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A B S T R A C T

We present for the first time real-space, arbitrarily-accurate representations of the operators required for up to
second-order Douglas-Kroll-Hess (DKH), a model for constructing quasi-relativistic electronic Hamiltonians. The
approach can be extended to other operator-based quasi-relativistic models. The representations are in the form
of sums of Gaussian functions with positive coefficients and thus enable efficient and numerically-accurate
formulations using conventional Gaussian basis sets or other bases such as multiwavelets. The operators are
demonstrated with application to hydrogen-like systems using the relativistic-kinematic and first-order DKH
Hamiltonians.

1. Introduction

Accounting for the effects of special relativity is required to achieve
high accuracy for all elements across the periodic table, and even
qualitative accuracy for heavier elements [1]. The difficulty in doing so
comes in finding an efficient and stable way to solve the Dirac equation,
where solutions are 4-component complex-valued functions. Due to the
nature of the spectrum of the Dirac Hamiltonian, a common approach is
to decouple the equations into a 2-component formalism that solves
only for the electronic (positive energy) states [2–5]. However, the
operators necessary in this decoupling are typically formulated in mo-
mentum space, while most practical computations employ real-space
numerical methods. Our motivation for finding real-space representa-
tions of the operators involved in these decoupling formalisms came
from the development of relativistic quantum chemical methods using
multiwavelet bases [6], where the common approach [7] of using
matrix projections cannot be used. Specifically, the large size of mul-
tiwavelet bases (typically thousands of functions per electron compared
with tens per electron for mainstream atom-centered bases) makes
forming and manipulating matrix representations of operators prohi-
bitive for practical calculations, and motivates us to use an approxi-
mately-decoupled operator with an explicit real-space representation. It
is for this reason that we have developed arbitrarily-accurate re-
presentations of the operators required for up to second-order Douglass-
Kroll-Hess (DKH), a model for constructing quasi-relativistic Hamilto-
nians [2,7]. The approach can be extended to other operator-based
quasi-relativistic models. The new real-space representation of the op-
erators are also relevant to mainstream atom-centered basis sets that

typically employ Gaussian expansions for radial components by elim-
inating one source of basis set incompleteness — this is discussed fur-
ther below.

We give a brief introduction into 2-component methods in Section
1.1 and the steps necessary to extend this approach in the multiwavelet
basis in Section 1.2. Because of the properties of the basis set used, the
DKH decoupling scheme is the focus of this paper, and thus most at-
tention is given to the DKH formalism in Section 1.1, with only a brief
mention of other methods.

1.1. 2-Component Theory

We review the 4-component Dirac Hamiltonian and describe current
approaches to its decoupling. We only state formulas that will be used
later in the paper. For more detailed descriptions of the various 2-
component methods, see the original papers in [2–5] and reviews in
[8–10].

The relativistic single-particle Dirac-Coulomb Hamiltonian is given
by

= + +αh c βmc Vp· ,d
2 (1)

where c is the speed of light in atomic units, p is the 3-component
vector of linear momentum operators = − ∂

∂p iℏi xi
, = −V Z r/ is the nu-

clear potential function for a single atom (as will be the case for all
calculations in this work, though many-nucleus systems are possible),
and the matrices α α,1 2, α3, and β are defined by the standard re-
presentation as
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The four-component eigenfunctions ψ of the Dirac Hamiltonian are
often written as

= ⎡
⎣⎢

⎤
⎦⎥

ψ
ψ
ψ

,L

S (4)

where ψL and ψS are the “large” and the “small” components. The
components are named for the fact that, when considering positive-
energy states, the norm of the former outstrips the norm of the latter by
a factor of approximately c. These solutions are of interest in chemistry
because positive energy states correspond to possible electronic states,
whereas negative energy states describe positrons. This motivates the
decoupling of the equation in order to form a 2-component system that
can fully describe the electronic states.

