find the intermolecular potentials, it introduces a new calculation in order to de-

termine which molecules are within the cutoff rc. One way of doing this efficiently

is to use the Verlet neighbor list [37]. Initially, to every molecule is associated

a list of all other molecules within a radius of rs ≈ 1.05rc, so the list contains

at least all the molecules which explicitly contribute to the potential. All lists

are recreated whenever the sum of the magnitudes of the two largest molecular

displacements is greater than rs − rc, to ensure that at every time the lists will

contain all molecules within the r < rc sphere. This technique is only an advan-

tage if the lists do not have to be built every time step, so rs − rc cannot be too

small, but it can also not be too large or else the calculation of the neighbor list

(which is O(N2)) requires too much computation. For this reason, the neighbor

list is used in conjunction with linked cell methods for systems of large N .
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Chapter 3

Equilibrium Relaxation Behavior

In this chapter, we first cover the expected results for dynamic properties that

came out of the analysis. We then explore the unexpected results, focusing pri-

marily on the Stokes-Einstein equation and the Debye-Stokes-Einstein equation.

3.1 Directly Calculated Dynamic Properties

As discussed in Section 1.5, we stored the configurations of molecules {ri} at

100 fs intervals. Equations (1.6), (1.7), (1.18) and (1.19) define 〈r2(t)〉, 〈φ2(t)〉,
Fk(t), C1(t) and C2(t), respectively, in terms of {ri}; these quantities are shown

in Figures 3.1, 3.2 and 3.3. For statepoints with data spanning more than about

1 ns (i.e. at the lowest temperatures and densities), we only analyzed the data in

1 ps intervals due to RAM constraints. For calculating Fk(t) we had to further

limit data to 1 ps intervals whenever we had more than 400 ps of data, and we

limited samples to 2 ps intervals in the case of two statepoints that had over 2.5

ns of data. This does not adversely affect the long-time behavior of the functions

we will focus on.

Figure 3.1 shows 〈r2(t)〉 and 〈φ2(t)〉, over both multiple densities and temper-

atures. At high temperature, both the mean-squared displacement and the rota-

tional mean-squared displacement show typical ballistic-to-diffuse motion. How-

ever, at T <∼ 320 K, both quantities exhibit “plateaus” in between ballistic (char-

41



42 CHAPTER 3. EQUILIBRIUM RELAXATION BEHAVIOR

10
−1

10
0

10
1

10
2

10
3

t (ps)

10
−3

10
−2

10
−1

10
0

10
1

<
r2

(t
)>

 (
n
m

2
)

10
−2

10
−1

10
0

10
1

<
r2

(t
)>

 (
n
m

2
)

ρ=.80 g/cm
3

ρ=1.20 g/cm
3

∆ρ=.05 g/cm
3

(ρ=.82 g/cm
3
)

T=270 K

(T=275 K)

T=400 K

∆T=10 K

log−log slope = 1

log−log slope = 1

10
−1

10
0

10
1

10
2

10
3

t (ps)

10
−1

10
0

10
1

10
2

<
φ

2
(t

)>
 (

ra
d

2
)

 10
0

 10
1

 10
2

<
φ

2
(t

)>
 (

ra
d

2
)

ρ=.80 g/cm
3

ρ=1.20 g/cm
3

∆ρ=.05 g/cm
3

(ρ=.82 g/cm
3
)

T=270 K

(T=275 K)

T=400 K

∆T=10 K

log
−log

 sl
op

e 
= 1

log−log sl
ope = 1

Figure 3.1: Mean Squared Displacement

Mean Squared Displacement 〈r2(t)〉 and Rotational Mean Squared Displacement

〈φ2(t)〉, at fixed temperature and fixed density. Not all statepoints are shown for

clarity.

acterized by 〈r2(t)〉 ∝ t2) and diffusive (characterized by 〈r2(t)〉 ∝ t) motion.

During this plateau, particles are trapped by their nearest neighbors, and only

rattle in a small “cage.” In order for the particles to diffuse beyond the size of

their cage, their nearest neighbors must move, and for these neighboring particles

to move, their neighbors must move as well, etc. This effect is known as caging

and becomes increasingly important at lower temperatures. This feedback mech-

anism is largely responsible for the rapid increase of relaxation time on cooling.

The caging effect appears in the mean-squared displacement after about 0.2 ps

and can last more than 10 ps, depending on the temperature and density.

Both 〈r2(t)〉 and 〈φ2(t)〉 show qualitatively similar dependence on temperature,

but differ quantitatively. Referring to Figure 3.1, it is clear that at a fixed density

of 0.82 g/cm3, caging effects appear in 〈r2(t)〉 at and below 320 K. At a fixed tem-

perature of 275 K, caging effects appear at all densities abut are most pronounced
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Figure 3.2: Fk(t) and C2(t)

Intermediate scattering function Fk(t) and the 2nd dipole autocorrelation function

C2(t) at fixed temperature and fixed density. Not all statepoints are shown for

clarity.

in the lower densities. For 〈φ2(t)〉 at the same fixed density, caging effects are not

strong until T <∼ 320 K. At a fixed temperature 275 K, the caging effect in 〈φ2(t)〉
appears in all the isochores and is particularly strong at 0.8 g/cm3. At the low

temperatures and pressures where these caging effects become significant, water

is said to exhibit “slow-dynamics”. One unresolved question about supercooled

water is whether the onset, upon cooling, of translational slow-dynamics occurs at

the same temperature of the onset of rotational slow-dynamics. An unambiguous

identification of the exact onset temperature is difficult, since the changes with

T are gradual. The results from our simulations are inconclusive in this regard,

though it is clear that if the translational and rotational onset temperatures differ,

they do not do so greatly.

Figure 3.2 shows the temperature and density dependence of Fk(t) and C2(t).

