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WAVELET-LIKE BASES FOR THE FAST SOLUTION OF
SECOND-KIND INTEGRAL EQUATIONS*

B. ALPERT, G. BEYLKIN$, R. COIFMAN, AND V. ROKHLIN

Abstract. A class of vector-space bases is introduced for the sparse representation of discretiza-
tions of integral operators. An operator with a smooth, nonoscillatory kernel possessing a finite
number of singularities in each row or column is represented in these bases as a sparse matrix, to
high precision. A method is presented that employs these bases for the numerical solution of second-
kind integral equations in time bounded by O(n log2 n), where n is the number of points in the
discretization. Numerical results are given which demonstrate the effectiveness of the approach, and
several generalizations and applications of the method are discussed.
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Introduction. Integral equations are a well-known mathematical tool for for-
mulating physical problems. As a numerical tool they have several strengths (good
conditioning, dimensionality reduction, and the ability to treat arbitrary regions),
but have one overriding drawback: the high cost of working with the associated dense
matrices. For a problem requiring an n-point discretization, the inverse of a dense
n n matrix must be applied to a vector. Even to apply the matrix itself to a vector
requires order O(n2) operations; application of its inverse by a direct (noniterative)
method requires order O(n3) operations. If an iterative method is employed, the num-
ber of iterations depends on the condition number of the problem and each iteration
requires application of the n n matrix. For large-scale problems, the resulting costs
are often prohibitive.

In recent years a number of algorithms ([5], [10], [11], [14]) have been developed
for the fast application of linear operators naturally expressible as dense matrices, the
best known of which are the particle simulation algorithms developed by Greengard
and Rokhlin [10]. These schemes combine low-order polynomial interpolation of the
function, which defines the matrix elements with a divide-and-conquer strategy. They
achieve (the equivalent of) order O(n) application of a dense n n matrix to a vector.

Over a somewhat longer period, mathematical bases have been constructed with
certain multiscale properties. Families of functions ha,b,

ha,b(X) ,a.-1/2 h(X b) a, bER, he0,
a

derived from a single function h by dilation and translation, which form a basis for
L(R), are known as wavelets (Grossman and Morlet [12]). These families have
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been studied by many authors, resulting in constructions with a variety of properties.
Meyer [13] constructed orthonormal wavelets for which h e Ca(R). Daubechies [7]
constructed compactly supported wavelets with h E Ck(R) for arbitrary k, and [7]
gives an overview and synthesis of the field.

A recent paper [6] establishes a connection between the fast numerical algorithms
and the multiscale bases. It introduces the use of wavelets for the application of an
integral operator to a function in O(n log n) operations, where n is the number of
points in the discretization of the function. Alpert’s thesis [4] gives an earlier report
of the present work. Another paper [2] constructs a class of simple wavelet-like bases
for L2[0, 1] in which a variety of integral operators are sparse. In the present paper,
rather than employ a wavelet basis for L2, we construct a class of bases that transform
the dense matrices resulting from the discretization of second-kind integral equations
into sparse matrices. The n n matrices resulting from an n-point discretization are
transformed into matrices with order O(n log n) nonzero elements (to arbitrary finite
precision). In these bases, the inverse matrices are also sparse, and are obtained in
order O(n log2 n) operations by a classical iterative method (due to Schulz [15]).

The method of this paper was developed with the aim of solving integral equa-
tions resulting from problems in potential theory, characterized by integral kernels
that are smooth apart from diagonal singularities. In these problems, when high fre-
quency modes have a significant presence in the given field (the right-hand side of the
equation), a large number of points will be required in the discretization. The dis-
cretization must also be maintained for the integral operator, which dictates the need
to solve a large-scale system of equations. If, instead, one has an integral operator
with a globally smooth kernel, no large-scale system is required. In this case a direct
method is entirely adequate, and preferable to the method given here.

In 1 we present the mathematical construction of the new bases. In 2 we briefly
introduce Nystrhm’s method for the solution of integral equations, and show how
the wavelet-like bases result in sparse representation of integral operators and their
inverses. We demonstrate that the Schulz method of matrix inversion is efficient
in this context. In 3 we present the numerical algorithms for computation of the
new bases, transformation of an integral operator into the bases, and computation
of its inverse, and we analyze the time complexity of these algorithms. A variety
of numerical examples are presented in 4 to demonstrate the effectiveness of the
approach, and generalizations and applications are discussed in 5.

1. Wavelet-like bases.

1.1. Properties of the bases. Given a set of n distinct points S (xl, x2,...,

x c R (the discretization) we construct an orthonormal basis for the n-dimensional
space of functions defined on S. For simplicity, we assume that n k. 2Z, where k and
are positive integers, and that X < x2 < < x. The basis has two fundamental

properties:
1. All but k basis vectors have k vanishing moments; and
2. The basis vectors are nonzero on different scales.

Figure 1 illustrates a matrix of basis vectors for n 128 and k 4. Each row
represents one basis vector, with the dots depicting nonzero elements. The first k
basis vectors are nonzero on Xl...X2k, the next k are nonzero on X2k-}-l...,X4k
and so forth. In all, one-half of the basis vectors are nonzero on 2k points from S,
one-fourth are nonzero on 4k points, one-eighth are nonzero on 8k points, etc. Each
of these n/2 + n/4 -}- n/8 +...-+- k n k basis vectors has k zero moments, i.e., if
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FIG. 1. The matrix represents a wavelet-like basis for a discretization with 128 points, for
k 4. Each row denotes one basis vector, with the dots depicting nonzero elements. All but the

final k rows have k vanishing moments.

b (bl,..., b) is one of these vectors, then

n

E bi xi
y

i--1

=0, j=O,l,...,k-1.

The final k vectors result from orthogonalization of the moments (xlJ,x2J,... ,Xnj)
for j 0, 1,...,k- 1.

These properties of local support and vanishing moments lead to efficient rep-
resentation of functions that are smooth except at a finite set of singularities. The
projection of such a function on an element of this basis will be negligible unless the
element is nonzero near one of the singularities. As a simple example, we consider the
function f(x) -log(x) on the interval [0, 1] with the uniform discretization x- i/n.
A hand calculation shows that for any c > 0, f may be interpolated on the interval
[c, 2c] by a polynomial of degree 7 with error bounded by 4-9, or roughly single pre-
cision accuracy. If we choose k 8 in constructing the basis, f will be represented to
this accuracy by the k basis vectors nonzero on Xl,..., X2k, the k basis vectors nonzero
on x,..., xak, and so forth, down to the k basis vectors nonzero on x,..., Xn, in
addition to the k orthogonalized moment vectors. The number of nonnegligible co-
efficients in the expansion of f in this basis grows logarithmically in n, the number
of points of the discretization. Although this example is idealized, its behavior is
representative of the general behavior of an analytic function near a singularity.

