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We construct high-order derivative operators for smooth functions represented via 
discontinuous multiwavelet bases. The need for such operators arises in order to avoid 
artifacts when computing functionals involving high-order derivatives of solutions of 
integral equations. Previously high-order derivatives had to be formed by repeated 
application of a first-derivative operator that, while uniquely defined, has a spectral 
norm that grows quadratically with polynomial order and, hence, greatly amplifies 
numerical noise (truncation error) in the multiwavelet computation. The new constructions 
proceed via least-squares projection onto smooth bases and provide substantially improved 
numerical properties as well as permitting direct construction of high-order derivatives. 
We employ either b-splines or bandlimited exponentials as the intermediate smooth basis, 
with the former maintaining the concept of approximation order while the latter preserves 
the pure imaginary spectrum of the first-derivative operator and provides more direct 
control over the bandlimit and accuracy of computation. We demonstrate the properties 
of these new operators via several numerical tests as well as application to a problem in 
nuclear physics.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we revisit the issue of computing high-order derivatives of smooth functions represented in multiwavelet 
bases. During the development of various flavors of wavelet bases, multiwavelet bases were introduced perhaps as an 
afterthought. Initially, the whole thrust of wavelet constructions such as Daubechies wavelets [12] or spline wavelets (see 
e.g. [11]) was to ensure smoothness of a basis. Multiwavelets [1] appeared following a discrete wavelet-like construction 
in [2] (it turns out that the same bases were sketched earlier in [15] but never used for numerical purposes). While 
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generalizing the Haar basis [17], multiwavelets kept the “unpleasant” feature that some basis functions are discontinuous. 
Counter-intuitively, as noted in [3], this feature may be considered “a blessing in disguise”. In particular, the fact that the 
scaling functions are supported on non-overlapping intervals allows high-order schemes on bounded intervals and, also, it 
is relatively easy to perform nonlinear operations. From an algorithmic point of view, it is also relatively easy to maintain a 
sparse representation of functions in higher dimensions when compared with required bookkeeping for overlapping bases. 
The observation that discontinuous basis functions allow high-order schemes is not unique to multiresolution bases as the 
same has been observed in, e.g., the discontinuous Galerkin methods. Consequently, since representations in multiwavelet 
bases have many useful properties and result in algorithms well suited for modern computer processors, they became a 
successful practical tool for high performance computing and are used in quantum chemistry [18,20,45,46] and nuclear 
physics [34,14,31,32], and serve as mathematical underpinnings of MADNESS [21].

Yet, the fact that basis functions are allowed to be discontinuous leads to a number of problems. As discussed in [3], 
the only scale-consistent derivative operator available to us is the first derivative. Operators for the second and higher 
derivatives do not exist due to the discontinuous nature of the basis and are applied as a power of the first derivative. 
Naively, if the function has high-order derivatives, such an approach appears reasonable. However, due to the approximate 
nature of representation in multiwavelet bases there are ε-size discontinuities between representations on neighboring 
intervals (where ε is user-selected) and repeated applications of derivative operators may lead to large errors and the 
appearance of spiky artifacts at boundaries of intervals. While in many instances differential equations can be replaced by 
integral equations as in [18,20,45,46], the evaluation of high order derivatives of solutions is a necessary step in computing 
functionals that carry physical meaning. An interesting observation was made in [13]: while the basis functions are not 
smooth, given multiwavelet coefficients one can look for a function with the maximal number of derivatives that has these 
coefficients. In that approach, coefficients remain unchanged and the function interpreted as having derivatives in bases dual 
to multiwavelets.

The main ideas of our approach are as follows.

1. We assume that the input coefficients are (slightly) corrupted and, for this reason, first project the function onto a 
smooth basis and then use this projection to differentiate the original function. If we were to take the projection 
and compute its multiwavelet coefficients, they will slightly differ from the original ones. This approach permits the 
construction of first, second, and higher derivatives.

2. Two smooth intermediate bases are explored. While we can safely assume that splines are well known, we introduce 
exponential bases for bandlimited functions in greater detail since such bases are less known. We use them as an 
alternative to projections on splines to emphasize the generic nature of our approach and, also, due to remarkable 
properties of the resulting operators.

3. The construction for all bases retains the 3-box stencil of the original derivative operator and for b-splines also retains 
the same order of approximation, and hence the new operators can be used as a drop-in replacement in the software. 
For bandlimited exponentials, the concept of order of approximation is maintained to the accuracy of the underlying 
quadrature and the associated bandlimit.

Our numerical results for up to third-order derivatives demonstrate that the new operators display the expected order of 
approximation and are substantially superior in controlling both pointwise and normwise errors in derivatives, especially 
with noisy input functions. Also demonstrated is improved consistency between the derivative operators and their pseudo-
inverse (i.e., convolution with the corresponding Green’s function). We will see that the original operator retains some 
advantages, notably in computing the quantum mechanical kinetic energy to high accuracy.

Motivating our work are applications in the structure of nuclear matter [34,14,31,32] and molecular electronic struc-
ture [43,47,45,46,48,9,16,20] composed within the MADNESS framework [21] and the independent MRChem package [25]. 
Both disciplines employ the Kohn-Sham formulation of density functional theory (DFT) [30] that expresses the energy as 
a functional of the density that is in turn parameterized by a set of orthonormal one-particle orbitals (i.e., one-particle 
wave functions). Variation of the orbitals to minimize the energy while enforcing the orthonormality constraint yields a 
non-linear eigenvalue problem (a set of coupled differential equations) that for accurate and efficient computation within 
the multiwavelet basis is recast into a set of coupled integral equations. In the molecular problem the orbitals can usually 
be chosen as real-valued functions of the position of an electron in 3D space, and the occupied (i.e., bound or negative 
energy) orbitals will asymptotically decay exponentially to satisfy free-space boundary conditions. In the nuclear problem 
the orbitals will typically be 2-component spinors with each component being a complex-valued function of the position of 
a nucleon, and both occupied and unoccupied (unbound or positive energy) states must be computed for energy function-
als that incorporate superfluidity. The unbound states are not exponentially localized and other techniques are necessary 
to map the computation onto a finite volume [32]. While the DFT energy functionals are quite different for nuclei and 
electrons, they have multiple elements in common including the incorporation of first, second and higher derivatives of 
the electron density as well as strongly non-linear functions of these. Properties beyond those of the ground state (e.g., 
excitation energies or the response to external perturbations such as time-dependent electric or magnetic fields) require 
even higher derivatives. The amplification of numerical noise inherent in computing higher derivatives with the original 
scheme, the sensitivity of some non-linear functionals to point-wise rather than norm-wise errors, and the sensitivity of 
some functionals to regions where the density is small (and hence potentially dominated by numerical noise), combine to 
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make computations with functionals that incorporate derivatives more expensive compared to those that do not include 
derivatives. This is largely due to the need to compute much more accurately (i.e., oversample) in order to obtain accurate 
derivatives and function tails.