At a fixed density of 0.82 g/cm3, both quantities show non-exponential behavior
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at T <∼ 330 K, which is due to the same caging effect that created the plateau in the

mean-squared displacements. Fk(t) measures the correlations over time among all

molecules in the simulation, while C2(t) measures correlations of the angles of the

same particle, averaged over all molecules in the simulation. Therefore Fk(t) (and

consequently τα) is a multi-particle, collective variable, while C2(t) (and τ2) is a

single-particle variable. The effect of this distinction is hard to see in Figure 3.2

but will become clear later.
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Figure 3.3: Translational quantities compared to rotational quantities

(left) 〈r2(t)〉 and 〈φ2(t)〉; (right) Fk(t) and C1(t) and C2(t).

Figure 3.3 compares 〈r2(t)〉 to 〈φ2(t)〉 as well as Fk(t) to Cl(t). At the same

statepoint, the translational MSD takes longer to reach the end of the ballistic

regime, and hence takes longer to enter the diffusive regime. Thus it can appear

that the translational MSD has more caging than the rotational MSD because it

takes longer to become diffusive. The effect is due to the different characteristic

time scales of translation and rotational and does not imply that caging appears

in translational variables and not in rotational variables. Figure 3.4 shows that

〈r2(t)〉 and 〈φ2(t)〉 can be scaled in order to nearly match up. It is clear that
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Figure 3.4: 〈r2(t)〉 compared to 〈φ2(t)〉
〈r2(t)〉 and 〈φ2(t)〉 in the same plot. 〈φ2(t)〉 shifted vertically in order to facilitate

comparison (left), and 〈φ2(t)〉 shifted horizontally (right) to suggest that 〈φ2(t)〉
shows the same behavior as 〈φ2(t)〉 but at earlier temperatures. Because of the

log-log scale, values of the shifts are misleading.

〈φ2(t)〉 consistently becomes diffusive (i.e. a log-log slope of 1) at an earlier time

than 〈r2(t)〉.
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3.2 Time and Diffusion Constants

As mentioned in the introduction, Arrhenius behavior of a quantity Q is charac-

terized by

Q ∝ eE/kT , (3.1)

and hence ln(Q) ∝ 1/T , along isobars. If a quantity is Arrhenius, ln(Q) ∝ 1/T

generally holds along isochores as well. Figure 3.5 shows time constants and

diffusion constants along isobars plotted as natural logarithms as functions of 1/T .

Arrhenius behavior on such plots appears as a straight line. The figure shows cases

of non-Arrhenius behavior for the low-pressure isobars of Dtrans, Drot, τα and τ2.

We find markedly non-Arrhenius behavior for P <∼ 200 MPa for all four plots in

the figure. The lower the pressure, the greater the effect that cooling has upon

slowing the dynamics. The time constants increase more than expected, and the

diffusion constants decrease more than expected from the Arrhenius prediction.

For P >∼ 200 MPa, deviations from Arrhenius behavior are small, but are expected

to become more pronounced at T lower than we have simulated.

At higher temperatures, the time constants and diffusion constants show little

dependence on the pressure, with the exception of Dtrans. At high temperatures,

translational diffusion is greater at low pressures. For T <∼ 320 K, hydrogen bond-

ing becomes significant. High pressures break hydrogen bonds which facilitates

diffusion. These effects will be more obvious when we show the behavior along

isotherms.

Figure 3.6 shows the same data on isochores and is qualitatively similar to

Figure 3.5. The dynamical constants deviate from Arrhenius behavior when

ρ <∼ 1.05 g/cm3. Dtrans also shows crossover behavior around 320 K. At high

temperatures, translational diffusion is greatest at low densities, while at low

temperatures, the breaking of hydrogen bonds at high densities becomes non-

negligible. Also, as in Figure 3.5, τα and τ2 show extremely similar behavior.

Viewing the time constants and diffusion constants as a function of density

along isotherms more clearly demonstrates the effects of the hydrogen bonds. For

time constants at low temperatures, the slopes of the isotherms are negative, and



3.2. TIME AND DIFFUSION CONSTANTS 47

1/400 1/350 1/300 1/275 1/250

1/T (K
−1

)

0

1

10

100

1000

τ α
 (

p
s
)

1

10

100

1000

τ 2
 (

p
s
)

−100 MPa

350 MPa

600 MPa

−100 MPa

350 MPa

600 MPa

∆P=50 MPa

∆P=50 MPa

1/400 1/350 1/300 1/275 1/250

1/T (K
−1

)

10
0

10
1

D
tr

a
n
s
 (

1
0

−
5
c
m

2
s

−
1
) 

 

−50 MPa

10
1

10
2

10
3

D
ro

t 
(1

0
9
s

−
1
)

350 MPa

−100 MPa

−100 MPa

350 MPa

600 Mpa

600 MPa

∆P=50 MPa

∆P=50 MPa

Figure 3.5: Isobars of constants

Isobars of τα and τ2 (left), and of Dtrans and Drot (right).

the slopes are positive for the diffusion constants at the same low temperatures.

This means that as density is increased, molecules are forced out of their preferred

tetrahedral structure and consequently the hydrogen bonds are broken. With

fewer hydrogen bonds, mobility increases so the diffusion constants increase with

pressure and the relaxation times decrease. At even greater pressure, increases in

pressure break a smaller fraction of the remaining hydrogen bonds, and mobility

decreases due to the packing constraints, and hence the the slopes of τ and D

along isotherms change sign. We did not perform simulations at sufficiently high

pressure to show this effect. However, we do see that at higher temperatures,

there is either little density dependence on the mobility (straight lines) or the

intuitive dependence (positive slopes for the time constants and negative slopes

for the diffusion constants).

Figure 3.8 shows the dynamical constants along isotherms as a function of pres-

sure, and is similar in form to Figure 3.7, though the change in sign of the slopes

between high temperature and low temperature isobars is easier to see. The time
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Figure 3.6: Isochores of constants

Isochores of τα and τ2 (left), and of Dtrans and Drot (right).

constants show the same anomalous behavior, due to breaking hydrogen bonds

for T <∼ 375 K, though the effect is not pronounced until T <∼ 325 K. Drot shows

the anomalous behavior at T <∼ 350 K, while Dtrans shows the anomalous behavior

at T <∼ 330 K. Because the data are a result from a single simulation at each

statepoint, the isotherms are too noisy to determine crossover temperatures with

enough certainty to check whether translational and rotational diffusion become

anomalous at different temperatures.