Decoupling of the one-electron Dirac Hamiltonian is achieved in a
variety of ways. A recent popular approach due to Kutzelnigg and Liu
[5] works directly with the matrix form of the operator to numerically
decouple the different states within the chosen basis to numerical
precision. This built upon similar approaches from Dyall [11,12] and
Barysz and Sadlej [3] that instead start with the matrix projection of a
transformed Hamiltonian. Predating these are methods which form
matrices from an approximately-decoupled operator [13,2] (with no
numerical decoupling step), such as the DKH method.

The DKH decoupling applies a series of unitary transformations to
the Dirac Hamiltonian that successively reduce the order of the off-
diagonal blocks in powers of V. The first of these transformations is
necessarily the free-particle Foldy-Wouthuysen transformation, re-
sulting in the first-order DKH Hamiltonian (DKH1), given by
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� = + σ σA V P VP Ap p( ( · ) ( · )) (6)

�= − + = − + + σ σh E p mc E p mc A V P VP Ap p( ) ( ) ( ( · ) ( · )) ,DKH1 0
2

0
2

(7)

where σ is the vector of σ matrices, and with the following operators

= +E p p c m c( ) ,0
2 2 2 4 (8)

= + −P p c E p mc( ) ( ( ) ) ,0
2 1 (9)

=
+

A p
E p mc

E p
( )

( )
2 ( )

,0
2

0 (10)

and

= −σ σO p AP VA AVP Ap p( ) ( · ) ( · )1 (11)

with =p p‖ ‖2 .
In (5) the rest energy term mc2 has been subtracted from the diag-

onal so that the resulting energies can be more readily compared to
their non-relativistic counterparts. The off-diagonal term O1, represents
the remaining coupling between the large and small components, and is
neglected in the first-order DKH scheme. The second transformation,
leading to the DKH2 Hamiltonian, eliminates O1, generating the next
block-diagonal terms as well as O2, an off-diagonal block that is second-
order in the potential. The details of the derivation can be found in [7].
The resulting Hamiltonian is given by:

= + +h h W O O W1
2

( ),DKH DKH2 1 1 1 1 1 (12)

with integral operator W1:
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where we note that the nuclear potential is also an integral operator in
momentum space.

A final operator to consider is the so-called “relativistic kinematics”
Hamiltonian given by

= − +h E mc V .RK 0
2 (14)

Although this Hamiltonian is not sufficiently accurate for quantum
chemical calculations, it is used in this paper to aid in verification.

One may notice that the operators described above are expressed as
functions of momentum, whereas most quantum chemical calculations
use real-space basis functions (typically atom-centered linear combi-
nations or contractions of Gaussian functions). The common approach,
first described by Hess [7] is to diagonalize the selected uncontracted
basis to form approximate eigenfunctions of the p2 operator. Matrix
elements in the basis of these approximate eigenfunctions have simple
expressions, and the solution of the resulting matrix equations can be
transformed back to give a representation in the original basis. Van
Wüllen [14] identifies three sources of error in this approach: the basis
set truncation error, error in the resolution of the identity from trans-
formation of the basis set (for second- and higher-order DKH Ha-
miltonians), and error in computing with a basis set of approximate
eigenfunctions of p2. The diagonalization of the uncontracted basis set
under p2 suffers from ill-conditioning due to the exceptionally wide
range in the magnitudes of exponents used in Gaussian basis sets for
heavy atoms. The approach in this paper looks to alleviate the mo-
mentum space error and sidestep the ill-conditioned diagonalization by
giving a method of applying these operators in real-space. This is ac-
complished in Section 2.