1.2. Construction of the bases. The conditions of "local" support and zero
moments determine the basis vectors uniquely (up to sign) if we require somewhat
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more moments to vanish. Namely, out of the k vectors nonzero on x1,..., X2k, we
require that one have k vanishing moments, a second have k / 1, a third have k / 2,
and so forth, and the kth have 2k-1 vanishing moments. We place the same condition
on the k basis vectors nonzero on x2k+l,... ,X4k, and so on, for each block of k basis
vectors among the n- k basis vectors with zero moments.

We construct the basis by construction of a finite sequence of bases (shown
in Fig. 2), each obtained by a number of orthogonalizations. The first basis re-
sults from n/(2k) Gram-Schmidt orthogonalizations of 2k vectors each. In particu-
lar, the vectors (xlJ,... ,x2kJl for j 0,..., 2k- 1 are orthogonalized, the vectors
Ix2k+Y,... ,Xak) for j 0,... ,2k- 1 are orthogonalized, and so forth, up to the
vectors (x,_2k+:,..., XnJl for j 0,..., 2k 1, which are orthogonalized.

FIG. 2. Each of the four matrices represents one basis, as in Fig. 1. The upper-left matrix is

formed by orthogonalizing moment vectors on blocks of 2k points. The upper-right matrix is obtained

from the upper-left matrix by premultiplying by an orthogonal matrix which is the identity on the
upper half. Similarly, the lower matrices are obtained by further orthogonal transformations. The
lower-right matrix represents the wavelet-like basis for n 64, k 4.

Half of the n vectors of the first basis have at least k zero moments; in forming
the second basis, these vectors are retained; the remaining n/2 basis vectors are trans-
formed by an orthogonal transformation into basis vectors, each of which is nonzero
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on 4k of the points Xl,..., xn, and half of which have at least k vanishing moments.
The orthogonal transformation results from n/(4k) Gram-Schmidt orthogonalizations
of 2k vectors each. Similarly, the third basis is obtained from the second basis by an
orthogonal transformation that itself results from n/(8k) Gram-Schmidt orthogonal-
izations of 2k vectors each. Before we can specify these orthogonalizations, we require
some additional notation.

Suppose that V is a matrix whose columns vl,..., V2k are linearly independent.
We define W=Orth(V) to be the matrix that results from the column-by-column
Gram-Schmidt orthogonalization of V. Namely, denoting the columns of W by
Wl W2k we have

linear span{wl,...,wi} --linear span{vl,...,vi},
i,j 1,...,2k.

wTwj j,

For a 2k x 2k matrix V we let Vv and VL denote two k x 2k matrices, Vv consisting
of the upper k rows and VL the lower k rows of V,

V--
vL

Now we proceed to the definition of the basis matrices. Given the set of points
S {Xl,...,Xn} C R with x < < Xn, where n k. 21 we define the 2k x 2k
moments matrices Ml,i for 1,..., n/(2k) by the formula

(i)

1 xs+l Xs+l
2k-1

1 Xs+2 Xsi+22k-1

1 Xsi+2k Xsi+2k
2k-1

where si (i- 1)2k. The first basis matrix U1 is the n x n matrix given by the
formula

Vl,1

Vl,2

Vl,2

Ul,n L

Vl,nlU

where Vl,iT Orth(Ml,i) and 71 n/(2k). The second basis matrix is U2U1, with
U2 defined by the formula
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where Im is the m m identity matrix and the n/2 n/2 matrix U is given by the
formula

V2,1U

L

U2,2U

V2,n L

V2,n u

where n2 n/(4k), U2,iT Orth (M2,i), and the 2k x 2k matrix M2, is given by

( U1,2-IUM1,2-I )M, U,M,
for 1,... ,n/(4k). In general, the jth basis matrix, for j 2,... ,log2(n/k), is
Uj... U1, with Uj defined by the formula

where U is given by the formula

Uj’I L

Uj,1U

L

U

L

\ Uj,nj u

where nj n/(2Jk); Uy, is given by

(2) Uy,,T Orth(Mj,);

and My, is given by

(3) Mj,i ( Uj-l’2i-lUMj-l’2i-1 )gj-l,2iUMj-l,2i

for 1,...,n/(2Jk). The final basis matrix U U...U1, where log2(n/k),
represents the wavelet-like basis of parameter k on x1,..., Xn. Note that the matrices
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U and Uj are of dimension n x n, U is it/2j-1 x n/2j-1 Vj,i and Mj,i are 2k x 2k,
and U.L. and U.v.

3,, 3,,
are k x 2k.

Remark 1.1. The definitions given for the basis matrices are mathematical defini-
tions only; in a numerical procedure, considerable roundoff error would be introduced
by the orthogonalizations defined above. In the actual implementation, the matri-
ces Mj,i are shifted and scaled, resulting in a numerically stable procedure that is
equivalent to the above definitions (in exact arithmetic). Details of this procedure are
provided in 3.

It is apparent that the application of the matrix U to an arbitrary vector of length
n may be accomplished in order O(n) operations by the application of U1,..., Ut in
turn. Similarly, U-1 UT may be applied to a vector in order O(n) operations.
Certain dense matrices, in particular those arising from integral operators, are sparse
in the basis of U and their similarity transformations can be computed in O(n log n)
operations. These techniques are developed in the following sections.

Figure 3 illustrates the vectors of one basis from this class.

FIG. 3. Basis vectors on four scales are shown for the basis where n 128, points Xl,..., Xn
are equispaced, and k 8. The first column of vectors consists of rows 1-8 of U, the second column
consists of rows 65-72, etc. Note that half of the vectors are odd and half are even functions, and
that the odd ones are generally discontinuous at their center.
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2. Second-kind integral equations.

2.1. Nystrbm method. A linear Fredholm integral equation of the second kind
is an expression of the form

(4) f(x) K(x, t) f(t) dt g(x),

where the kernel K is in L2[a, b] 2 and the unknown f and right-hand side g are in
L2[a, b]. We use the symbol/C to denote the integral operator of (4), which is given
by the formula

(CJ’)(z) K(, t) I(t) dr,

for all f e L2[a, b] and x e [a, b]. Then (4), written in operator form, is

(5) (I- E)f g.