Another issue arising from the norm of the original derivative operator and the need to compute higher derivatives by its 
repeated application is that differential operators and their pseudo-inverse (i.e., convolution with the corresponding Green’s 
function) do not numerically commute within the precision of computation — i.e., the order of operations matters and there 
is a lack of consistency between the numerical and formal calculus. This has emerged as a significant issue for scientists 
making first use of MADNESS, which typically requires reformulating partial differential equations as integral equations with 
free-space or periodic boundary conditions. Nominally equivalent expressions may have very different error properties that 
can affect both accuracy and convergence. For instance, in the electronic structure problem it is appealing to compute a 
residual from the standard eigenvalue problem in differential form while updating the orbitals using the Green’s function 
to the bound-state Helmholtz (BSH) equation (which builds in desirable physics in addition to being numerically efficient; 
[19]). However, this fails to converge robustly to high accuracy since the available Laplacian operator strongly amplifies high 
frequency noise that is suppressed by the integral operator. In the results section we will see that the new differential 
operators significantly improve upon prior behavior.

We note that there is a large number of publications on constructing derivative operators (in the form of a finite differ-
ence scheme) with additional desired properties - for example TVD [22,36,23] or WENO [24,29]. However, in this case the 
difficulty addressed is how to differentiate accurately and avoid artifacts in a scheme where a function develops a shock, 
a rapid variation over a small interval. Note that we are addressing an “opposite” problem where functions are known to 
be differentiable many times but are represented via functions that have discontinuities. In molecular electronic structure 
the solutions are smooth except for cusps at the known locations of the nuclear centers if point nuclear charges are used, 
however it is routine to eliminate these cusps either analytically or through the use of effective potentials. Another issue in 
constructing derivative operators addressed in [7,35,26] is how to avoid spurious eigenvalues of such operators (that nec-
essarily occur when using polynomial bases), which negatively affect the operator norm. We obtain a similar result in our 
construction when using bandlimited exponentials.

This returns us to the basic concept of this paper — the multiwavelet basis is very convenient for efficiently computing 
with locally-refined representations of functions and operators, and we can circumvent some of the deficiencies of the mul-
tiwavelet basis by constructing operator representations in an underlying basis selected to provide the desired properties. 
We briefly introduce the multiwavelet basis, review the construction and form of the original derivative operator, and then 
introduce our new constructions. Subsequently, we present and discuss numerical results and conclusions.

2. The multiwavelet basis

The multiwavelet scaling functions [1] are given by scaled and normalized Legendre polynomials defined on [0,1],

φi(x) =
{√

2i + 1Pi(2x − 1), x ∈ [0,1]

0, x /∈ (0,1)
, (1)

where i = 0, . . . , k − 1, k is the order of the basis (i.e., the first k polynomials are used), Pi(x) are the Legendre polynomials, 
and 

√
2i + 1 is a normalization factor. From these the scaling functions in the lth box at level n are formed by translation 

and dilation

φn
il(x) = 2n/2φi(2nx − l) (2)

By construction these functions form an orthonormal basis at level n.
Alpert’s construction [1] of the wavelet basis starts with the two-scale relationship between polynomials at level n and 

n − 1

φn−1
i (x) = √

2
k−1∑
j=0

(h(0)
i j φn

j (2x) + h(1)
i j φn

j (2x − 1), i = 0, . . . ,k − 1, (3)

where H (0) =
{

h(0)
i j

}
and H (1) =

{
h(1)

i j

}
are the filter coefficients, which are readily computed by orthogonal projection. The 

orthonormal wavelets at level n − 1 are similarly expanded in terms of the scaling functions at level n

ψn−1
i (x) = √

2
k−1∑
j=0

(g(0)
i j φn

j (2x) + g(1)
i j φn

j (2x − 1), i = 0, . . . ,k − 1, (4)

where the filter coefficients G(0) =
{

g(0)
i j

}
and G(1) =

{
g(1)

i j

}
are again computed by orthogonal projection noting that the 

wavelets are orthogonal to the scaling functions at the same and coarser levels, and that the wavelets are orthogonal to each 
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other across all scales. Together, these relations enable the transformation between different scales of the multiresolution 
analysis. Note that at their mid-point the multiwavelets (4) are either discontinuous or have a discontinuous derivative.

The projection of a function f (x) into the order-k scaling function basis at level n is

f n(x) =
2n−1∑
l=0

k−1∑
j=0

sn
jlφ

n
jl(x), (5)

where s are the scaling function coefficients. Assuming f is k-times differentiable, the approximation error is [1]

∥∥ f − f n
∥∥ ≤ 2−nk 2

4kk! sup
x∈[0,1]

∣∣∣∣∣ dk

dxk
f (x)

∣∣∣∣∣ . (6)

Repeated application of the filters H (0) , H (1) , G(0) and G(1) (i.e., the fast wavelet transform [4]) performs the orthogonal 
transformation into the corresponding wavelet representation

f n(x) =
k−1∑
j=0

⎛
⎝s0

j0φ j(x) +
n−1∑
m=0

2m−1∑
l=0

dm
jlψ

m
jl (x)

⎞
⎠ .

Adaptive refinement is accomplished by discarding small wavelet coefficients according to user-specified criteria. The 
wavelet coefficients will be small below the refinement level at which the function locally becomes well approximated by 
the Legendre basis. Thus, the noise or error in numerical computation has a known form — it is dominated, for smooth 
functions, by wavelets at the next finest scale.