1.2. Integral equation approach for application in the multiresolution basis

Details of multiresolution multiwavelet bases and their application
to quantum chemistry calculations can be found in [15,16] and refer-
ences therein. Briefly, wavefunctions are represented in an adaptively-
refined basis set of piecewise Legendre polynomials. The discontinuous
nature of the basis functions and the number of coefficients in said basis
make traditional matrix operator approaches intractable. Additionally,
in this basis the application of the kinetic energy operator is ill-condi-
tioned. Consequently, the integral form of the equations, rather than
the differential form, is solved. Rearrangement of the DKH1 eigenvalue
equation yields, for eigenfunction ψ and eigenvalue ∊,

− − ∊ = − + α αE p mc ψ A V P VP ψp p( ( ) ) ( ( · ) ( · )) .0
2 (15)

We solve this equation by first constructing the inverse of the operator
on the left. Defining it as E ,

= ∊ =
− − ∊

E p ε
E p mc

( , ) 1
( )

,
0

2 (16)

we construct its representation in real space as well.
Application of the operator in (16) to both sides of (15) yields an

equation that we solve by fixed-point iteration to obtain the eigen-
function.

= − ∊ ++ α αψ E p A V P VP ψp p( , )( ( ( · ) ( · )) )i i i1 (17)

At each iteration i, an estimate for the energy is calculated using

∊ =
〈 〉

〈 〉
ψ h ψ

ψ ψ
.i

i DKH i

i i

1

(18)

Application of E0 in (18) is achieved by first applying the non-re-
lativistic kinetic energy operator, and then applying a correction op-
erator,
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where the operator T is defined as
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Thus to compute in multiwavelet bases, the two additional operators E
and T are required as well as those normally prescribed by Eq. (7).

Note that all of these momentum-space operators are smooth at the
origin (their first derivatives vanish there) and for large p decay to their
asymptotic values as −O p( )1 , and hence we can anticipate that their
real-space representations will behave as −O r( )2 near the origin and will
decay exponentially at long range. In prior work [15,17,18,6], we have
developed several approaches to construct accurate and efficient re-
presentations of such functions (notably Green’s functions of physically-
relevant operators) as linear combinations of exponentials or Gaussians.
Such representations have made practical the use of multiwavelet bases
for simulation of electronic [6] and nuclear systems [19], and are also
used in other real-space codes [20].

2. Derivation of representations

Our goal is to represent relativistic integral operators via a linear
combination of Gaussian convolution operators with as few terms as
possible with controlled accuracy, similar to the approach in e.g.
[6,18,21]. The relativistic operators are defined in momentum space as
multiplication operators by a radial function and, using appropriate
identities, we construct their integral representations via Gaussians. We
then proceed to either (i) discretize integral representations in mo-
mentum space to obtain a linear combination of Gaussians and then use
the Fourier transform to obtain Gaussian convolutions in the real space
or (ii) analytically transform integral identities into real space and
discretize them after such transformation. While it may appear that
these steps should commute, we note that the ranges of validity and the
behavior of the error (other than the L2-norm error) differ under the
Fourier transform and, therefore, the resulting expansions depend on
the chosen order of steps.

We consider four relativistic operators given in (20), (10), (16), and

= +
+−P p A p c E p mc

E p mc
E p

( ) ( ) ( ( ) )
( )
2 ( )

.0
2 1 0

2

0 (21)

We note that P (Eq. (9)) only differs from T (Eq. (20)) by multi-
plication by a scalar.

2.1. Relevant identities and forms

We use two integral identities in order to generate the Gaussian
expansion of the operator kernels,
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(see [18] for the derivation details and for proof that the approxima-
tions based upon numerical quadrature of (24) maintain uniform re-
lative error as stated in (89).

We also recall that the 3D Fourier transform of a spherically sym-
metric function f r( ) (with =r r‖ ‖ and =p p‖ ‖) is given by

∫=
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and the inverse Fourier transform by
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where the Fourier transform is defined as
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2.2. Representation of operator T

Theorem 1. Operator T has an integral representation
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where =a mc. Combining integral identities
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obtained from (24), where we set =x s and = +y p a2 2 , we obtain

∫ ∫
+ +

= ⎛
⎝

⎞
⎠−∞

∞ ∞ − − − + +−a
p a a

a s
π

e e ds e dt2 2
2

.s e as p a e t
2 2 0

/4 ( ) 1
2

t t2 2 2

(34)