The NystrSm, or quadrature, method for the numerical solution of integral equations
approximates the integral operator by the finite-dimensional operator R, charac-
terized by points x, x2,..., xn [a, b] and weights w, w2,..., wn R, and given by
the formula

n

(6) (Rf)(x) wj K(x, xj) f(xj),
j=l

for all f e L2[a,b] and x e [a, b]. Substitution of R for E in (5), combined with
the requirement that the resulting equation holds for x x, x2,..., x, yields the
following system of n equations in the n unknowns f, f2,..., fn:

n

(7) fi wj g(xi, xj) fj g(xi), i 1,..., n.
j:l

The approximation (,..., f) to the solution f of (4) may be extended to all
x [a, b] by the natural formula

n

(8)
i=1

which satisfies fn(xi) fi for 1,..., n. How large is the error en f- fn of
the approximate solution? We follow the derivation by Delves and Mohamed in [8].
Rewriting (7) in operator form, we have

(9)

and combining (5) and (9) yields (I-
exists, we obtain the error bound

(10) I111 I1(I- )-Xll" I1(- R)fll,

The error depends, therefore, on the conditioning of the original integral equation,
is apparent from the term I1(I- )-Xll, and on the fidelity of the quadrature R to the
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integral operator ]C. It is not necessary that I1- RII be small, rather merely that R
approximate K; well near the solution f. Quadrature rules that have this property, but
that are defined only on the points x1,..., xn, are developed in [3]. In these rules the
quadrature weights wj of (6) become wij, which depend on the point of definition xi,

for i 1,..., n. The quadrature rules converge rapidly for kernels with singularities
of known location and type. These rules are used below in the numerical examples of
4.

2.2. Sparse representation of integral operators. We concern ourselves
here with kernels K K(x, t), which are analytic except at x t, where they possess
an integrable singularity. We initially discretize the integral operator using a simple
equispaced quadrature. Given n _> 2, we define points x1,..., xn to be equispaced on
the interval [a, b],

(11) xi a + (i 1)(b- a)/(n 1),

and define the elements Tij of the n x n matrix T by the formula

f n-_lK(Xi,Xj), i j,
(12) T

0, i =j.

Note that the matrix T T(n) corresponds to a primitive, trapezoid-like quadrature
discretization of the integral operator K:. The matrix T possesses the same smoothness
properties as the kernel K(x,t). Transformation of T by the bases developed in

1 produces a matrix that is sparse, to high precision. The number of elements is
effectively bounded by order O(n log n).

When the matrix representing the quadrature corrections developed in [3] is added
to T, producing high-order convergence to the integral operator, this complexity
bound remains valid.

The matrix T, transformed by the orthogonal n x n matrix U, can be decomposed
into the sum of a sparse matrix and a matrix with small norm. Given e > 0, there
exists c > 0, independent of n, such that the transformed matrix can be written in
the form

UTUT V + E,

where the number of elements in V V(n)is bounded by c n logn and E E(n)
is small: IIEII < e IITII. We do not prove this assertion here; the proof parallels the
proofs of similar statements in [2], but is somewhat more tedious.

2.3. Solution via Schulz method. The sparse matrix representing the integral
operator also has a sparse inverse, which can be computed rapidly.

Schulz’s method [15] is an iterative, quadratically convergent algorithm for com-
puting the inverse of a matrix. Its performance is characterized in the following
lemma.

LEMMA 2.1. Suppose that A is an invertible matrix, Xo is the matrix given by
Xo AH/IIAHAll, and.for m O, 1, 2,... the matrix Xm+ is defined by the recursiou

Xm-t- 2Xm X,AX,

Then Xm+ satisfies the formula

(13) I- Xm+A (I- XmA)2.
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Furthermore, Xm A-1 as m --. oc and for any e > 0 we have

(14) III- X.AII < provided m > 2log2 (A) + log2 log(l/e),

where a(A) IIAII" IIA-II is the condition number of A and the norm is given by
IIAII- (largest eigenvalue of AHA)/2.

Proof. Equation (13) is obtained directly from the definition of X,+I. Bound
(14) is equally straightforward. Noting that AHA is symmetric positive-definite and
letting A0 denote the smallest, and A1 the largest, eigenvalue of AHA we have

(15)
III- XoAII

From (13) we obtain I XmA (I- XoA)2m which in combination with (15) and
simple manipulation yields bound (14). v1

The Schulz method is a notably simple scheme for matrix inversion and its conver-
gence is extremely rapid. It is rarely used, however, because it involves matrix-matrix
multiplications on each iteration; for most problem formulations, this process requires
order O(n3) operations for an n n matrix. We observe, however, that a sparse ma-

trix, possessing a sparse inverse, whose iterates Xn are also sparse, may be rapidly
inverted using the Schulz method. We have seen above that a discretized integral
operator I- T, similarity-transformed to the representation A I- UTUT, has only
order O(nlogn) elements (to finite precision). In addition, ATA and (ATA)" are
similarly sparse. This property enables us to employ the Schulz algorithm to compute
A-1 in order O(nlog2 n) operations.

2.4. Oscillatory coefficients. We now consider a somewhat more general class
of integral equations, in which the integral operator is given by the formula

(DCJ’)(x) p() K(x, t) I(t) dr,

where the kernel K is assumed to be smooth, but the coefficient function p can be
oscillatory. In particular, we only restrict p to be positive. In terms of generality, these
problems lie between the problems with smooth kernels (and constant coefficient) and
those with arbitrary oscillatory kernels.

Writing the corresponding integral equation in operator form, we obtain the equa-
tion

(16) (I- D1C)f g.

Although D is a diagonal operator, and/C is smooth, it is clear that the discretiza-
tion of the operator DE will not be a sparse matrix in wavelet coordinates. In this
framework, it would appear that the construction of this paper is inapplicable. If
we instead consider the operator D1/2D1/2, in which oscillations in the rows match
those in the columns, it becomes clear that the construction of 1 can be revised.
Rather than constructing basis functions orthogonal to low-order polynomials xJ, we
can construct them to be orthogonal to p(x) 1/2 xj. The sole revision in our definition
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of basis matrices U1,..., U is to replace the definition (1) of the moments matrices

Ml,i for i 1,..., n/(2k), by the new definition

Ps+l 0 0 1 Xs-t-1 Xs+l
2k-1

0 Psi+2 0 1 Xs-t-2 Xs-t-22k-1

0 0 Ps+2k 1 Xs4_2k Xs+2k
2k-1

where si--(i- 1)2k and pj -p(xj)/2.
Now the integral equation (16) can be transformed to the equation

(I- D/21CD/2)(D-I/2f) (D-/2g),

which is discretized to a system that is sparse in the revised wavelet-like coordinates.
The inverse matrix is also sparse.