2.1. Derivative operator

As discussed in the introduction, there is just one scale-consistent derivative operator in this basis, which may be ob-
tained either by seeking the unique operator that is homogeneous of degree one, or by projection and integration by parts 
as is traditionally done to obtain the weak derivative [3]. Free parameters in the operator permit incorporation of boundary 
conditions and construction of forward, central, or backward forms. In this paper we just consider the central (or periodic) 
form.

Given the projection (5) of a function at level n, the scaling function coefficients (s̄n
lj ) of the derivative in box l at level n

are related to the input coefficients from the corresponding box and its neighbors (l − 1 and l + 1) by the transition matrices 
r−1, r0, and r1 of a 3-block stencil

s̄n
jl =

k−1∑
i=0

[r1] ji sn
il−1 + [r0] ji sn

il + [r−1] ji sn
il+1, (7)

with r−1 = −rt
1. For this unique, scale-consistent derivative operator, we also have that the central block is skew-symmetric, 

i.e., r0 = −rt
0 so that the entire operator is skew-symmetric. This property will not hold for the smoothed derivatives 

constructed below.

3. Construction of smoothing differential operators

The scale-consistent construction of the derivative operator [3] proceeds with the perspective that the function being 
differentiated is the expansion in the discontinuous scaling function (or equivalently multiwavelet) basis. Here, we in-
stead change this perspective and assume that the expansion in scaling functions is an approximation to some at least 
p-differentiable function about which we know only approximations to the first few generalized moments within each box 
— i.e., the expansion coefficients are interpreted as the projection of this smooth function into the local Legendre polynomial 
basis of order k, with these coefficients only being known to the precision of computation. We construct local representa-
tions of this smooth function by projecting into a smooth basis that is at least p-differentiable and which is defined over 
the domain of the derivative operator (a 3-box stencil). The projection is performed in a least-squares sense so as to re-
produce as accurately as possible the known moments (i.e., expansion coefficients with respect to scaling functions). With 
this smooth representation in hand, the derivative is computed and expansion in the scaling function basis recovered by 
orthogonal projection. In practice all three operations (projection into the smooth basis, differentiation, projection into the 
scaling function basis) are combined into a single matrix representation.

By applying the smoothing locally at the same scale at which the scaling function expansion is known, we accommo-
date adaptive refinement (that can introduce noise at any scale) and do not enforce a global band limit that would limit 
applicability. Together with increasing the accuracy/band-limit/order of the smooth basis in tandem with that of the scaling 
function basis, we preserve the ability to control the overall accuracy of computation through either adaptive refinement or 
use of a higher-order basis (larger k). Therefore, no new parameters are introduced that control the error in computation. 
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The construction preserves the 3-box stencil and scale-invariant operator, and hence can be used as a drop-in replacement 
in existing software (e.g., MADNESS [21], MRChem [25]).

We now explain our construction in a general setting that combines the projection and differentiation operators. Let 
us assume that we have two bases, the original basis u1 (x) , u2 (x) , . . . un (x) and an auxiliary basis v1 (x) , v2 (x) , . . . vm (x), 
where m ≤ n and the latter basis spans a subspace of the former (exactly or approximately within a given accuracy). 
Specifically, we are interested in the case where the basis functions v1, v2, . . . vm all have derivatives of order p whereas 
not all of the functions u1 (x) , u2 (x) , . . . un (x) are p-differentiable. As we already pointed out, our main example is the 
basis where u1 (x) , u2 (x) , . . . un (x) are piece-wise polynomials.

We assume that the function f has the derivative of order p that we want to evaluate but is written in the original 
basis,

f (x) =
n∑

k=1

fkuk (x) + O (ε), (8)

where ε is the accuracy of computation. Note that if the coefficients fk are known exactly then the error would be entirely 
in the wavelet spaces at the current and finer scales, but in practice the coefficients would only be known approximately.

Let us start by defining the n × m matrix A with entries

αil =
∫

ui(x)vl(x)dx, (9)

and, if the original basis is not orthonormal, also the n × n Gram matrix G with entries

Gik =
∫

ui (x) uk (x)dx, i,k = 1, . . .n.

Our first step is to project f on the subspace spanned by functions v1 (x) , v2 (x) , . . . vm (x) reproducing in a least squares 
sense the projection onto the original basis. We seek the coefficients gl so that

n∑
k=1

fkuk (x) ≈
m∑

l=1

gl vl(x). (10)

Denoting f = ( f1, f2, . . . fn), g = (g1, g2, . . . gm) and projecting from the left with ui (x), we seek g such that

A∗Gf = A∗Ag.

Thus, we obtain coefficients of f in the auxiliary basis as

g = (
A∗A

)−1 A∗Gf

and write

f (x) =
m∑

l=1

gl vl(x).

Next, we apply the derivative of order p to the function f and obtain

dp

dxp
f (x) =

m∑
l=1

gl
dp

dxp
vl (x) .

In order to return to a representation in the original basis, we project the derivative dp

dxp vl (x) on functions ui ,

β
(p)

il =
∫

ui (x)
dp

dxp
vl (x)dx, i = 1,2, . . . ,n, l = 1,2, . . .m.

Denoting by B(p) the n × m matrix with entries β(p)

il , we obtain the coefficients of the pth derivative of function f in the 
original basis as

f(p) = G−1B(p)g

or

f(p) = G−1B(p)
(
A∗A

)−1 A∗Gf

and define the differentiation matrix as
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D(p) = G−1B(p)
(
A∗A

)−1 A∗G.

If the original basis u1, u2, . . . un is orthonormal, then G is the identity matrix and we have

D(p) = B(p)
(
A∗A

)−1 A∗. (11)

In our case the first basis consists of the multiwavelet scaling functions (a.k.a. the normalized Legendre polynomials or, 
alternatively, the normalized Lagrange interpolating polynomials) in the three adjacent intervals and the second basis is 
either that of splines or of band-limited functions on the combined three-box intervals.