The structural relaxation time, τα, shows faint but systematic increases in a

narrow density range at ρ ≈ 0.91 g/cm3 and at ρ ≈ 1.04 g/cm3 when viewed

isothermally as a function of ρ. As a function of P , these trends appear along

curved lines, beginning around 40 MPa and 275 MPa respectively. Figure 3.9

shows these plots in more detail. These trends may be an indication of a critical

point, or even two critical points, at lower temperatures. This will be explored

further in Chapter 4.
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Figure 3.7: Isotherms of constants, as function of ρ

Isotherms of τα and τ2 (left), and of Dtrans and Drot (right), as a function of

density.
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Figure 3.8: Isotherms of constants, as function of P

Isotherms of τα and τ2 (left), and of Dtrans and Drot (right), as a function of

pressure.
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Isotherms of τα as a function of pressure and density, showing the systematic

behavior around ρ = 0.91 g/cm3 and around ρ = 1.04 g/cm3.
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3.3 Non-Arrhenius Behavior

To characterize a temperature TA = TA(P ) which marks the change between

Arrhenius and non-Arrhenius behavior in τα, we can look at plots of

kT/E · ln(τ/τ0), (3.2)

where τ0 is the constant from Equation (1.20). For Arrhenius behavior, this

quantity is unity, and thus provides a more sensitive indicator of deviations from

Arrhenius behavior. Figure 3.10 (a) shows a graph of kT/E · ln(τ/τ0), and Figure

3.10 (b) shows a similar graph using τ2 instead of τα. The values E = E(P ) and

τ0 = τ0(P ) where chosen by least squares best fit of the data at temperatures

higher than 375 K, where we expect Arrhenius behavior.
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Figure 3.10: Arrhenius plots of τα and τ2

Arrhenius plots of τα and τ2. Arrhenius behavior is indicated by a value of 1.

The figure indicates that both the translational and rotational relaxation times

are non-Arrhenius for all pressures, provided that the temperature is low enough.

Relaxation times deviate more from Arrhenius behavior at lower pressure.
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Figure 3.11: Detail of Figure 3.10

Arrhenius plots of τα and τ2, similar to Figure 3.10 but in more detail on the

vertical axis. Dark circles are data for real water, from [33].

Figure 3.11 shows the same quantities as Figure 3.10 but in more detail on

the vertical axis, showing that at high temperatures, the time constants are very

nearly Arrhenius. The deviations in this upper region are tiny, and make it easier

to determine a temperature TA when the behavior is no longer Arrhenius. This

figure was used to crudely estimate the TA for rotation and translation, and TA

is shown in Figure 3.25. The values of TA and TA,rot are not identical, but the

difference is comparable to the error in determining TA. The error bars shown in

Figure 3.25 reflect possible error in finding TA given Figure 3.11, and do not take

into account error from using single simulations at each statepoint nor error from

calculating E(P ) and τ0(P ) from the T > 275 K data.
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3.4 Breakdown of Stokes-Einstein
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Figure 3.12: (Dtransτα)/T along isobars

(Dtransτα)/T is non-constant at low temperatures, indicating that the Stokes-

Einstein Equation is no longer valid

Figure 3.12 plots Dtransτα/T along isobars in order to test the Stokes-Einstein

equation (1.11); that is, we test if Dtransη/T is a constant. Because we have not

calculated η, we use τα, since fluid dynamics predicts that

η = G∞τα, (3.3)

whereG∞ is the infinite frequency shear modulus and is nearly T -independent [30].

Hence our results should not be strongly affected by using τα. To follow up on this

point, we plan to confirm that τα ∝ η, or use η directly should the proportionality

fail for our simulations of water. For the present work, we did not calculate η

because it requires data on velocity, which were not stored during data runs.

As the Figure 3.12 shows, Dtransτα/T along isobars increases dramatically

for T <∼ 310 K. We have subjectively assigned a breakdown temperature TSE =

TSE(P ) to each isobar which marks the lowest temperature of good agreement with

the SE equation (figure 3.25). Because the Dtransτα/T increases, this means Dtrans
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Figure 3.13: (Dtransτα)/T along isochores

Similar to Figure 3.12 but along isochores. Top plot is linear-log scale, buttom

plot is linear-linear scale in detail.

does not decay as quickly as 1/τα; this phenomena has been called “enhanced

translational diffusion” in the literature, and has meaning only in the sense that

Dtrans is enhanced relative to 1/τα. Note that Dtransτα/T is not constant along

isochores either; see Figure 3.13.

Reference [40] provides a simple argument to explain the breakdown of Stokes-

Einstein and the enhancement of translational diffusion (in comparison to a time

constant). The following argument is not specific to Dtrans and can be applied to

Drot as well, a fact that has not been appreciated in previous work; this will be

important in the next section. Similarly, we use τ to mean either τα or τ2. As

we cool below the onset of non-Arrhenius behavior temperature dependence, the

dynamics of water (and other liquids) is known to become increasingly spatially

heterogeneous [38, 39]. Assume that a fraction α of the molecules are in local

regions of mobility greater than average (“fast regions”), and a fraction (1 − α)

are in regions of diminished mobility (“slow regions”). Further, we assume that

the SE equation holds locally in the fast and slow regions. We can write the
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Figure 3.14: Stokes-Einstein for Water

(Dtransτα)/T along isobars using data on water from [33], showing that the be-

havior for ST2 is qualitatively similar to that of real water

overall diffusion constant and the the relaxation time as

D = αDfast + (1− α)Dslow (3.4a)

τ = ατfast + (1− α)τslow. (3.4b)

If α is not too small and the degree of heterogeneity is significant, meaning that

Dfast � Dslow and τfast � τslow, then

D ≈ αDfast (3.5a)

τ ≈ (1− α)τslow. (3.5b)

In other words, D is dominated by fast regions, while τ is dominated by slow re-

gions. Because the SE equation holds locally, we haveDfastτfast/T andDslowτslow/T

are constant. Since Dfast 6= Dslow, then Dfastτslow/T > Dslowτslow/T and hence is

non-constant. In the approximation of Equation (3.5b), this implies that Dτ/T

is not constant and that diffusion is “enhanced.”