3. Numerical algorithms. In 1 we defined a class of bases for functions de-
fined on {x,...,xn}, and in 2 we showed that, to finite precision, second-kind
integral operators and their inverses are asymptotically sparse in these bases. In this
section we present procedures for computation of the bases, discretized integral oper-
ators in these bases, and the inverses of these operators. In 4 we give some numerical
examples based on our implementations of these procedures.

The computation of the new bases is discussed next, followed by a discussion of
the transformation of the integral operators to the new bases. We defer discussion
of the computation of the inverses, sketched above, to 3.3, which contains detailed
descriptions of all of the algorithms. Finally, 3.4 gives the complexity analysis for
the algorithms.

3.1. Computation of wavelet-like bases. It was mentioned in 1 that the
mathematical definition of U,..., U, if used directly, would result in a numerical
procedure that would create large roundoff errors. A correct procedure is obtained
by shifting and scaling the matrices Mj, defined there.

For a pair of numbers (#, a) e R (R\{0}) we define a 2k 2k matrix S(#, a)
whose (i, j)th element is the binomial term

(17) S(#,a)i,y=
i 1 a-for _< j, and S(#, cr)i,j 0 otherwise. The matrix S(#, a) is upper-triangular and

nonsingular, and its inverse is given by the formula

(18) S(#, a)- S(-#/a, 1/a).

Furthermore, the product formula

(19) S(1, (:yl)S(2, 0"2) S(1 -]- 201,0102)

is easily verified.
We define M},i for j 1,..., and i= 1,..., n/(2Jk) by the formula

(20)
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where uj, (Xl+(-l)k2J + xk2J)/2,a:i, (xik2# -xl+(i-1)k2J)/2, and the matrix
Mj,i is defined by (1) and (3) in 1. The matrix Ui, is given by the formula

(21) U,,T Orth(M,),
which is equivalent to the definition given by (2). This equivalence immediately follows
from the fact that S(#, a) is upper-triangular and nonsingular.

The matrices M for i 1, n/(2k) are actually computed by the formula1,i

UI, UI,

(
(22) M, Ul,i Ul,i

1 ,+2-1,, (x2..71,)2k-1
wh , (-)e. Likewise, th tris M,, or e,..., ,d 1,..., ,/(ek)
are computed by the formula

(23) M,i
Uj_,2i_ M_l,2i_

U 2v_,, M_,,

where S,i and Si are defined by the formulae

(a) ,, s(u_,,_l,_,:,_)-s(u,,,,,),
(5) s,, s(_1,,, _,)-(,,, ,,).

Application of the inverse and product rules given in (18) and (19) to (24) and (25)
yields formul by which S), and Sj.i can be computed:

(26) S),i S((j,i- j-t,2i-t)/a-t,2i-, aj,i/aj-t,2i-),

(2) s, s((,,,- -1,,)/-1,,, ,,/-,,).

The matrices M, given by (22) and (23) are eily seen to be mathematically
equivalent to those defined by (20); nonetheless, computation of M, using (22) and
(23) avoids the large roundoff errors that would otherwise result.

3.2. ansformation to wavelet-like bases. We sume that for equispaced
points x,...,xn (defined in (11)) and some k, the orthogonal matrices U,...,U
defined in 1 have been computed (1 log2(n/k)). We now present a procedure for
computation of UTUT, where U U... U and T is the discretized integral operator
defined in (12).

3.2.1. Simple example. We begin with a simplified example in which T is
replaced by an n n matrix V of rank k whose elements j are defined by he
equation

k k

r:l s:l
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Each row and each column of V contains elements that are the values of a polynomial
of degree k- 1. The matrix V can be written as V pTAp, where the elements
of the k n matrix P are defined by Pij xj

i-1 and A is the k k matrix with
elements Aij. Recalling that the last k rows of the basis matrix U consist of an
orthogonalization of the moment vectors (xlJ,... ,xn) for j 0,..., k- 1, we can
rewrite V as V (P’)TA’p’. Here the k n matrix P’ consists of the last k rows of
U and A’ is a new k k matrix with elements Aj.

By the orthogonality of U, it is clear that the nxn matrix UVUT U(p’)TA’P’UT
consists entirely of zero elements except the k x k submatrix in the lower-right corner,
which is the matrix A’. Given a function to compute elements of the n n matrix V,
the matrix A’ can be computed in time independent of n by using a k k extract of
values from V. We form the k k matrix V’ with elements V defined by the formula

Then V’ (P")TA’p", where P" is the k x k extract of P’ with elements given by

Pi’ P,j,/k" Thus we obtain

(29) A’-((P")T)-IV’(P")-I
from P" and V’ readily in O(k3) operations, and we have obtained UVUT.

3.2.2. General case. The integral operator matrix T is, of course, not of low
rank, but it can be divided into submatrices, each approximately of rank k (see Fig.
4). The submatrices near the main diagonal are of size k k, those next removed
are 2k 2k, and so forth up to the largest submatrices, of size n/4 n/4. The total
number of submatrices is proportional to n/k. Given an error tolerance e > 0, k may
be chosen (independently of n) so that each submatrix of T, say Ti, may be written
as a sum, T V +Ei, where the elements of V are given by a polynomial of degree
k- 1 and IIEII < ellTll.

The simplified example, in which the matrix to be transformed is of rank k, is now
applicable. Each submatrix of T is treated as a matrix of rank k and is transformed to
the new coordinates (for its own scale) in order O(k3) operations. To make this precise,
we write T To /... /-2 where Ti consists of the submatrices of size 2ik 2 k. For
each i, the submatrices of Ti may be interpolated by rank k submatrices, as indicated
by the extract of (28), to obtain matrices V. Thus T.-- V / E, where IIEill is small.
In the simplified example above, we have shown that the transformed matrices

(30)

W1 VlYl VlT,
W2 U2U1V2u1Tu2T,

can be computed by many applications of (29),. all in order O(nk2) operations. This
estimate follows from the fact that there are O(n/k) submatrices, each of which is
transformed in O(k3) operations. Now we define n n matrices R0,..., Rt recursively:

(31) R
Wo, i 0,

UR_ UT -+- W i >_ 1
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FIG. 4. The matrix represents a discretized integral operator with a kernel that is singular along
the diagonal. The matrix is divided into submatrices of rank k (to high precision) and transformed
to a sparse matrix with order O(n log n) elements. Here n/k 32.

(here Wl-1 Wl 0). Then R contains the final result, R U(T- E)UT, where
E Eo + + E_2.

The matrix-matrix products in the definition of R0,... ,R can be computed
directly, since the factors and the products contain no more than O(n log n) elements.
A simple implementation with standard sparse matrix structures results in a total
operation count of order O(n log2 n), but an implementation using somewhat more
elaborate data structures, in which repetitive handling of data is avoided, requires
only order O(n log n) operations.