3.1. Derivative operators using B-splines

As an auxiliary basis, a b-spline basis functions of order M are formed from piecewise polynomials of degree M − 1
and spans M + 1 knots. Derivatives up to order M − 2 are continuous across the domain. We employ N knots uniformly 
distributed over [−1, 2] (i.e., the union of the three boxes [−1, 0], [0, 1] and [1, 2]), with the location of the ith knot 
(i = 0, . . . , N − 1) given by xi = 3i

N−1 − 1. Using these knots we construct the full spline basis of order M , repeating knots 
as necessary at the end points. Associated with each end point there are M − 1 splines with repeated knots, and in the 
interior there are N − M splines without repeated knots. Thus, there is a total of N + M − 2 functions in the basis. The 
b-splines with support including the center region [0, 1] correspond to the cardinal splines, which have Fourier transform 
proportional to (sinc(ω))M−1. It is this property that provides the primary source of smoothing.

Choosing the b-spline basis to have the minimum order necessary such that the pth derivative results in splines of order 
k, we identify M = k + p. This choice is consistent with projection of the derivative back into the Legendre polynomial basis 
of order k, and is also the minimum order necessary to obtain non-zero approximations to the first or second derivatives 
when computing with the Haar (piecewise constant) basis. Furthermore, Theorem 2 of [42] establishes that, with this 
choice of M , there exists a b-spline approximation to an appropriately smooth function f (x) such that the error in the 
pth derivative of the approximation is O  

(
c(k, p)2−nk

)
, where n is the level of refinement in the dyadically-refined adaptive 

mesh so the box size at level n is O  
(
2−n

)
, and c(k, p) is some constant independent of n. This error, which is numerically 

verified in the results section, is of the same order as that of the projection of a smooth function into the order-k Legendre 
basis (6) and with that of the original derivative operator [3]. Remarkably, the pth derivative (p ≤ 2k) is exact if the input 
function f (x) is exactly a polynomial of degree k + p − 1 or less over the entire domain [−1, 2] despite the intermediate 
projection into the discontinuous scaling function basis that includes only polynomials up to degree k − 1 within each of 
the sub-intervals [−1, 0], [0, 1] and [1, 2]. This is due to the linear least-squares reproduction of the moments (expansion 
coefficients in the scaling function basis) having the exact expansion of the polynomial in the b-spline basis as its unique, 
zero-residual solution.

In this work we chose the number of knots N = k + 1 independent of p. The primary motivations for this are that it is 
again the minimum number necessary to construct first and second derivatives for the Haar basis, and for the first derivative 
(p = 1) this choice yields 2k degrees of freedom in the spline basis to be compared with 3k degrees of freedom in the input 
basis (i.e., the first k Legendre polynomials in each of the 3 boxes). Thus, there is additional smoothing resulting from the 
fitting to the lower dimension basis, which was thought to be desirable from the perspective of suppressing noise. Other 
choices are clearly feasible, however, this choice has proved satisfactory and limited experimentation did not identify any 
clearly superior choices.

3.2. Derivative operators using bandlimited exponentials

Instead of using b-splines as an auxiliary basis in the construction of smoothing derivative operators, we can use ban-
dlimited exponentials (which are not necessarily periodic on an interval). The reasons to use these functions instead of 
piece-wise polynomials are: first, it further clarifies our approach to constructing “non-native” derivative operators in mul-
tiwavelet bases and, second, the resulting operators have remarkable properties which we describe below. As a practical 
matter, the accuracy of the results obtained using such derivatives is similar to those obtained using b-splines.

Polynomial approximations have a long tradition in numerical analysis and lead, inter alia, to the notion of the order 
of convergence of numerical schemes. For smooth periodic functions a well known alternative is to use approximations 
via trigonometric polynomials (i.e., via a truncated Fourier series). For bandlimited non-periodic functions on an interval a 
natural basis is that of eigenfunctions of the band-and-time limiting operator introduced in a series of seminal papers by 
Slepian, Landau and Pollak, [41,27,28,37–40], where they observed that the eigenfunctions of such operator are the Prolate 
Spheroidal Wave Functions (PSWFs) of classical Mathematical Physics. Instead of using PSWFs directly (which is a possible 
choice), we use bandlimited exponentials constructed in [5,6] to provide us an approximate auxiliary basis.

We observe that while smooth periodic band-limited functions may be represented via a truncated Fourier series, the 
Fourier series is not efficient for band-limited but non-periodic functions on an interval. This motivates considering a linear 
space of functions admitting a representation via exponentials 

{
eibx

}
|b|≤c , x ∈ [−1,1],

Ec =
{

u∈L∞([−1,1]) | u(x) =
∑

akeicbkx : {ak} k∈Z∈l1, bk ∈ [−1,1]

}
,

k∈Z
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where c (bandlimit) is a fixed parameter (see [5,6]). We seek (an approximate) basis for this space. While PSWFs can serve 
this purpose, it is more convenient in our case to use a fixed set of exponentials 

{
eicθk x

}M
k=1 as described in the sequel.

The use of band-limited functions on an interval for integration and interpolation relies on quadratures constructed 
in [44,5,33].1 These Gaussian-type quadratures for bandlimited exponentials differ from the classical Gaussian quadratures 
for polynomials in that they are approximate. Indeed, with a finite number of nodes it is impossible to integrate exactly an 
infinite number of functions but, it turns out, that all functions Ec can be integrated within any finite user-selected accuracy 
ε . The generalized Gaussian quadratures for exponentials to integrate functions in Ec with accuracy ε are summarized as
(see [5,33,6])

Lemma. For c > 0 and any ε > 0, there exist a finite number of nodes −1 < θ1 < θ2 < · · · < θM < 1 and corresponding weights 
wk > 0, such that for any x ∈ [−1,1],∣∣∣∣∣∣

1∫
−1

eictx dt −
M∑

k=1

wkeicθkx

∣∣∣∣∣∣ < ε, (12)

where the number of nodes, M = c/π + O  (log c), is (nearly) optimal. The nodes and weights maintain the natural symmetry, θk =
−θM−k+1 and wk = w M−k+1 .

We note that the construction of quadratures in [5,33] is more general than formulated here and yields quadratures for 
band-limited exponentials integrated with a weight function.