There is strong evidence that water is indeed heterogeneous at low tempera-

tures [38, 39]. However, the above interpretation makes oversimplified assump-

tions about the nature of the heterogeneities.
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Experimental evidence has shown that the SE equation breaks down in other

fragile glass-forming liquids. Since 1990, studies on o-terphenyl (OTP) have

tracked viscosity for up to 14 decades and found enhanced translational diffu-

sion [40, 48, 49, 50, 51, 52, 53, 54, 55]. OTP is frequently studied because it does

not easily crystallize and hence is an excellent glass forming liquid. Refs. [48]

and [55] suggested that a fractional Stokes-Einstein equation

Dtrans ∝
T

ηε
, ε < 1 (3.6)

may be appropriate at lower T . SE has also been found to break down in the

fragile glass former 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene (ααβ-TNB) [56,

55]. Recent computer simulations of binary Lennard-Jones liquids [57] and fragile

glass formers [58] have also found the SE equation to fail at low temperatures.

References [39, 38] provide a good review of previous work.
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3.5 Breakdown of Debye-Stokes-Einstein

As mentioned in the previous section, it seems that the argument for enhanced

translational diffusion can be applied for rotational diffusion as well, predicting

that Drot is enhanced, relative to either τα or τ2. However, this enhancement has

not been found in previous literature. Studies on OTP [48, 49, 54, 40] and on

ααβ-TNB [56] using τ−12 in place of Drot have found the DSE equation to hold

to T < 1.2Tg. The assumption that Drot ∝ τ−12 is sometimes tacitly assumed

in these experimental papers, since Drot is not an easily accessible experimen-

tal quantity. As a result, there has been an idea of a “translational-rotational”

paradox [39, 38, 53] since, as previously mentioned, it was found that Dtrans is

enhanced at low T . One suggested explanation for this paradox [38, 39] is a

heterogeneity theory called the “fluidized domain” model. It argues that in fast

regions (“fluidized” regions), which exist over a time scale t0, rotational diffusion is

enhanced only when the domain is first created in an “un-locking” process. The

translational diffusion is enhanced during the entire interval t0 until the region

vanishes, as molecules reorder into lower-energy structured regions. As a result,

the translational diffusion is enhanced more strongly than rotational diffusion.

With computer simulations, we have the luxury of being able to calculate both

Drot and τ2, so we can check the assumption that Drot ∝ τ−12 . As T decreases,

diffusion slows down so Drot decreases and the time required for the system to

relax (whether rotationally or translationally) increases, hence 1/τ2 decreases as

well. The assumption has also been made out of necessity, since experiments

cannot measure Drot.

The same reasoning that argued for an enhancement of Dtrans with respect to

τα applies to any D and τ , and hence that reasoning would suggest that Drotτ2

is not constant. Our results support this reasoning. Figure 3.15 shows the value

of τ2Drot along isobars as a function of temperature. At most temperature and

pressures, the slope on the isobar is negative, meaning that Drot is enhanced

compared to 1/τ2, and hence that the assumption of proportionality breaks down.

The change in slope at low temperatures in the lowest pressure isobars is not well
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Figure 3.15: Drotτ2 along isobars

Drotτ2, shown along isobars. The assumption that Drot ∝ 1/τ2 is not a good one

at low temperatures. The change in slope on the -50 MPA and -100 MPa isobars

may be due to noise, since the value of Drot is extremely low and the value of τ2

is extremely high. See Figure 3.16.

understood (Figure 3.16). This change in slope means that Drot is decreasing

with temperature faster than 1/τ2 decreases. Figure 3.17 confirms that the same

behavior occurs along isochoric paths. A simple explanation of this may be that

as the liquid is cooled, it forms many strong tetrahedral bonds – though without

long range order – and fewer and fewer patches of fast-moving heterogeneities

appear. In terms of eq. (3.4a), this means α → 0 and (1 − α) → 1. Because

time constants are dominated by slow regions, they continue to be dominated by

slow regions as the whole liquid becomes nearly uniformly slow. The diffusion

constants, however, are dominated by fast regions, but as the proportion of liquid

in a fast-moving region goes to 0, the diffusion constants are necessarily dominated

by the slow-moving regions, and hence the “enhanced diffusion” that occurs at

moderately low temperatures ceases to exist, explaining the relative decline in
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Figure 3.16: Drotτ2 along isobars, log scale

Drot, τ2, and τ2Drot shown along isobars on a linear-log scale. The extreme values

of the relaxation and diffusion constants at low temperatures introduce large un-

certainties into the product, which may explains the change in slope at very low

temperatures. If the change of slope is physical, its cause remains unexplained.

Drot.
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Figure 3.17: τ2Drot along isochores

τ2Drot, shown along isochores. The isochoric behavior is qualitatively similar to

the isobaric behavior; see Figure 3.15. Each shown isochore at ρ0 is actually the

average of the three isochores ρ0 − .01, ρ0 and ρ0 + .01 g/cm3.
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Figure 3.18: (Drotτα)/T along isobars

(Drotτα)/T is predicted to be constant along isobars by the DSE equation. At low

temperatures, (Drotτα)/T is clearly not constant. The inset is zoomed in on the

x-axis.