Computation using the result Rl is made more efficient by removing the elements
ofR which can be neglected, within the precision with which R approximates UTUT.
For a given precision , we discard a matrix E’ by eliminating elements from R below
a threshold T. The threshold depends on the choice of norm; in our implementation,
we use the row-sum norm

IIAII max IA51,
./=1

for an n x n matrix A. The element threshold

(32)

clearly results in a discarded matrix E’ with IIE’II < IITII.
3.3. Detailed descriptions of algorithms.

PROCEDURE TO COMPUTE Vl,..., Vl
Comment [Input to this procedure consists of the number of points n, the number of
zero moments k, and the points xl,..., Xn. Output is the matrices Uj,i for j 1,...,
and i= 1,..., n/(2Jk), which make up the matrices U,..., Ul (note l= log2(n/k)).
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Step 1

Compute the shifted and scaled moments matrices M, for i 1,..., n/(2k) according
to (22).

Step 2

Compute Ul,i from M,i by (21) using Gram-Schmidt orthogonalization for i
1,...,

Step 3

Comment [Compute M, and Uj,i for j 2,..., and i= 1,..., n/(2Jk).
do j 2,...,1

do 1,...,n/(2Jk)
v andUj_ vCompute U_1,2_ Mj_,2i_ ,2 Mj_I,2.

Compute Sj, by (26) and S2, by (27);
multiply to obtain M, by (23).

Orthogonalize M,i to obtain Uj, by (21).
enddo

enddo

PROCEDURE TO COMPUTE UTUT
Comment [Input to this procedure consists of n, k, the matrices Uj, computed
above, a function to compute elements of T, and the chosen precision e. Output is a
matrix R such that IIR- UTUTII < ellTII.

Step 4

Compute the k k extracts, indicated by (28), of the submatrices of T shown in
Fig. 4.

Step 5

Extract the matrices P" (29) from U, U2U1,..., Ut-2... U and compute W0, WI-2
according to (30).

Step 6

Compute R0,..., Rt by (31), discarding elements below a threshold T determined by
the precision e (32).

PROCEDURE TO COMPUTE UT-1UT
Comment [Input to this procedure consists of n, the matrix Rt which approximates
UTUT, and the precision e. Output is a matrix Xm which approximates UT-UT.

Step 7

Compute the matrix X0 RtT/IIRtTRt by direct matrix multiplication, discarding
elements below a threshold T determined by the precision e (32).

Step 8

Comment [Obtain the inverse by Schulz iteration.

do m 0, 1,... while III- X,RtlI >_ e
Compute Xm+l 2Xm XmRtXm, discarding elements below threshold.

enddo
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3.4. Complexity analysis. In Table 1, we provide the operation count for each
step of the computation of UT-1UT.

TABLE 1

Step Complexity Explanation

1 O(nk)

2 O(nk)

3 O(nk2)

4 O(,k)

5 O(na)

6 O(nlogn)

7 O(n log2 n)

8 O(n log2 n)

Total O(n log2 n)

There are n/(2k)2k x 2k matrices; each element of the matrices is
computed in constant time.

For each of the n/(2k) matrices, perform a Gram-Schmidt orthogo-
nalization requiring order O(k3) operations.

For each of n/(4k)+n/(8k)+... + 1 n/(2k)- 1 matrices, compute
four products of a k 2k matrix with a 2k 2k matrix, construct
two 2k 2k matrices, and orthogonalize one 2k 2k matrix.

There are 6(1+3+7+...+(n/(2k)-l))+ 3(n/k)-2, or order O(n/k),
submatrices of T and for each matrix we compute k2 elements.

There are n/(2k)Tn/(4k)+... T 1 n/k- 1 matrices P", each the
product of two k k matrices. These are each inverted and multiplied
with the O(n/k) matrices of the previous step.

The diagonally banded matrix W0, which contains O(n) elements,
grows to O(n log n) elements by the computation of UWoUT, as can
be seen by simply examining pictures of W0 and U. The nonzero
elements of the transformed W1,..., W-2 are a subset of those of
W0.

Multiplication of two matrices, each with order O(n log n) elements,
to obtain a product with order O(n log n) elements.

Two multiplications like that of Step 7 are made per iteration; the
number of iterations is independent of n and given by bound (14).

4. Numerical examples. In this section we present operators from several inte-
gral equations, the discretization and transformation of the operators to our wavelet-
like bases, and the inversion of the operators via Schulz method.

4.1. Uncorrected quadratures. We first examine simple quadratures with
equal weights, except weight zero at the singularity, as represented by matrix T
T(n) defined by (12). We transform the matrix I- T to wavelet-like coordinates as
described in 3.2, then compute (I- T) -1.

These discretizations are not particularly useful for the solution of the integral
equations, due to their slow convergence to the integral operators. They nonetheless
make good illustrative examples, for they retain the smoothness of the operator kernels
and produce correspondingly sparse matrices. In the next section, we examine the
results of using high-order quadratures.

For various sizes n of discretization, we tabulate the average number of elements
per row in the transformed matrix U(I- T)UT and the computation time to ob-
tain the matrix. In addition, we display the average number of elements per row
of its inverse, and the time to compute the inverse. Finally, we show the error in-
troduced by these computations. The error is determined by the application of the
forward and inverse transformations to a random vector: Choose a vector v of length
n with uniformly distributed pseudorandom elements; compute (I- T)v directly, by
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a standard procedure requiring order O(n2) operations; transform to wavelet-like co-
ordinates, obtaining U(I- T)v; apply the computed value of U(I- T)-IUT to the
vector U(I- T)v; transform to original coordinates by application of uT; compare
the result v’ to v. The measure of error is the relative L2 error, defined by the formula

The programs to transform and invert, as well as those to determine the er-
ror, were implemented in FORTRAN. All computations were performed in double-
precision arithmetic on a Sun Sparcstation 1.

The first set of examples is for the kernel K(x, t) log Ix t[, for a wavelet-
like basis of order k 4 and various choices of precision e. The matrix sparsities,
execution times, and errors appear in Table 2. Although the sparse matrices are not
banded, we loosely refer to the average number of matrix elements per row as the
matrix bandwidth. We make the following observations.

TABLE 2
operator I ]C defined by the formula ((I ]C)f)(x) f(x) f: log Ix t[ f(t)The dt is dis-

cretized, transformed to the wavelet-like coordinates with k 4, and inverted. For various precisions
e and various sizes of discretization, we tabulate the average number of elements/row N1 of the ma-
trix in wavelet-like coordinates and the time in seconds to compute it, corresponding statistics N2
and t2 for the inverse, and the error (see text).