Since

∫ = −
∞ − − − − −−s

π
e e ds

π
e ae ae

2
1 erfc( ),s e as t a e t t

0
/4 3

2 /2t t2 2

(35)

where

∫= − = − −z
π

e dterfc( ) 1 erf(z) 1 2 ,
z t

0

2

(36)

is the complimentary error function, we obtain (28) and (29). The
weight w t( , 1) is illustrated in Fig. 1. Computing the Fourier transform
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t t
3
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we obtain spatial representation of T in (30). □

Discretizing this integral and applying the inverse Fourier transform
to the result, we obtain a spatial representation of the operator T r( ) via
a linear combination of Gaussians. Alternatively, we can construct an
approximation via a linear combination of Gaussians using (30).
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2.2.1. Spatial singularity of T
To ascertain the behavior of T r( ) near the singularity, we consider

the weight function in (30) as the parameter → ∞t . Evaluating con-
tributions from the two terms in (30), we observe that

∫ =
−∞

∞ − − +−a
π

e e dt
π

a
r

K ar a
π r2

2 2 ( )~2 2 1 .e r a e t1
4

2
1 2

t t2 2

(38)

Since →−aeerfc( ) 1t/2 as → ∞t , for the second term in (30), we have
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a weaker singularity at =x‖ ‖ 0. This is expected since
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for large p.

2.3. Representation of operator E

Theorem 2. Operator E with ∊ < 0, has an integral representation
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Combining (51) and (53) with weights (52) and (54), we arrive at (41)
and (42). The scaling property of the weight is verified directly:
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On taking the Fourier transform in (41), we obtain (43).

2.3.1. Spatial singularity of E
We consider the weight function in (44) as the parameter → ∞t and

obtain

Fig. 1. Weight w t( , 1) in the integral representation of T p( ) in (28).
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As a result, the behavior of the kernel near the spatial singularity is
estimated as
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2.4. Representation of operator A
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where Γ is the gamma function. Spatial representation of A is then
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where the first term is (up to a factor) the identity operator and for the
second term we have

∑

∑

∫=

=

= − + + …

∼

=

∞

−∞
∞ − − +

=

∞
− −

−

− −

( )
( )

A r e dt

a ar

a K ar
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2 K ( )

( ) ,

a
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α
j

a r e e t
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α
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j
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j
j

π
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ar π

4
1
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3

1
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3 1
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( ) 2
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( )
( )

1
16 0

j t t j

j

3 1
4

2 2 3
2

1 1/2
1/2 (62)

where =a mc. □

Proof. We have

= +
+

A p a
r a

( ) 1
2

1 ,
2 2 (63)

where =a mc. We note that for ≠p‖ ‖ 0,

=
+

=
+

<u a
r a

1

1
1

r
a

2 2 2
2 (64)

so that

∑+ = +
=

∞

u α u1 1 ,
j

j
j

1 (65)

where

=
− +( )

α π

j j2Γ 1 !
.j 1

2 (66)

We have

∑= +
⎛
⎝

+ ⎞
⎠

=

∞

A p α( ) 1
2

1
2

1

1
,

j
j

p
a

j
1 2

2 (67)

apply (22) with =α j and arrive at

∫∑= +
=

∞

−∞

∞ −⎛

⎝
⎜ + ⎞

⎠
⎟ −−

A p
α
j

e dt( ) 1
2
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2 Γ( /2)j

j
p
a

e j t

1

1 2
t

2

2

(68)

and the result. On taking the Fourier transform we arrive at the spatial
representation of A p( ) (61) and (62). The weight in (60) is illustrated in
Fig. 2.