Since Drot 6∝ τ−12 , this calls into question the validity of results claiming that

the DSE equation (eq. 1.12) holds at low T . Hence, we plot (Drotτα)/T along

isobars (Figure 3.18) and isochores (Figure 3.19) as well as (τ−12 τα)/T along isobars

(Figure 3.20). We show both Drot and τ−12 because our results show that the

two quantities are not coupled at low temperatures. At low temperatures, the

quantity (Drotτα)/T increases along isobaric or isochoric paths, meaning that Drot

is enhanced in comparison to 1/τα and that the DSE equation does not hold. The

quantity (τ−12 τα)/T also initially increases at low temperatures when plotted along

isobars (Figure 3.20); the behavior of (τ−12 τα)/T along isochores is particularly

interesting and is the topic of the next chapter. Thus, our data suggest that
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Figure 3.19: (Drotτα)/T along isochores

Similar to Figure 3.18 but along isochores. The inset is zoomed in on the x-axis.

the Debye-Stokes-Einstein does not hold at low-temperature, in analogy to the

failure of the Stokes-Einstein equation, and in contrast with results from most

other fragile glass forming liquids.

There have been a few papers supporting the idea that the DSE equation does

not hold at low temperatures in experiments on ααβ-TNB [50], OTP [59, 60], and

on computer simulation of rigid Lennard-Jones dumbells [61]. As noted previously,

other studies on OTP and ααβ-TNB have found the DSE to hold. It is not clear

why there have been conflicting results. The weak but ubiquitous assumption that

Drot ∝ τ−12 further complicates analysis. It may also be that OTP and ααβ-TNB

show behavior different than water because they are non-associative liquids (since

they do not form a network of bonds). The argument put forward to explain



64 CHAPTER 3. EQUILIBRIUM RELAXATION BEHAVIOR

250 300 350 400

T (K)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
τ α/

(τ
2
T

) 
(1

0
−

3
K

−
1
)

−100 MPa

50 MPa

350 MPa

Low pressure

High pressure

Figure 3.20: DSE using 1/τ2

Testing Debye-Stokes-Einstein with 1/τ2, as previous literature has done, instead

of using Drot. Note that DSE does not hold even using 1/τ2, in contrast to many

experimental results.

enhancement of D relative to τ is overly simple, and a complete explanation of

the breakdown in the DSE equation is currently lacking.
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3.6 Enhancement of Rotational Diffusion

If both the SE and DSE equations hold, then necessarily we have than Dtrans ∝
Drot, since both are proportional to T/η, (∝ T/τα). Figures (3.12 - 3.20) show

that this is not the case; moreover, these figures show an enhancement of both

Dtrans and Drot relative to τα. We next consider the relative enhancement of these

quantities. If both the SE and DSE equations fail in the same way (i.e. replaced

by

D ∝ T

ηε
(3.7)

for some ε < 1), then we would still expect Dtrans ∝ Drot. However, we find

that this is not the case, since at low temperatures, the ratio Drot/Dtrans is not

constant (Figure 3.21).
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Figure 3.21: Drot/Dtrans along isobars

Drot/Dtrans along isobars as a function of temperature. The ratio is not constant

at low temperatures. Along isochores, the trend is similar, though the data are

prohibitively noisy to plot.
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Figure 3.22: Drot/Dtrans along isobars, shifted vertically

Drot/Dtrans along isobars as a function of temperature. These are the same quan-

tities as in Figure 3.21 but the isobars have been shifted vertically for clarity. In

the bottom plot, the isobars have been shifted so that the average of the final ten

data points is 0, while the isobars in the top plot have been additionally shifted

by a value of -2.5 per 100 MPa.

Fig. 3.21 demonstrates that Drot is enhanced relative to Dtrans, but the data

are too noisy to define a clear crossover temperature that marks the end of propor-

tionality. Figure 3.22 shows the same ratio but with shifted isobars to increase the

transparency. Though not shown, there is similar behavior along isochores with

even more noise and a less pronounced increase in Drot. If 1/τ2 ∝ Drot, then we

would expect (Dtransτ2)
−1 to be similar to Figure 3.21. This is not the case, for in

Figure 3.23 the data go negative at low temperatures, implying that Drot > 1/τ2,

and hence Drotτ2 > 1, which is indeed what Figure 3.15 shows. Figures 3.21 and

3.22 show that upon cooling, rotational diffusive motion does not slow down as

much as the translational motion does. This is the opposite of previous claims of



3.6. ENHANCEMENT OF ROTATIONAL DIFFUSION 67

250 300 350 400

T (in K)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

(D
tr

a
n

s
τ 2

)−
1
  

(1
0

−
1

7
c
m

−
2
)

P=−100 MPa

P=600 MPa

∆P=50 MPa

350 MPa

Figure 3.23: (Dtransτ2)
−1 along isobars

(Dtransτ2)
−1 along isobars as a function of temperature.

enhanced diffusion [39, 53, 54]. However, there have been NMR studies measuring

the spin-lattice relaxation time of protons in water that find at low temperature,

the relaxation rate T1 is dominated by the intramolecular relaxation rate, as op-

posed to the intermolecular relaxation rate [62, 63]. Because the intramolecular

relaxation rate (which is a rate, so proportional to τ−12 ) is only affected by rota-

tions – while the intermolecular relaxation rate is affected by translations as well

– this means that rotational diffusion is larger than translational diffusion at low

temperatures, in agreement with our observations.

It is tempting to find a simple explanation using heterogeneities; one could

argue, for example, that in clusters of mobile atoms, translational diffusion is

limited by the size of the cluster, while there is no similar constraint on rota-

tion. However, these simple arguments are easy to turn into contradictions, and

it was arguments such as these that originally led to the questionable idea of “en-

hanced translational diffusion.” At the present time, we defer an explanation of

the underlying mechanism behind the increase in rotational mobility to a future

published version of this work. It may be that a theory describing the mechanisms
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Figure 3.24: (Dtransτ2)
−1 along isochores

(Dtransτ2)
−1 along isochores as a function of temperature. The behavior along

isochores is very similar to that along isobars; see Figure 3.23. Each shown isochore

at ρ0 is actually the average of the three isochores ρ0− .01, ρ0 and ρ0 + .01 g/cm3.

that allows liquids to diffuse faster than expected by the SE and DSE equations

will explain why rotational diffusion decreases less rapidly with decreasing T than

translational diffusion.
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3.7 Summary of Characteristic Temperatures