We now describe interpolation in Ec . Given a finite accuracy ε , we seek to represent functions in Ec by a fixed set of 
exponentials 

{
eicθk x

}M
k=1, where M is as small as possible. It turns out (see [5]) that by finding quadrature nodes {θk} M

k=1 and 
weights {wk} M

k=1 for exponentials with bandlimit 2c and accuracy ε2, we in fact obtain an approximate basis to represent 
all exponentials in Ec with accuracy ε . As a basis, the set of exponentials 

{
eicθk x

}M
k=1 is similar to monomials (as well as to 

exponentials in the Fourier series), whereas the PSWFs are strikingly similar to orthogonal polynomials. While, as a general 
rule, it is preferable to work with orthogonal bases, since we use only the final result in constructing derivative operators, 
we work directly with the basis 

{
eicθk x

}M
k=1 and use extended precision to address ill-conditioning. Once the necessary 

matrices are computed one can use them in computations with the standard double precision. When building derivative 
operators using exponentials, it is more convenient to first split the interval [−1,1] into three subintervals, construct the 
operators on these subintervals, and then rescale the result to intervals [−1,0], [0,1] and [1,2] that have been used for 
b-splines.

Our first step is to expand the functions 
{

eicθk x
}M

k=1 on [−1,1] into the basis of the Legendre polynomials on intervals 
[−1,−1/3], [−1/3,1/3] and [1/3,1]. We denote the orthonormal scaling functions of a multiwavelet basis (i.e. normalized 
Legendre polynomials) on intervals [−1,−1/3], [−1/3,1/3] and [1/3,1] as 

{
φ−

i (x)
}i=k−1

i=0 , 
{
φc

i (x)
}i=k−1

i=0 and 
{
φ+

i (x)
}i=k−1

i=0 , 
and compute coefficients

A−
im =

−1/3∫
−1

eicθmxφ−
i (x)dx

Ac
im =

1/3∫
−1/3

eicθmxφc
i (x)dx,

and

A+
im =

1∫
1/3

eicθmxφ+
i (x)dx,

where i = 0, . . .k − 1 and m = 1, . . . , M . Following (9), we then merge these three matrices to form 3k × M matrix A =
{Aim} i=1,...,3k

m=1,...,M
, where 3k ≥ M . We choose the relation between the number of nodes M and the order of the basis k so that 

the basis functions 
{

eicθk x
}M

k=1 are approximated by the Legendre polynomials of degrees up to k − 1 on the sub-intervals 

1 These quadratures allow us to break with the conventional approach of using polynomials and lead to improvements in performance of algorithms 
for interpolation, estimation and solving partial differential equations (see e.g. [7,35,26,8]). The improvements have to do with being able to approach the 
Nyquist rate for bandlimited functions on the real line while working with bandlimited functions on an interval.
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Fig. 1. Density plot of three blocks of the derivative matrix for k = 16 with a resulting accuracy of approximately 10−7.

[−1,−1/3], [−1/3,1/3] and [1/3,1] with accuracy ε , where ε is the accuracy of representing exponentials in Ec via the 
basis functions.

Given a bandlimited (or approximately bandlimited) function in Ec ,

f (x) =
M∑

m=1

gmeicθmx, (13)

we denote the vector of its coefficients as g = {gm}M
m=1. Using matrix A, we obtain the coefficients of this function in the 

Legendre basis on the union of three subintervals as

f = Ag. (14)

Next we compute the derivative of f in (13) as

f ′ (x) = ic
M∑

m=1

gmθmeicθmx,

noting that the generalization to higher order derivatives is straightforward. Denoting by S the diagonal matrix,

S = ic diag (θ1, θ2, . . . θM) , (15)

we compute coefficients of the derivative in the Legendre basis as

f′ = ASg.

Since we want to map f directly into f′ , we estimate g from (14) by using the normal equation A∗Ag = A∗f,

f′ = AS
(
A∗A

)−1A∗Ag = AS
(
A∗A

)−1 A∗f.

The 3k × 3k derivative matrix is then

D = AS
(
A∗A

)−1 A∗, (16)

where (A∗A)−1 A∗ is the pseudo-inverse of A. All computations must be done with the extended precision to account for 
ill-conditioning of A but, once computed, the resulting matrix D can be used in the standard precision.

Remarkably, while the resulting matrix D is not anti-symmetric, its eigenvalues are either pure imaginary or zeros. 
Indeed, on its range matrix D is similar to S as it follows from (16). Extracting three middle blocks of the matrix D, each 
of them of size k × k, re-scaling them by the factor 2

3 , we obtain the derivative operator with smoothing by projection on 
bandlimited functions with the bandlimit 2

3 c. The factor 2
3 accounts for switching from the interval [−1,1] (of length 2) to 

the interval [−1,2] (of length 3) which we used in constructing spline-based projections.
The sub-matrices comprising the resulting derivative operator are illustrated in Fig. 1. There is no observed symmetry 

between or within the blocks and the off-diagonal blocks are not rank one as in the case of the multiwavelet derivative.
Similarly, the second derivative is constructed as

D2 = AS
(
A∗A

)−1 A∗AS
(
A∗A

)−1 A∗ = AS2 (
A∗A

)−1 A∗

and we use its three middle blocks. Again, we observe that the resulting 3k × 3k matrix D2 is not symmetric but has only 
negative or zero eigenvalues. Higher order derivatives are obtained in a similar manner (note that in (11) B(p) = ASp).

Since on its range matrix D is similar to S, the norm of the derivative operator Dp is controlled by the norm of Sp which 
does not exceed cp , where c is the bandlimit (15). As in [7,35,26], we thus avoid spurious eigenvalues that necessarily occur 
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Fig. 2. An example of a basis function, eicθ5 x , from the set {eicθk x
}M

k=1, where M = 25 displayed on the interval [−1,−1/3]. Such functions are approximated 
by a linear combination of the Legendre polynomials of degrees i = 0, . . .k − 1, where in 1 we used k = 16 (yielding accuracy ≈ 3 · 10−7).

when using polynomial bases. The choice of the bandlimit c depends on the order of the multiwavelet basis which in turn 
depends on the problem being solved and the desired accuracy.