2.4.1. Spatial singularity of A
Using (62), we obtain that

∼A r C
r

( )~ 1
2 2 (69)

near the singularity, where C2 is a constant. Again, this is expected since

�+ + −A p a
p

p( )~ 1
2 2 2

( ).2

(70)

2.5. Representation of operator P A

Theorem 4. Operator P A has an integral representation

∫=
−∞

∞ − −
P p A p e w t dt( ) ( ) ( ) ,

p
a

e t
2

2
(71)

with the weight

∑=
∼

− −
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e
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2 Γ
,e t

j

j
j

j t1
2

0
1

2

2
t

(72)

where Γ is the gamma function and

=
−

∼

( )
α π

j jΓ !
.j 1

2 (73)

Spatial representation of P A is then

∫= ∼
−∞

∞ −P A r e w t dt( ) ( )e a r1
4

t 2 2

(74)

⎜ ⎟= ⎛
⎝

− ⎛
⎝

⎞
⎠

+ …⎞
⎠

a
π ar

ar
ar

ar1 K ( ) 1
2 2

1 K ( ) ,2
1

1/2

1/2
(75)

where

∑=
∼

∼ − +
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4 Γ
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j
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(76)

Proof. We have

Fig. 2. Weight w t( )0 in the integral representation of A p( ) in (60).
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where =a mc and

=
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1
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p
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Expanding into series at =u 0,
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=

∞

u α u(1 ) ,
j

j
j1/2

0 (79)
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∼
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we obtain
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Next, applying (22) with = +α j 1, we arrive at

∫∑=
∼
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∞
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yielding the representation. In the real space we have

�
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3
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and obtain the weight (76) We can rewrite (74) using the Bessel
functions,
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so that we have (75). □

2.5.1. Spatial singularity of P A
We note that the weight of the second term in (74) simplifies as

→ ∞t and we have the integral

∫
−∞

∞ − − +−P A r C e e dt C
r

( )~ ~ 1 ,a r e e t
1

1
4 2 2

t t2 2

(85)

where C1 and C2 are constants. This is expected since

�+ −P A p
p

p( )~ 1
2

( ).2

(86)

2.6. Efficient accommodation of fine scales

The operators with kernels that behave as � −r( )2 near the origin in
real space (due to the slow asymptotic decay as −p 1 in Fourier space)
require a significantly larger number of fine length scales in their re-
presentation than operators behaving as � −r( 1) near the origin. As an
example, let us consider the radial kernel < <−r α d, 0α , where

= ∑ =r xl
d

l1
2 and dimension =d 3 is of immediate interest. We con-

sider applying this operator to compactly supported functions which,

for simplicity, are rescaled to have support inside the box
= −D [ 1/2 2 , 1/2 2 ]d. For ∈ Dx , we want to compute

� �
∫ ∫

∫

⎜ ⎟

⎜ ⎟

= − = ⎛
⎝
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Tf f d f d
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x z x z z y x y y

y x y y
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,

α α

B
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d d

1 (87)

where Br denotes the ball of radius r centered at =y 0. We replace the
kernel by its approximation via Gaussians constructed to be accurate in
the interval ⩽ ≤δ r 1,

∑= ⎛

⎝
⎜

⎞

⎠
⎟ =

= +

−G r G r M N h h
α

e e( ) ; , ,
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n M

N
hαn e r

1

/2 hn 2

(88)

and estimate the resulting error. At issue is the impact of approximation
(88) in the region ⩽ <r δ0 , which in contrast with the kernel, has no
singularity at =r 0. The following estimate is demonstrated in [18,
Theorem 12].

Theorem 5. Let < <α d0 and

− ⩽ ∊− −r G r r| ( )|α
F

α (89)

be an approximation of the kernel by Gaussians valid for ⩽ ≤δ r 1. Then,
for any bounded, compactly supported function f in D and ∈x D, we have

∫ ∫⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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B
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B F
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1 1

(90)

where =−ω π d2 /Γ( /2)d
d

1
/2 is the surface area of the unit sphere in �d.

This estimate shows that for operators whose kernels behave as
� −r( )2 near the origin ∊δ~ , whereas for kernels behaving near the
origin as � −r( )1 ∊δ~ . This is why we need expansions that are accu-
rate to very high momenta corresponding to small length scales that are
otherwise not physically relevant. However, application of these ex-
pansions can be simplified to reduce their contribution to the overall
computational cost.