In this chapter, we have quantified the temperatures of the breakdown of Ar-

rhenius behavior, the SE equation and the DSE equation. To put these results

in context, we show loci of these breakdown temperatures in Figure 3.25. The

breakdown of Arrhenius behavior of both rotational and translational relaxation

occurs ≈30-40 K above the melting temperature Tm, nearly independent of pres-

sure. For comparison, the data for water at 1 Atm. show the breakdown occurs

≈50 K above Tm (Figure 3.11). The measures of the breakdown of the SE and

DSE equations occur at ≈0-20 K below Tm, weakly dependent on P . For water at

1 Atm., the breakdown occurs at ≈15 K below Tm. Hence our results are largely

comparable to real water, and we are able to probe a wider range of T and P than

can be easily experimentally accessed.
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Figure 3.25: Computationally determined PT diagram for ST2

The computationally determined phase diagram for ST water, showing the roughly

estimated lines Tα and Tβ, which correspond to the breakdown of Drot/Dtrans and

(Dtransτ2)
−1 respectively, as well as estimated lines for the breakdown of the SE

and DSE equations and the breakdown of Arrhenius behavior in translational and

rotational dynamics. All other data from P. H. Poole (private communication).



Chapter 4

Dynamic Precursor to Phase

Separation

The most unexpected result that came of the data is a possible precursor to liquid-

liquid phase separation, found in even the highest temperatures simulated (400

K). There may also be evidence of a precursor to a second liquid-liquid phase

transition at ρ ≈ 1.04 g/cm3. Such precursors have not previously been seen at

such high temperatures, and were only noticeable in the present data because of

the exceptionally fine spacing of the isochores.

To test the Debye-Stokes-Einstein relation, we plotted Drotτα/T along isobars,

and in Figure 3.20 we plotted τα/(Tτ2) to see if the DSE equation would hold if

we used the approximation Drot ∝ 1/τ2 as done in many experiments. Because

our runs were carried out along isochoric paths, isobaric data was created by

extrapolating values from splined curves of isotherms as a function of pressure.

We chose to space isobars at 50 MPa intervals over the range -100 MPa to 600

MPa, though only the 0 MPa to 350 MPa isobars contained data on the full range

of temperatures, giving seven complete isobars. In contrast to this coarse spacing,

the isochoric data was spaced in .01 g/cm3 intervals over the range 0.80 g/cm3

to 1.20 g/cm3, giving 41 isochores, with 30 isochores containing data on the full

range of temperatures.

Figure 4.1 shows the same quantity as Figure 3.20, τα/(Tτ2), but along iso-

71
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Figure 4.1: Isochores of τα/(Tτ2)

The isochores fall into three groups: ρ ≤ 0.91 g/cm3, 0.92 ≤ ρ ≤ 1.04 g/cm3 and

ρ ≥ 1.05 g/cm3.

chores instead of isobars. The graph was first made to verify that the DSE equa-

tion fails to hold along isochores as well as isobars. The DSE equation predicts

straight lines on such plots, and it is clear that the equation does not hold, with

τα/(Tτ2) becoming less linear as temperature is lowered.

The salient features of Figure 4.1 are two striking gaps that exist over the whole

range of temperature, though they are hard to see at the lowest temperatures due

to the change in slope and poor statistics. They separate the value of τα/(Tτ2)

into three regions: (i) ρ < 0.91 g/cm3; (ii) 0.92 < ρ < 1.04 g/cm3; and (iii)

ρ > 1.05 g/cm3. Between the densities 0.91 and 0.92 g/cm3 and between 1.04 and

1.05 g/cm3 there is a significant change in behavior. Figure 4.2 plots the difference
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Figure 4.2: Changes in isochores of τα/(Tτ2)

Shown are the differences between neighboring isochores from Figure 4.1. At low

temperatures, differences between all isochores are great, but at high tempera-

tures, the differences between the ρ = 0.91 and the ρ = 0.91 g/cm3 isochores as

well as between the ρ = 1.05 and the ρ = 1.04 g/cm3 isochores are significantly

greater than differences between all other isochores.

of the value of τα/(Tτ2) between neighboring isochores, confirming that there are

two shifts in τα/(Tτ2) that are abnormal. Figure 4.3 averages these differences

over temperature to make the changes more readily apparent.

Figures 4.5 and 4.6 show the same quantity but plotted along isotherms as

a function of density. Figure 4.6 includes two plots, one of which shows τα/τ2

without the T dependence. Both plots shift isotherms vertically for visual clarity.

The T dependence does not affect the results significantly. The isothermal paths

are like vertical slices going down the isochoric paths of Figure 4.1, and they show

the abrupt changes between 0.91 and 0.92 g/cm3 as well as between 1.04 and

1.05 g/cm3.

These two abnormalities at 0.91 and 1.04 g/cm3 are a result of underlying

behavior in τα, and are more clearly defined in the ratios τα/(Tτ2) or τα/τ2 because
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Figure 4.3: Average values of changes in isochores of τα/(Tτ2)

The plots show the average value of the differences in τα/(Tτ2) between neigh-

boring isochores (see Figure 4.2). The average is calculated over all temperatures

(left), and only temperatures above 270 K (right), which reduces the effect of the

low temperature noise.

τ2 acts as a baseline. Viewed by itself, τα shows faint abnormalities, while τ2 does

not; see Figure 4.7. This means that the cause of the abrupt change in behavior is

mainly a translational property. The change in τα appears almost discontinuous

at ρ = 0.91 g/cm3 and ρ = 1.04 g/cm3; however, the resolution in the density,

as detailed as it is, is not detailed enough to make us believe that the change is

discontinuous. In addition, the amplitude of the change is nearly the same as the

statistical fluctuations.