As an example, we use basis 
{

eicθk x
}M

k=1, where M = 25, and the bandlimit c = 15.70796326794900 and display one of 
the functions, eicθ5x , on the interval [−1,−1/3] in Fig. 2. As scaling functions, we use the Legendre polynomials of degrees 
i = 0, . . .k − 1, where k = 16, approximating the basis 

{
eicθk x

}M
k=1 separately on the sub-intervals [−1,−1/3], [−1/3,1/3]

and [1/3,1] with accuracy ε ≈ 3 · 10−7. As described above, we create a 3k × 3k derivative matrix and then extract three 
k × k blocks to be used as the first derivative operator. These three 16 × 16 matrices are displayed in Fig. 1.

4. Demonstration and discussion

4.1. Point-wise errors

In Fig. 3, we examine the nature of local errors in the derivatives by repeated application of the first derivative operator 
to a 3D Gaussian and plotting along the x-axis the absolute error from the exact results. By varying the level at which the 
Gaussian is projected into the scaling function basis we explore from low accuracy and under sampling (level n = 4) to 
high accuracy and over sampling (n = 7). It is apparent how the original derivative operator amplifies the discontinuities at 
the edges of the sampling boxes (the computation is in the cube [−16, 16]3 so the boxes at level n have size 25−n), with 
repeated application to obtain higher derivatives magnifying this effect. Refinement also magnifies this defect in the original 
operator with an extra factor of about 2 with each level of refinement. To explain the main origin of this effect, consider the 
function (1 + erf(2nx))ε/2 which is a smooth approximation to a step discontinuity of height ε at scale n — its derivative at 
x = 0 is 2n/π . The maximum value of the derivative necessarily increases at finer scales in order to preserve the magnitude 
of its integral. The other two constructions greatly suppress the impact of these artifacts of the discontinuous basis. At 
low refinement (n = 4), the original first-derivative operator performs slightly better than the b-spline and BLE operators 
— presumably their filtering is discarding essential information in the high-frequencies, and since the BLE operator filters 
most strongly (see Fig. 9) it performs the least well. With increasing accuracy/refinement (n = 5, 6, 7), the original operator 
performs increasingly worse relative to the b-spline operator that is able to attain high precision. At intermediate refinement 
(n = 5), the b-spline and BLE operators behave similarly. However, at deeper refinement (n = 6, 7), the accuracy of the 
quadrature used in the construction of the BLE operator dominates the error (in this case around 10−9) since accuracy of 
computation is higher than that of the quadrature. While it is possible to construct a higher accuracy quadrature, it is not 
typical that we compute to greater than 10 significant digits.

In Fig. 4, using the same test 3D test function, for the b-spline and BLE constructions we contrast the size of local errors 
obtained by repeated application of the first derivative operator (

(
d

dx

)p
for p = 2, 3) with those from direct application of 

the high-order derivative operator ( dp

dxp ) constructed as described in Section 3. For the second derivative, repeated versus 
direct application have fairly comparable errors. However, for the third derivative (available for the b-spline only) it is 
apparent that repeated application at deeper refinement (or higher accuracy) has a significant advantage over the direct 
application. Both rules should have the same order accuracy (by construction in Section 3.1 and numerically demonstrated 
in Figs. 6 and 7), and we instead attribute this to the repeated application corresponding to a 7-box stencil and rather than 
just the 3-box stencil of the direct application.

4.2. Norm-wise properties and errors

The spectral norm of the three operators (largest singular value of the rectangular matrix representation) was computed 
as a function of k (Fig. 5). As expected, the norm of the original operator grows quadratically with k, whereas the other two 
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Fig. 3. For the original, b-spline and BLE constructions, the plot displays the absolute value of the error along the x-axis of the first, second and third 
derivatives w.r.t. x computed with repeated application of the first derivative operator applied in 3-dimensions to f (x, y, z) = (

π
2

)(3/2)
e−(x2+y2+z2) projected 

into the k=10 scaling function basis in the cube [−16, 16]3. Columns one, two and three correspond to the first, second and third derivatives, respectively. 
Rows one through four correspond to the test function being projected at levels 4 through 7, respectively.

grow only linearly with a near unit slope. Furthermore, examination of the right singular vector associated with the largest 
singular value of the original operator reveals a strong resemblance to a multiwavelet.

Figs. 6 and 7 demonstrate that we obtain the target order of accuracy and convergence. In Fig. 6, we demonstrate that 
for fixed k = 7 we obtain an error for all three b-spline derivatives that scales as O  

(
ωk

)
for small ω when applied to one 

of sin(ωx) or cos(ωx). In Fig. 7, we demonstrate that for fixed ω = 4.642 we obtain for application to sin(ωx) an error that 
asymptotically scales as O  

(
hk

)
for all three b-spline derivatives (including the error arising from projection).

All three first derivative operators are examined in Figs. 8 and 9 with application to sin(ωx) in the k = 7 basis. In Fig. 8, 
which should be compared with Fig. 6, we demonstrate that all three operators provide the expected scaling of the error 
with ω, and that the BLE and b-spline operators are more accurate than the original operators except at high ω or at low ω
(where the accuracy of the BLE operator is constrained by the chosen accuracy of the quadrature rule). We cannot strictly 
speak of the frequency response or Fourier transform of the operators because they are applied on a finite, non-periodic 
domain, however, in Fig. 9 we examine the magnification factor (essentially the norm of the result) for each operator applied 
to sin(ωx) as a function of ω. The large norm of the original operator is immediately apparent, as is the filtering properties 
of the other two operators, with the BLE construction filtering more strongly than the b-spline construction as already 
discussed above.

4.3. Kinetic energy in quantum mechanics

In non-relativistic quantum mechanics, the kinetic energy operator is essentially just the negative of the Laplacian. Thus, 
if the wave function describing the state is f (x), the energy is given by

−
∫

f (x)∗∇2 f (x)dx =
∫

(∇ f (x))† .∇ f (x)dx (17)

with the equality holding for periodic or free-space boundary conditions. Similar integrals arise in other settings, for instance 
as the stiffness matrix in finite element analysis. The weak (second) form is especially interesting because its error is 
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Fig. 4. For the second (BLE and b-spline) and third (b-spline) derivatives the plot contrasts the absolute value of the error obtained by either repeated ap-

plication of the first derivative (
(

d
dx

)p
for p = 2, 3) or direct application of the higher-order derivative operator ( dp

dxp ) constructed as described in Section 3. 
The error is plotted along the x-axis and the target function is the same as in Fig. 3. The first column displays the BLE second derivative, and the second 
and third columns display the b-spline second and third derivatives, respectively. Rows one through four correspond to the test function being projected at 
levels 4 through 7, respectively.