Consider convolving a Gaussian = −( )g τ τxx( , ) exp( )τ
π

3/2 2 with a
large exponent τ with some function f x( ) that on the length scale of the
Gaussian is smooth. We have

�
∫ =g τ dx x( , ) 13 and

�

�
∑

∫

∫
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= + + …
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( ) ( , ‖ ‖)
i
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2
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3
( ) 2
i

3

2

2 3
(91)

The first term in the error can be bounded
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2
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2

2

2

2 (92)

and the subsequent terms are � −τ( )2 .
Given representation of the kernel via Gaussians g τ x( , )j , e.g. (88),

we select a sufficiently large =τ τmax and all Gaussian terms with the
exponent ⩾τ τmax are replaced by the identity operator scaled by the
sum of the coefficients of these terms. In the context of relativistic
electronic structure calculations employing a Gaussian atomic basis set
the largest exponent in the operator (τmax) could be chosen to be
somewhat larger than the largest exponent in the atomic basis. Simi-
larly, if employing a finite nucleus model or with a numerical grid with
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a finite resolution then either the physics or numerics define a finest
length scale (δx) and we can pick ≫ −τ δxmax

2 . If the basis is capable of
representing the singular form of the (quasi-) relativistic wave functions
then it is still feasible to employ an untruncated real-space operator
since the number of terms only grows logarithmically with either the
desired accuracy or finest length scale.

Finally, instead of handling the identity operator explicitly (by
adding the appropriate multiple of the input function to the result), we
instead combine all coefficients of terms with ⩾τ τmax as the coefficient
of the Gaussian with largest exponent τmax. The benefits of this are
making application of these operators consistent with other operators,
and thus incorporating into the operator a filter with a bandlimit im-
plied by the choice of finest length scale. This latter characteristic is of
specific benefit in controlling high-frequencies when computing with
near singular solutions in the discontinuous multiwavelet basis.
Consideration of the coefficients of the normalized Gaussians also en-
ables pruning terms with small norm-wise contribution, though this was
not done in any of the numerical tests below.

2.7. Outline of DKH2 approach

In the second-order case, we must in addition represent W1 (Eq.
(13)). Obtaining its separated representation is simplified if we re-
present the denominator using (23) as

∫+ ′
= − + ′ − −

−∞

∞

E E
E E t t dt

p p
p p1

( ) ( )
exp( ( ( ) ( ))exp( ) ) ,o

0 0
0

(93)

which can be approximated via numerical quadrature to maintain

∑
+ ′

− ⩽ ∊
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− − − ′− −

E E
e e e
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M
t e E e Ep p

0 0 1
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0 0

(94)

leading to

∑′ − − ′ ′

− ′ ⩽ ∊
− ′

=

− − − ′− −
W e e A p P P A p e V

C

p p p p p

p
p p

( , ) ( )( ( ) ( )) ( ) (

)
‖ ‖

.

m

M
t e E e E

ext
p p

1

( ) ( )m
tm tm

0 0

(95)

While accurate with the techniques outlined above, applying
+W O O W1 1 1 1 using the above formulation requires M24 operator ap-

plications, where M is the number of quadrature points, even when
accounting for commutativity of operators where possible. This is im-
practically expensive in the intended context of computation with the
multiwavelet basis, and therefore is not explored further here.

3. Demonstration and discussion

3.1. Real-space form of the operators

Using the expansions, it is possible for the first time to see the kernel
of each operator plotted in real space as shown in Fig. 3. Near the
origin, all operators exhibit the anticipated −O r( )2 singularity and at
long range (i.e. ≫ −r c 1) exhibit exponential decay.