To understand the origin of this change, we show the phase behavior of ST2

in the T − P plane (Figure 4.8). The phase diagram shows that the critical

point terminating the line of the first-order liquid liquid transition occurs at ρ ≈
0.91 g/cm3. Hence, a plausible explanation for the sharp viscosity change at 0.91

g/cm3 is the existence of a “Widom line”. A Widom line can be thought of as

a continuation of a phase co-existence line past a critical point. In crossing the
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Figure 4.4: Average values of changes in isochores of ταD/T

Similar plots to Figure 4.3 but with ταDtrans/T (left) and ταDrot/T (right), av-

eraged over all temperatures above 270 K. Plotting the values along isochores is

not insightful due to noise, but we can see behavior at 0.91 and 1.05 g/cm3 by

plotting the average differences. The effect is still strongest in τα/(τ2T ).

phase transition line there are discontinuous changes in first order quantities (like

density); crossing a Widom line is not a first-order phase transition, but there are

marked changes in properties over a narrow density range. A Widom line extends

from any critical point for the simple reason that response functions (e.g. specific

heat and compressibility) must diverage along a path through the critical point;

thus along a path near, but not through, the critical point, response functions will

show a maximum. Similarly, for first-order quantities like ρ, there will be a sharp

but continuous change upon crossing a Widom line.

For example, the gas-liquid co-existence line produces a Widom line. If liquid

water is above PC but below TC and then decompressed isothermally, it will show a

discontinuous change in volume due to crossing the co-existence line and becoming

a gas. If the fluid is above both PC and TC and decompressed isothermally, there

will be a sharp but continuous change in volume and it will still be just a “fluid”.
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In practice, it is extremely difficult to distinguish sharp continuous transitions

from discontinuous ones.

Crossing a Widom line at statepoints close to a critical point will create much

sharper changes in response variables than crossing the Widom line at statepoints

farther away. Thus magnitudes of changes across the Widom line decay until

it becomes impossible to define the Widom line. In addition, the Widom lines

for various properties typically separate as the distance from the critical point

increases, meaning that the maximum values of, say, specific heat and compress-

ibility, may not be at the same statepoint (see Fig. 1.7). For ST2 water, the value

of the proposed liquid-liquid critical point C ′ is at TC′ ≈ 245±5 K, PC′ ≈ 180±10

MPa and ρC′ ≈ 0.91± .01 g/cm3 (Figure 4.8). Using Figure 4.8, it is difficult to



77

accurately estimate ρC′ . Changing to a T −ρ diagram (Figure 4.9) simplifies esti-

mation of the critical density ρC′ ≈ 0.91± .01 g/cm3 since it must lie at the apex

of the spinodal. Thus, decompressing supercooled water from 220 to 140 MPa

isothermally at 160 K would cross the liquid-liquid Widom line making sharp

changes in the volume (with specific heat and compressibility taking very large

values) and would resemble a first order phase transition. Crossing the Widom

line at 350 K (where ST2 is no longer supercooled) would intuitively make rela-

tively smooth changes in the volume, and specific heat and compressibility would

not increase much.

While a Widom line is typically defined in terms of thermodynamic properties,

it is also possible to define a Widom line in terms of relaxation behavior, since

sharp changes in thermodynamics are typically accompanied by sharp changes in

dynamics. If we interpret the abrupt changes in τα/τ2 as the crossing of a Widom

line – which is a natural idea, since the first change in τα occurs close to the critical

density – then there are strong implications. Because the sharp change persists to

our highest temperature data (400 K, which may be very loosely interpreted as a

temperature of ≈ 90◦C in real water), this implies that the Widom line for τα has

not decayed much over 150 K, which is unexpected and has not been previously

observed.

The second abrupt change in τα occurs at 1.04 g/cm3 and is less clearly in-

terpreted since we observe no low T phase transition at this density. Because

τα/τ2 at this density exhibits very similar behavior to the change of τα/τ2 at

ρ = 0.91 g/cm3, it is natural to suggest that it is another Widom line. Since only

one Widom line (for a given property) leaves a critical point, a second Widom

line implies the existence of a second liquid-liquid critical point. We note that the

second change in τα does not require the existence of a second liquid-liquid critical

point; it is possible that it just a shift in dynamical behavior, resulting from a

sharp (but continuous) thermodynamic change at lower T . However, given the

behavior at ρ = 0.91 g/cm3, the existence of a second abnormality at 1.04 g/cm3

lends circumstantial evidence to the existence of a second liquid-liquid critical

point. The existence of a family of liquid states would be analogous to the fact
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that there is a family of crystalline states with more than 15 distinct structures

(and still more are being discovered). Since the presence of multiple crystalline

states is termed polymorphism, the presence of multiple liquid states is sometimes

referred to as polyamorphism.
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Enlargement of left plot in Figure 3.9, suggesting that the anomalous behavior in

τα/(Tτ2) is caused by τα. τ2 does not show similar anomalies.
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4.1 The Liquid-Liquid Transition

Poole and co-workers [6, 42] first suggested in 1992 that water may have a liquid-

liquid transition, with a co-existence line terminating in a second critical point C ′.

This second critical point theory would explain the different types of glass (HDA

and LDA) as the glassy forms of two distinct types of liquids (HDL and LDL).

Above the critical point, liquid water would once again only have its one usual

form. Experimental work has placed TC′ just below the homogeneous nucleation

temperature, and therefore it cannot be probed directly by experiments. It should

be mentioned that there are also competing theories, notably the stability limit

theory proposed by Speedy in 1982 [23] that suggests there is a re-entrant spinodal

from the liquid-gas transition, and the singularity-free scenario [24], which invokes

no singularities or spinodals, but instead has sharp but continuous changes in

thermodynamic properties. Poole et al. [42] provide strong evidence against the

stability limit theory, and there has been considerable evidence suggesting the

liquid-liquid critical point hypothesis [28, 27, 29].

Figure 4.8 shows the location of C ′ in the phase diagram of ST2 water. The

location of C ′ in real water is suggested to be at ≈ 215 K and ≈ 180 MPa

(Figure 1.5), which is roughly 30 K and 80 MPa below the critical point in ST2,

in agreement with the differences found at the TMD.
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The HDL-LDL spinodal is shown, while the HDL-LDL coexistence line and the

LDL-HDL spinodal line are not shown. All three lines terminate in the critical

point C ′. The black lines are isochores. Not shown is the liquid-gas critical point

C which is located above 400 K.
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The HDL-LDL and LDL-HDL spinodals are shown (red squares), as well as the

temperature of max density (TMD) in green triangles. The red diamonds show

the liquid-gas spinodal. The critical point C ′ is at ρ ≈ 0.91 g/cm3. From P.H.