Transform. Inversion L2

N1 t N2 t2 Error

10-2

10-3

10-4

64 7.2 2 8.3 2 0.503E-02
128 5.9 3 6.5 4 0.257E-02
256 3.8 7 4.4 4 0.250E-02
512 2.8 13 3.1 6 0.236E-02
1024 1.9 26 2.1 6 0.227E-02
2048 1.4 49 1.4 6 0.221E-02
4096 1.2 97 1.2 8 0.221E-02
8192 1.1 195 1.1 12 0.217E-02

64 17.6 2 19.5 14 0.350E-03
128 18.1 5 20.0 36 0.270E-03
256 18.0 11 20.0 83 0.331E-03
512 14.5 21 15.7 123 0.257E-03
1024 13.3 41 15.5 262 0.340E-03
2048 8.5 73 9.8 287 0.233E-03
4096 5.8 131 6.5 304 0.222E-03
8192 3.7 242 4.4 312 0.221E-03

64 28.4 3 30.3 36 0.104E-03
128 32.1 6 34.3 111 0.140E-03
256 34.5 15 37.5 302 0.161E-03
512 33.1 31 35.8 618 0.177E-03
1024 30.2 63 33.6 1280 0.189E-03
2048 25.0 121 27.6 2040 0.192E-03

1. The bandwidths N1, N2 of the operator and its inverse decrease with increasing
matrix size. In other words, in the range of matrix sizes tabulated, the number of
matrix elements grows more slowly than the matrix dimension n.
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2. The operator matrix in wavelet-like coordinates is computed in time that grows
nearly linearly in n.

3. The inverse matrix is computed in time which grows sublinearly in n. This
is due to the fact that the cost of multiplying the sparse matrices is roughly order
O(nN2), for size n and bandwidth N. One result is that the cost sometimes drops as
n increases.

4. The accuracy is within the precision specified. In fact, due to the conservative
element thresholding (32), the actual error is considerably less than e.

5. The cost increases with increasing precision e, due to the increasing bandwidths
generated. The bandwidths increase approximately as log(l/e).

6. For k 4, our fast transformation algorithm does not maintain the speci-
fied precision of e 10-a. This anticipated result follows from the error estimate
for polynomial interpolation of logarithm on intervals separated from the origin. An
unanticipated attendant result is that the bandwidth increases as the quality of ap-
proximation deteriorates (compare to k 8, below). As a result, we did not complete
examples for n 4096, 8192.

7. The inversion of the 8192 8192 matrix preserving three-digit accuracy is
done in five minutes on the Sparcstation. This compares to 95 days (estimated) for
inverting the dense matrix by Gauss-Jordan and to 24 minutes for one dense matrix-
vector multiplication of that size.

The condition number of the problem, as approximated by the product of the
row-sum norms of U(I- T)UT and its computed inverse, is 3 (independent of size).
Five iterations were required by the Schulz method to achieve convergence.

In Fig. 5 we show stages in the transformation of the matrix I- T. In particular,
for e 10-3 and n 64, the matrices R0,... ,Rt-1 defined in (31) are shown. In
addition, for n 128, the transformed matrix U(I- T)UT and its inverse are shown
in Fig. 6.

In the next set of examples, for which results are displayed in Table 3, we used
the wavelet-like basis of order k 8. We observe the following.

1. The bandwidths of the operator matrix and its inverse are less for k 8 than
for k 4. The inversion times are correspondingly smaller.

2. The time required to compute the operator matrix is almost four times as large
as that for k 4. This is due to the cost of transforming the near-diagonal band,
which is twice as wide for k 8 as for k 4.

3. The obtained accuracy exceeds the specified precision consistently.
4. As for k 4, the scaling with size n is linear for the transformation step and

sublinear for the inversion step.
In the final set of examples in which uncorrected quadratures were used, we

perform computations for k 4 and e 10-3, with various operator kernels. Table 4
presents the results. The first three kernels contain singularities of the types s(x)
log(x) and s(x) xa for a +1/2, and are nonsymmetric and nonconvolutional. It
is readily seen that the bandwidth is strongly dependent on the type of singularity,
with the singularity x-1/2 producing the greatest bandwidth. We mention also that
this particular integral equation is poorly conditioned; the condition numbers of the
discretizations for n 64, 128,256,512, 1024 are 9, 17, 34, 98,469, respectively.

The fourth kernel provides an example with an oscillatory coefficient p(x)
sin(100x)). The bases developed in 2.4, which depend on p, are used to(1+

transform the discretized integral operator to sparse form. We see in Table 4 that the
inverse is also very sparse.
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FIG. 5. The matrices constructed in the transformation of I- T, matrices R0,..., R3 defined
in (31), are shown for kernel g(x, t) log Ix tl, e 10-3, and n 64. Matrix R4 looks like R3
and is not shown.

4.2. Solution of integral equations. In the preceding subsection, we exam-
ined the characteristics of various integral operators and their inverses in wavelet-like
coordinates. We used completely straightforward discretizations; the quadratures rep-
resented sums of the integrands at equispaced points (excluding singular points). Such
simple quadratures converge too slowly to the integral operators to be of much use in
solving integral equations, and we now turn to the high-order quadratures developed
in [3].

We first present examples that correspond to the various kernels already tested
and shown in Table 4. In Table 5 we tabulate the results, and bandwidth differences
from Table 4 reflect the effect of the quadratures.

For the remaining examples we choose integral equations that can be solved an-
alytically, so that the accuracy of the method can be checked. We consider a class of
integral equations with logarithmic kernel,

(33) f(x) p(x) log Ix tl f(t) dt g.(x), x e [0, 1],

where the right-hand side g, is chosen so that the solution f is given by the formula
f(x) --sin(rex). The integration can be performed explicitly, yielding
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FIG. 6. Trans/ormed matrix U(I T)UT (top) and its inverse (bottom) are shown/or kernel
g(x,t) log Ix- tl, e 10-3, and n 128.

log Ix tl m sin(mr) log(x) cos(m)log(1 x)dt

-cos(mx)[Ci(mx) Ci(m(1 x))]

-sin(mx)[Si(mx) + Si(m(1 x))],

where Ci and Si are the cosine integral and sine integral (see, e.g., [1, p. 231]). Equa-
tion (33) clearly requires quadratures with increasing resolution as rn increases; for
our examples we let n m, which corresponds to 27r points per oscillation of the
right-hand side gin.
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TABLE 3
The operator I- ]C defined by the formula ((I- ]C)f)(x) f(x)- f log lx- f(t)dt is

discretized, transformed to the wavelet-like coordinates with k 8, and inverted. (See Table 2 and
text.)