In Fig. 4, we plot both E and its long-range asymptotic form, which
is the nonrelativistic Green’s function = − −g r ε e πr( , ) /(4 )ε r2 . For both
E and g, the parameter ∊ is taken to be − 0.5000066566, the analytic
ground state energy for the Dirac hydrogen atom. It is again apparent
that the asymptotic form starts to dominate for ≫ −r c 1.

3.2. Accuracy demonstration

Given the desired range of validity of each operator, three para-
meters must be chosen to construct each expansion in real space: the
upper and lower bounds of the quadrature points used in the approx-
imation of the integrals over t, and the number of quadrature points to

be used. For the calculations below, each of the operators was in-
tegrated from = −t 5 to =t 105, using 450 points. These values were
chosen to converge the value of each operator to the 16th significant
digit from = −r 10 16 to where the operators become exponentially small
in real space, where we maintain an absolute error of −O (10 )16 . Lower
accuracy, but more compact, representations can be obtained by re-
ducing the number of quadrature points. Infinite sums present in A and
P A were evaluated by turning them into finite sums via an approx-
imation with exponentials as described in Section 2, using methods
presented in [17,18], but similar results can be achieved using a Padè
summation technique to approximate the infinite sums.

Since the analytic form of the operators in real space is not known,
there is no straightforward comparison that can be made to verify the
accuracy of the real-space expansions presented in Section 2. It is for
this reason that we present three indirect accuracy checks. As an initial
check for accuracy, each expansion was integrated over all 3D space.
For each, the result matches the analytic value, evaluated using the
momentum-space representation at the origin, to a relative accuracy of

−O (10 )17 . Second, for each operator, we verified the leading coefficient
in its asymptotic expansion, and in each case the result matched that
shown in Section 2 to a relative error of −O (10 )15 . Finally, we take the
Fourier transform of the real-space expansions, and compare these with
the known momentum-space analytic forms. As an example, below are
plots of the absolute and relative error for P (see Fig. 5).

Fig. 3. Real-space plot of the operators required for first-order Douglas-Kroll-
Hess theory. All operators have −O r( )2 singularities at the origin and decay
exponentially past approximately c1/ , which can be understood from looking at
their Fourier-space representations.

Fig. 4. Real-space plot of the operator E , and its non-relativistic counterpart,
the bound-state Helmholtz Green’s function. ∊ = −0.5000066566. E also has an

−O r( )2 singularity at the origin, and at long distance coincides with the non-
relativistic Green’s function.
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3.3. Application

Finally, the expansions were tested for various hydrogen-like sys-
tems using both the RK and DKH1 Hamiltonians, in both the multi-
resolution basis and an even-tempered Gaussian basis set. Results are
shown in Tables 1 and 2.The Gaussian basis sets used 200 even-tem-
pered exponents ranging from −Z ·102 3 to Z ·102 25, where Z is the charge
of the point nucleus. Numerical results suggest that the results using the
Gaussian basis are converged to all digits presented. For the multi-
resolution calculations, the user must set the number of mother scaling
functions used to construct the basis as well as the desired refinement

threshold[22]. For these parameters we used 10 and −10 8, respectively.
All calculations use the value =c 137.0359895 [23] for consistency
when comparing with literature [24].

4. Conclusions

For the first time, real-space, arbitrarily-accurate representations for
first- and second-order Douglas-Kroll-Hess operators have been pre-
sented. Each representation is written as a sum of Gaussian functions
with positive coefficients, and we note that this approach should be
applicable to other operator-based quasi-relativistic models. The real-
space construction allows for application of these operators to real-
space functions, such as atom-centered Gaussians or multiwavelets,
circumventing the need to compute using approximate eigenfunctions
of p2. The use was demonstrated in ground-state calculations of hy-
drogen-like systems using the relativistic-kinematic and first-order DKH
Hamiltonians. Extension of this method to higher order terms leads to
prohibitively expensive calculations in the multiwavelet basis due to
the high number of operator applications, but in a basis of atom-cen-
tered Gaussians such an extension this should be tractable due to the
analytic evaluation of the integrals involved.
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