Fig. 5. For the original, b-spline and BLE 1st derivative operators the plot displays the spectral operator norms (maximum singular value) as a function of 
Legendre basis order (k). The points indicate the computed data and the lines are linear (b-spline and BLE) and quadratic (original) fits.

quadratic in the truncation threshold. This is the case for the 2-norm of any function in an orthonormal basis since the 
truncated component is orthogonal to that which is retained. However, only for the original derivative operator (a) does the 
equality numerically hold in (17) because only this operator is exactly antisymmetric, and (b) is truncation error the only 
error present since the other derivative operators introduce additional errors due to smoothing. Hence, the kinetic energy 
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Fig. 6. For the b-spline operator construction the plot displays as a function of ω the 2-norm of the errors over [0, 1] in the first and third derivatives of 
cos(ωx) and the second derivative of sin(ωx) with projection into the 3-box stencil over [−1, 2] using the k = 7 Legendre basis. The derivatives are all of 
the form ±ωp sin(ωx) (for p = 1, 2, 3) and the plotted error is scaled by ω−p . The trend line illustrates that the scaled error for all derivatives is O (ωk), as 
expected.

Fig. 7. 2-norm of the error over [0, 1] in the first, second and third derivatives using the b-spline operators of sin(4.642x) with projection into the 3-box 
stencil over [−1, 2] as a function of the order (k) of the Legendre basis. The trend line illustrates that the asymptotic error (arising from either projection 
or differentiation) is O (hk) as expected. The projection into the basis and computation of the derivative operators is done using 50 decimal digits in Maple, 
but the application of the operator and error computation is performed using standard double-precision arithmetic.

computed with the original operator enjoys quadratic convergence as we compute more accurately (in either a higher-
order basis or at finer scales), whereas the smoothing implicit in the other derivative operators introduces an additional 
discrepancy that may converge less rapidly with the truncation threshold.

4.4. Consistency of integral and derivative operators

The new derivative operators provide a significant improvement (Table 1) in the consistency between the numerical and 
formal calculus as measured by the norm of the commutator 

∥∥∥[
μ2 − ∇2,

(
μ2 − ∇2

)−1
]

f (x)
∥∥∥. As noted in the introduction, 

with the original operator, nominally equivalent expressions may have very different error properties that can affect both 
accuracy and convergence. While rooted in the intrinsically different properties of the differential operator (that amplifies 
high frequencies) and the integral operator (that damps high frequencies), numerical computation exacerbates the issue by 
(1) injecting noise due to finite precision computation (i.e., after application of an operator projection into the discontinuous 
basis truncation to the requested precision), and (2) the nonphysical norm of the original derivative operator. The new 
operators do not completely eliminate this concern, but substantially reduce the need to over sample and for any order 
basis typically enhance the consistency by a factor of 10 or more.
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Fig. 8. For the original, b-spline and BLE first-derivative operators the plot displays as a function of ω the 2-norm of the error over [0, 1] in the first 
derivative of sin(ωx) with projection into the 3-box stencil over [−1, 2] using the k = 7 Legendre basis. The figure illustrates that (1) all constructions 
provide O (ωk+2) error for intermediate/small ω; (2) with the BLE construction being limited by the quadrature error for very small ω; and (3) for large ω
the original construction is more accurate. The observed error is two orders smaller than in Fig. 6 above because the derivative here is ω cosωx, we have 
not scaled by ω−1, and the Taylor expansion of cosine contains only even powers.

Fig. 9. For the original, b-spline and BLE derivative operators the plot displays as a function of ω the magnification factor (‖D f ‖/ ‖ f ‖) for the first derivative 
of sin(ωx) with projection into the k = 7 Legendre basis.

4.5. Structure of nuclear matter

One application of MADNESS lies in nuclear astrophysics. Using Density Functional Theory calculations in the Hartree-
Fock approximation, MADNESS has been used to study nuclear pasta phases [34]. These are exotic shapes of nuclear matter 
that can exist in the crust of neutron stars and impact the stars’ thermal and magnetic evolution as well as their oscillations 
and deformations ([10] and references therein). In Hartree-Fock, the nucleon single particle states ψi,q,s with spin s, isospin 
q, mass mq , and energy Ei,q are subject to a mean-field potential Uq:(

−h̄2�/(2mq) + Uq

)
ψi,q,s = Ei,qψi,q,s. (18)

The potential can be described using Skyrme density functionals. For time-independent Hartree-Fock simulations of pasta 
phases with even numbers of neutrons and protons, it is given by:

Uq = b0ρ − b′
0ρq + b1τ − b′

1τq − b2�ρ + b′
2�ρq + b3

α + 2

3
ρα+1

−b′
3

2

3
ραρq − b′

3
α

3
ρα−1

(
ρ2

n + ρ2
p

)
− b4∇ · �J − b′

4∇ · �Jq (19)

−∇ · (b1ρ(�r) − b′
1ρq(�r)

)∇ + i∇b4ρ(�r) + b′ ρq(�r) · (�σ × ∇)
.
4
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Table 1
For each of the derivative operators, this table examines the errors in the 
commutator of the differential operator T̂ = μ2 − ∇2 (with μ = 1) and its 
inverse T̂ −1 f (r) = ∫ e−μ|r−r′ |

|r−r′ | f (r′)d3r′ . Here, f (r) = ( 10
π )3/2e−10r2

. The trun-

cation threshold was 10−8, and the 2-norm of f (r) is approximately 1.41698.

k Type ||T̂ T̂ −1 f − f ||2 ||T̂ −1 T̂ f − f ||2 || ˆ[T ,T̂ −1] f ||2
7 original 1.09E-03 3.50E-07 1.09E-03
9 original 2.42E-04 2.00E-07 2.42E-04
11 original 2.86E-05 1.70E-07 2.86E-05
13 original 1.05E-05 1.00E-08 1.05E-05
15 original 1.57E-06 4.44E-09 1.56E-06
7 b-spline 7.38E-05 3.50E-07 7.38E-05
9 b-spline 1.17E-05 1.90E-07 1.16E-05
11 b-spline 1.26E-06 1.06E-06 1.64E-06
13 b-spline 3.10E-07 2.10E-07 3.70E-07
15 b-spline 1.30E-07 2.00E-08 1.30E-07
7 BLE 6.03E-05 3.60E-07 6.03E-05
9 BLE 6.40E-06 1.90E-07 6.36E-06
11 BLE 8.54E-06 6.50E-07 8.58E-06
13 BLE 9.20E-07 1.35E-06 1.62E-06
15 BLE 1.70E-07 9.00E-08 1.80E-07