Transform. Inversion L2

N1 tl N2 t2 Error

10-2

10-3

64 5.8 4 6.2 1 0.191E-02
128 5.0 10 5.5 2 0.368E-02
256 3.3 22 3.6 3 0.184E-02
512 2.7 46 2.9 4 0.113E-02
1024 1.8 92 1.8 4 0.177E-02
2048 1.4 182 1.4 5 0.170E-02
4096 1.2 363 1.2 8 0.928E-03
8192 1.1 729 1.1 11 0.166E-02

64 13.4 5 14.5 8 0.373E-03
128 14.2 13 15.5 21 0.332E-03
256 13.5 28 14.5 46 0.259E-03
512 12.7 57 13.6 90 0.225E-03
1024 10.2 114 11.1 134 0.198E-03
2048 7.7 221 8.3 176 0.179E-03
4096 4.9 429 5.2 185 0.174E-03
8192 3.5 818 3.7 208 0.173E-03

64 21.8 6 23.0 23 0.280E-04
128 26.3 15 28.0 81 0.253E-04
256 28.7 35 31.0 235 0.246E-04
512 28.4 75 30.9 538 0.184E-04
1024 25.5 149 27.2 969 0.925E-05
2048 22.0 297 23.8 1739 0.899E-05
4096 17.7 561 19.1 2610 0.798E-05

Initially we choose coefficient p(x) 1. The results are given in Table 6. Here
the error shown is the error of the computed solution relative to the true solution of
the integral equation. Many of the observations of the preceding examples can be
repeated here; additionally, we make the following comments.

1. The bandwidths are greater than for the uncorrected quadratures, but this
effect generally decreases with increasing size.

2. The integral equations are solved to within the specified precision in every case
but one. The exception, for e 10-4 and n 64, is likely due to the small number
of quadrature points and high specified precision.

3. An integral equation requiring an 8192-point discretization is solved to three-
digit accuracy in less than 20 minutes on the Sparcstation.

For our second set of integral equations, we let the coefficient p be the oscillatory
function given by the formula p(x) 1+ 1/2 sin(100x). We carry out the transformation
described in 2.4 to solve the integral equation (33). The results are shown in Table 7,
and as with Table 6, the error refers to the error of the computed solution relative
to the true solution of the integral equation. For the oscillatory coefficient we see

performance similar to the constant-coefficient problem, but the cost is higher.

5. Generalizations and applications. In this paper, we have constructed a
new class of vector-space wavelet-like bases in which a variety of integral operators
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TABLE 4
operator I-1 defined by the formula ((I-)f)(x) f(x)- f: K(x, t) f(t) dr, for nonsym-The

metric, nonconvolutional kernels K(x, t) shown below, is discretized, transformed to the wavelet-like
coordinates with k 4 and e 10-3, and inverted. (See Table 2 and text.)

Transform. Inversion L2

K(x, t) n N1 tl N2 t2 Error

cos(xt2) log Ix tl

cos(xt2)lx t1-1/2

cos(xt2)lx t11/2

sin(lOOx)) x(1+7
log Ix

64 18.2 2 20.2 15 0.318E-03
128 18.6 5 20.4 37 0.302E-03
256 17.9 11 19.8 82 0.301E-03
512 14.9 22 16.3 131 0.284E-03
1024 12.9 42 14.7 242 0.315E-03
2048 8.5 76 9.5 283 0.241E-03
4096 5.5 137 6.1 291 0.231E-03
8192 3.6 252 4.3 310 0.230E-03

64 27.2 3 28.9 32 0.256E-03
128 31.6 7 34.1 122 0.357E-03
256 35.6 16 40.6 454 0.434E-03
512 37.3 35 46.3 1509 0.643E-03
1024 34.5 72 45.4 4166 0.821E-03

64 6.8 2 7.3 2 0.303E-03
128 4.4 4 4.7 2 0.204E-03
256 2.9 8 3.0 3 0.209E-03
512 2.1 15 2.3 3 0.165E-03
1024 1.5 30 1.5 3 0.208E-03
2048 1.4 60 1.4 6 0.909E-03
4096 1.1 119 1.2 7 0.614E-03
8192 1.1 242 1.1 12 0.666E-03

64 30.5 3 33.8 44 0.344E-03
128 31.8 6 35.1 103 0.363E-03
256 21.2 12 24.1 119 0.348E-03
512 18.6 23 20.7 225 0.372E-03
1024 15.8 45 18.4 404 0.392E-03
2048 10.6 82 12.2 466 0.355E-03
4096 6.4 145 7.4 497 0.336E-03
8192 4.0 265 4.6 510 0.331E-03

are represented as sparse matrices. The inverses of these matrices are also sparse, a
fact which enables the corresponding integral equations to be solved rapidly. We have
asserted that the time complexity for an n-point discretization is bounded by order
O(n log2 n), but observed order O(n) performance in practice. This cost should be
contrasted with a cost of order O(n2) for direct application of a dense matrix, and
order O(n3) for direct inversion.

A number of limitations exist in the procedures described above. These restric-
tions may be categorized as "software limitations" and "research questions." We
discuss software limitations first.

5.1. Software limitations. Throughout the paper, we have assumed that the
size of the problem n has the form n 21k for some 1. This restriction is not
fundamental; it merely simplifies the software.

A second software restriction is the assumption of only diagonal singularities.
This case is an important one in practice, but in certain situations we may encounter
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TABLE 5
operator I--: defined by the formula ((I-:)f)(x) $(x)-f K(x,t) f(t) dr, for nonsym-The

metric, nonconvolutional kernels K(x,t) shown below, is discretized with the corrected trapezoidal
rules, transformed to the wavelet-like coordinates with k 4 and e 10-3, and inverted. (Compare
to Table 4.)