Poole (private communication).
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4.2 Multiple Liquid-Liquid Transitions

There has been recent evidence to suggest that water may have more than one

liquid-liquid first-order phase transitions. Brovchenko et al. [7] found evidence

for three liquid-liquid transitions in Monte Carlo simulations of ST2. However,

the method used tends to promote phase separation when the length scale of

density fluctuations grows, and hence may spuriously indicate a phase transition

where there is none; their findings have not yet been tested against traditional

methods where such effects do not exist. They suggest that the four liquid phases

in their simulations correspond to LDA, hyperquenched amorphous water, HDA,

and VHDA. Many researchers believe LDA and hyperquenced amorphous water

to be the same phase, and more recent evidence has suggested that HDA and

VHDA are no separate phases either [14]. The density of the second liquid-liquid

transition found by ref. [7] is ≈ 1.05 g/cm3, very close to the density of the second

Widom line that we observe. These complementary evidence provide stronger

reasons to consider the possibility of multiple liquid-liquid critical points.

Most recently [64], Brovchenko et al. simulated additional models of water.

In TIP4P, TIP5P and SPCE/E models they found two liquid-liquid transitions,

as well as the previously reported three transitions in ST2. They also note that

the locations of these transitions are highly sensitive to the water model and its

implementation.

Computer simulation of a soft-core potential of several discontinuous steps

[65] and of a square-well potential with a repulsive shoulder [66] have shown

clear evidence of multiple liquid-liquid transitions, though these potentials are

not related to water. General theories which allow liquid-liquid transitions and

which suggest critical points at negative pressures [15] have been put forward but

have not been widely accepted. There has also been some experimental evidence

for multiple liquid-liquid transitions [67] using difference and double-difference

near-infrared spectroscopy with a new band deconvolution technique.
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Conclusion

As temperature decreases, the temperature dependence of many quantities changes

in a fundamental way. Table 5.1 reviews the behavior at high temperatures and

low temperatures.

High T Low T Crossover T

Ballistic-to-diffusive Caging effects not calculated

Arrhenius behavior non-Arrhenius Behavior TA

SE equation holds SE equation doesn’t hold TSE

DSE equation holds DSE equation doesn’t hold not calculated

Dtrans and Drot proportional Dtrans and Drot not proportional Tα

Dtrans and τ−12 proportional Dtrans and τ−12 not proportional Tβ

Drot and τ−12 proportional Drot and τ−12 not proportional not calculated

Spatial homogeneity Spatial heterogeneity not calculated

Table 5.1: Summary of behavior at high and low temperatures

While we found rough estimates of some of the crossover temperatures from

table 5.1 (Figure 5.1), this was not the end-goal of the research. More impor-

tant were the qualitative results, namely that the Debye-Stokes-Einstein equation

does not hold at low temperatures, disagreeing with previous literature with the

exceptions of refs. [60, 50, 59, 61]. Previous literature have used the assumption

Drot ∝ 1/τ2. Because we have data on both Drot and τ2, we tested this assumption

and found it to fail at low temperatures. The DSE equation failed to hold at low

85



86 CHAPTER 5. CONCLUSION

200 240 280 320 360 400
T (K)

-200

-100

0

100

200

300

400

500
P

 (
M

P
a)

HDL spinodal
liquid spinodal
liquid - ice Ih coexistence

Arrhenius Breakdown
Arrhenius Breakdown: rotational
SE Breakdown
DSE Breakdown
Tα (from D

trans
∝D

rot
)

Tβ (from D
trans

∝1/τ
2
)

.91 g/cm
3

1.04 g/cm
3

liquid-liquid critical point

Figure 5.1: Summary of crossover temperatures

temperatures regardless of whether we used Drot or 1/τ2. This result may have

implications on theories of dynamic heterogeneities. We also confirmed that the

Stokes-Einstein equation does not hold, expected from past work.

Another major result of this work is that we find that rotational diffusion is en-

hanced when compared to translational diffusion at sufficiently low temperatures.

This is at odds with claims from much of the previous literature for simple glass

formers [48, 49, 54, 40, 56], but is consistent with the simulations of [61], other

experiments on glass formers [59, 60, 50] and the experimental results of [62] for

water. More extensive studies of simple glass forming models would be valuable

to determine if the apparent conflict with some experiments is a result specific to

water or systematic across models.

The most unexpected result was that at all temperatures studied, there is an

apparent precursor in τα to liquid-liquid phase transitions at lower temperatures

along the critical isochore ρ = 0.91 g/cm3. We do not expect this to be a remnant
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of the simulation protocol (in which high temperature configurations were used to

seed lower temperature configurations) because the isochore lines were simulated

completely independently from each other. Moreover, the data show that the

jumps in τα were statistically significant. A useful extension of this work would

be to simulate many independent runs along isochores near the critical densities

of 0.91 g/cm3 and 1.04 g/cm3, perhaps with finer resolution in the density, such

as 0.002 g/cm3 spacing between 0.91 and 0.92 g/cm3.

At ρ = 1.04 g/cm3, the τα shows a similar signature to that found along

the critical isochore. Since the lower density irregularity is a remnant of the

LDL-HDL co-existence line, it is plausible that the higher density irregularity

is the remnant of some other liquid-liquid co-existence line. However, we point

out that there is no dynamic or thermodynamic theory that requires that the

1.04 g/cm3 irregularity intersects a critical point. However, our results do add

to the plausibility of such transitions, and may influence future reseach into the

possibility of such transitions.

There are many unresolved questions about supercooled water. What are the

relations between the different crossover temperatures defined in Table 5.1? What

are the mechanisms that cause the transitions? Is there definitely a liquid-liquid

transition, and is there more than one liquid-liquid transitions? How are the

thermodynamics and dynamics related? We offer the results from this thesis in

the hope that our work will help answer these questions.
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