The above term consists of a local potential, a potential accounting for the effective nucleon mass and a spin-orbit po-
tential. For protons, Coulomb and Coulomb exchange potentials are also added. The neutron and proton number densities 
ρq , kinetic densities τq , and spin-orbit densities �Jq are determined from the single particle states. The parameters b j and b′

j
are specific to a given Skyrme force. To study nuclear pasta phases in their ground state, the Bogoliubov-Hartree-Fock (BHF) 
equations are solved iteratively for several hundred to several thousand nucleons. At each iteration step, Uq is recalculated 
and used to update and orthonormalize the single particle states (for details, see [34]). Nuclear pasta phases are usually 
evolved over several thousand iteration steps until convergence is reached. At the same time, the Skyrme potential strongly 
depends on the derivatives of the single particle states as well as 1st and 2nd derivatives of functions that are determined 
from the states, e.g. ρq . Due to the non-linear, iterative nature of the simulations, small numerical noise in the derivatives 
can easily impact the single particle states and lead to unphysical results or even complete failure of the simulation. Un-
satisfactory approaches to resolve this issue included computing to higher precision (which is expensive), damping or step 
restriction (which slows convergence), and Gaussian smoothing (which modifies the final result and must be removed before 
convergence). As shown in Fig. 10 for a BHF calculation on the O 16 nucleus, the new derivative operators completely resolve 
this problem. With all derivative operators, the solution exhibits a small cusp or discontinuity in the derivative at iteration 
28, but with the old operator the solution became unstable at iteration 29, despite already being very near convergence, 
and subsequently converged to a non-physical solution. However, both new operators converge uneventfully to the correct 
solution.

5. Conclusions

We have described a systematic approach for the construction of derivative operators by projecting to and from an inter-
mediate basis with the desired properties and forming the derivative in that basis. For multiwavelet bases this construction 
advances beyond prior work [3] by (1) providing a systematic approach to forming second and higher derivatives; (2) con-
trolling the amplification of high-frequency noise that inevitably arises in the use of these discontinuous, polynomial bases; 
and (3) enabling the generalization of the control of errors beyond that provided by the order of the polynomial basis and 
truncation threshold.

The construction was illustrated and its behavior analyzed for multiwavelet bases using both b-splines and bandlimited 
exponentials (BLE) as the intermediate basis. Both constructions showed high-order accuracy consistent with the order of 
the polynomial basis, linear increase in the spectral norm of the first derivative with the order of the polynomial basis, and 
strong suppression of high-frequency noise. However, the two operators also provide complementary properties that make 
each potentially valuable in different circumstances, as does the original operator:

• B-spline construction: the derivative operators are exact for polynomials (continuous over the input 3-box domain) up to 
the chosen order. This property makes it straightforward to construct operators that are consistent with the application’s 
independent selection of polynomial order and truncation error, and hence to preserve the ability to use either h- or 
p-refinement to compute to any desired precision. In addition to high precision this also facilitates construction of 
low-order rules. The spectra of the operators are in general complex and are not consistent with those of the exact 
derivatives. Automatic construction of the b-spline operators is straightforward inside a tool such as Maple/Mathematica, 
facilitating application in other settings. So far only the central difference operator has been constructed.

• BLE construction: the underlying exponential basis results in derivative operators (with domain and range over the 3-
box domain) having purely real/imaginary spectra consistent with those of the exact derivatives. Since the underlying 
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Fig. 10. For each derivative operator, the figure displays the Laplacian of the nuclear density at three iterations in the solution of the BHF equations for 
the O 16 nucleus as described in Section 4.5. At iteration 28, the solution is nearly converged with a residual on the order of 10−5 for all three derivative 
operators, but visible is a small discontinuity in the first derivative for the computation. At iteration 29, the original operator yields a non-physical solution 
with a higher residual of 10−3. By iteration 50 the solution with all three operators has converged but only the BLE and b-spline solutions agree with 
higher accuracy computations.

quadrature was constructed to be accurate to a specified threshold for all polynomials up to the chosen order, the error 
in the derivative operators is also similarly controlled — i.e., the expected order of approximation is obtained down to 
some finite error controlled by the accuracy of the quadrature. As a benefit of abandoning zero error at zero frequency, 
the BLE construction yields a slightly better error in the derivatives compared to that of the b-spline over a large range 
of frequencies until the stronger filtering of the BLE construction dominates the error. The construction of the BLE 
operators is much more complex than that of the b-splines and is presently not fully automated. Again, only the central 
difference operator has been constructed.

• Original construction: this is only feasible for the first derivative, and by construction the operator is antisymmetric and 
therefore has a purely imaginary spectrum. However, the spectral norm of the operator grows quadratically with the or-
der of the polynomial, and the singular vectors corresponding to the largest singular values strongly resemble wavelets; 
hence, the original operator greatly amplifies the noise intrinsic to computation in the multiwavelet basis. The construc-
tion of the operator is straightforward with standard double-precision arithmetic, with central and forward/backward 
differences and also Dirichlet or Neumann boundary conditions [3].

We demonstrated the properties, advantages and limitations of the new derivative operators in several settings. In a nuclear 
quantum physics test case that involved the Laplacian of the density in the Hamiltonian, the new operators were both 
able to produce physically-correct solutions even when computing to low accuracy within MADNESS, whereas the original 
derivative operator failed except at higher accuracy which is computationally more expensive. The norm of the commutator 
of a differential operator and its numerical inverse as realized within MADNESS (convolution with separated representations 
of the corresponding Green’s function) when applied to a test function was observed to be significantly smaller using the 
new derivative operators. Future work includes constructing integral operators that are optimally consistent with these new 
derivative operators.
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