Transform. Inversion L2

K(x, t) n N1 tl N2 t2 Error

cos(zt2) log Ix

cos(xt2)lx t1-1/9.

cos(xt2)lx tll/Z

64 28.3 4 31.6 38 0.164E-03
128 31.5 9 34.3 103 0.162E-03
256 30.8 21 33.9 221 0.172E-03
512 27.0 41 29.7 370 0.177E-03
1024 21.0 80 23.7 454 0.357E-03
2048 14.8 143 17.2 566 0.317E-03
4096 9.5 250 10.4 555 0.282E-03
8192 5.8 448 6.9 665 0.271E-03

64 32.4 4 39.8 87 0.133E-02
128 38.3 10 45.7 251 0.412E-03
256 42.7 23 49.3 638 0.464E-03
512 45.1 51 51.3 1494 0.562E-03
1024 46.2 110 52.1 3309 0.635E-03

64 10.4 3 18.4 9 0.867E-03
128 7.6 6 13.8 13 0.526E-03
256 5.1 13 9.3 16 0.358E-03
512 3.3 25 5.2 15 0.292E-03
1024 2.3 48 3.1 15 0.201E-03
2048 1.9 96 2.3 20 0.393E-03
4096 1.5 188 1.7 25 0.405E-03
8192 1.3 374 1.4 36 0.404E-03

singularities or near-singularities off the main diagonal. The scheme described in

3.2 for transformation of a matrix to wavelet-like bases can be readily revised to an
adaptive scheme, which works as follows: an m x m submatrix A is transformed to
wavelet-like coordinates under the assumption that it can be approximated to high
precision along both rows and columns by polynomials of degree less than k. This
assumption is then checked by dividing A into four submatrices, each of dimension
m/2 x m/2, transforming each submatrix, and "gluing" the pieces together. If the
results from the two computations match (to high precision), no further refinement of
the original submatrix is needed. Otherwise, the procedure is repeated recursively on
the m/2 x m/2 submatrices. The cost of this adaptive procedure is roughly five times
as great as the cost of a static procedure in which the structure of the singularities is
known a priori.

5.2. Research questions. The list of research issues is, of course, much longer.
One of the most pressing issues is the generalization to two and three dimensions.
Although, conceptually, the generalization of the wavelet-like bases to several dimen-
sions is quite straightforward (see, e.g., [2]), actual procedures to perform the required
orthogonalizations have not been developed. Also, the issue of high-order quadratures
for two and three dimensions has not been resolved.

Another question is whether similar "custom-constructed" bases can be used to
create sparse representations of integral operators with oscillatory kernels. Initial
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TABLE 6
The integral equations f(x) f: log Ix t[ f(t)dt gin(x), for which an explicit solution is

known, are solved by the methods of this chapter (compare to Table 2 and see text). For e
10-2, 10-3, 10-4 we set k 4, 4, 8, respectively.

lransform. Inversion L2

e n, m N1 N2 t2 Error

10-2

10-3

10-4

64 11.4 3 14.4 7 0.283E-02
128 10.7 7 13.2 14 0.212E-02
256 8.6 13 10.6 20 0.140E-02
512 6.3 26 7.6 26 0.112E-02
1024 3.6 48 4.5 28 0.821E-03
2048 1.9 90 2.3 21 0.932E-03
4096 1.3 174 1.5 15 0.674E-03
8192 1.1 344 1.1 13 0.499E-03

64 27.7 4 31.3 36 0.235E-03
128 31.0 9 34.2 99 0.169E-03
256 30.6 20 33.6 215 0.161E-03
512 27.5 41 30.2 377 0.130E-03
1024 21.7 79 24.4 470 0.597E-03
2048 15.5 143 18.1 604 0.479E-03
4096 9.7 248 10.6 579 0.415E-03
8192 6.0 444 7.3 690 0.354E-03

64 37.2 8 45.9 78 0.127E-03
128 47.1 23 56.5 278 0.473E-04
256 52.9 54 60.9 745 0.311E-04
512 55.0 118 61.4 1701 0.100E-04
1024 52.3 248 57.2 3287 0.734E-05

efforts in this direction for a limited class of such operators, in particular for Fourier
transforms with nonequispaced points and frequencies, appear promising [9].

5.3. Applications. In this paper the primary application of our new wavelet-
like bases has been the solution of second-kind integral equations. The bases are very
effective for the fast solution of a wide class of such problems. In addition, we expect
many other classes of problems to be solved efficiently using these techniques. We list
a few of these problem types.

1. Elliptic partial differential equations rewritten as integral equations by the
Lippman-Schwinger method, in which the Green’s functions are nonoscillatory.

2. Evolution of homogeneous parabolic partial differential equations (PDEs) with
constant or periodic boundary conditions, by explicit time steps. This method consists
of repeated squarings of the operator for a single time step, leading to an order
O(n log t) algorithm for evolving an n-point discretization for t time steps.

3. Evolution of general parabolic PDEs by implicit time steps, in which the elliptic
problem on each time step is solved in wavelet-like coordinates.

4. Evolution of hyperbolic PDEs by a method of operator squaring analogous to
the scheme proposed for homogeneous parabolic PDEs above.

5. Problems of potential theory and pseudodifferential operators.
6. Signal compression, including signals of seismic, visual, and vocal origin. There

is also reason to expect that analysis of such compressed data will be simpler than
analysis of data resulting from less efficient compression schemes.
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TABLE 7
integral equations f(x) p(x) f: log Ix f(t) dt gin(x), for which an explicitThe solution

is known, are solved by the methods of this chapter (compare to Table 2 and see text). For e
10-2, 10-3, 10-4 we set k 4, 4, 8, respectively.

Transform. Inversion L2

e n, m N1 N2 t2 Error

10-2

10-3

10-4

64 19.7 4 23.9 18 0.360E-02
128 17.7 8 21.0 36 0.182E-02
256 12.6 15 14.6 47 0.174E-02
512 8.4 29 9.8 57 0.112E-02
1024 4.7 55 5.7 56 0.104E-02
2048 2.4 103 2.7 45 0.902E-03
4096 1.6 198 1.7 38 0.720E-03
8192 1.3 392 1.3 35 0.543E-03

64 36.2 4 41.3 63 0.228E-02
128 40.8 10 47.0 186 0.209E-03
256 40.5 23 47.3 427 0.177E-03
512 34.7 46 40.9 712 0.125E-03
1024 26.6 87 32.5 1042 0.134E-03
2048 18.7 158 22.5 1065 0.597E-03
4096 12.2 281 14.2 1127 0.529E-03
8192 7.2 502 8.4 1104 0.461E-03

64 47.6 9 58.2 123 0.230E-02
128 60.7 25 77.3 479 0.180E-03
256 64.1 59 81.2 1204 0.124E-03
512 62.5 128 76.3 2492 0.125E-04
1024 58.8 267 69.3 4672 0.862E-05

In this paper we strayed from the original mathematical definition of wavelets to
construct classes of bases tailored for numerical computation. The basis vectors’ prin-
cipal properties of local support and vanishing moments lead to sparse representations
of functions and operators that are smooth except at a small number of singularities.
There is little doubt that other bases can be constructed along similar lines to possess
various properties. One current challenge is the construction of bases suitable for the
efficient representation of a variety of oscillatory operators.
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