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ABSTRACT
We report the first fully numerical approach for relativistic quantum chemical calculations applicable to molecules. The approach uses an
adaptive basis of multiwavelet functions to solve the full four-component Dirac-Coulomb equation to a user-specified accuracy. The accuracy
of the code is demonstrated by comparison with ground state energy calculations of atoms performed in GRASP, and the applicability to
molecules is shown via ground state calculations of some simple molecules, including water analogs up to H2Po. In the case of molecules,
comparison is made with Gaussian basis set calculations in DIRAC.
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I. INTRODUCTION

Quantum chemistry, in principle, enables accurate calculations
of molecular properties, but for higher accuracy calculations, espe-
cially those involving heavier atoms, one must take into account
the effects of special relativity.1 There has been success in adapt-
ing existing basis-set methods to handle the effects of special rela-
tivity, but these come with the same weaknesses of nonrelativistic
basis-set calculations, i.e., poor scaling with respect to number of
basis functions, and the large number of linear dependencies when
calculating with large basis sets.2 Additionally, basis sets for rela-
tivistic calculations must be chosen and contracted even more care-
fully to maintain the correct relation between the large and small
components to avoid variational collapse.3 Fully numerical codes
exist, but only for atoms4 or small molecules of high symmetry.5–7

MADNESS8 provides the first fully numerical relativistic code that
can be applied to general molecules, and this paper details the imple-
mentation and initial results. In Sec. I A, we briefly review the Dirac
equation and the integral equation approach. A brief description of
the multiwavelet basis used by MADNESS is given in Sec. I B. In
Sec. II, we give the details of our calculations, and we present results
in Sec. III. In Sec. IV, we make some concluding remarks and discuss
future directions.

A. Dirac-Fock
The relativistic Dirac-Fock equation is given by

(hd + V + J − K)φi = εiφi, (1)

hd = c α ⋅ p + βmc2, (2)

Jφj = φj(r)∑
i
∫

φ∗i (r′)φi(r′)
∣r − r′∣

dr′, (3)

Kφj = φi(r′)∑
i
∫

φ∗i (r′)φj(r′)
∣r − r′∣

dr′. (4)

Here, c = 137.035 989 5 is the speed of light in atomic units,
taken from Ref. 9, m is the rest mass of the electron (unity in atomic
units), and p is the 3-component vector of linear momentum opera-
tors pi = −i ∂

∂xi
. V is the external potential. The matrices αk and β are

given by

αk = [
0 σk
σk 0

] β = [
I2 0
0 −I2

],
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σ1 = [
0 1
1 0
] σ2 = [

0 −i
i 0

] σ3 = [
1 0
0 −1

],

where In is the identity matrix of dimension n. Solutions to Eq. (1)
are complex-valued 4-component functions and can describe both
electronic (positive energy) and positronic (negative energy) states.
Methods exist to transform the Dirac equation such that one must
only solve a two-component problem for the electronic states.
Good reviews of these methods exist, for example, Refs. 10 and
11. Although it is possible to use MADNESS in the context of a
two-component formalism, the computational cost is prohibitive
for practical calculations as discussed in Ref. 12. Therefore, in
this paper, we concern ourselves only with the full 4-component
Hamiltonian.

The adaptive multiwavelet basis (to be described in Sec. I B) in
MADNESS is not band-limited, so solving Eq. (1) by forming the
equivalent matrix eigenvalue problem in the space of basis functions
would amplify high frequency noise in the calculation of the matrix
elements. For this reason, the integral equation is solved instead by
using the associated Green’s function. This method has been suc-
cessfully applied in the nonrelativistic case,13 and we extend it to the
relativistic case here. Rearranging (1) and application of the matrix
Green’s function associated with the free-particle Dirac equation
gives

(hd − εi)φi(r) = (K − J − V)φi(r), (5)
φi = Gi(r) ∗ [(K − J − V)φi(r)]. (6)

Above, the ∗ represents convolution of the two operands. Gi is
the matrix Green’s function for the operator on the left-hand side of
Eq. (5), i.e., Gi solves

(hd − εi)Gi(r) = δ(r)I4. (7)

Its form, provided with proof in Ref. 14, is

Gi(r) =
1

2mc2 [hd + εi]gi(r), (8)

gi(r) =
e−μi ∣r∣

4π∣r∣
, (9)

μi =

√
m2c4 − ε2

i

mc2 . (10)

Note that the form of Eqs. (8)–(10) changes if the relativis-
tic Hamiltonian used subtracts the rest energy from the standard
expression for the relativistic energy of the electron.

B. Multiwavelets
MADNESS employs an adaptively refined multiwavelet basis to

represent functions and operators. A detailed description of the mul-
tiwavelet basis can be found in Ref. 15, and a brief summary is given
here in one dimension, with the extension to multiple dimensions
being straightforward. Functions are initially projected into a basis
of scaled and shifted Legendre polynomials ϕnil. In one dimension
and on the interval (0, 1),

ϕi(x) = {
√

2i + 1Pi(2x − 1) x ∈ (0, 1)
0 else,

(11)

ϕnil = 2
n
2 ϕi(2nx − l), (12)

where i = 0, 1, . . ., k − 1 ranges over the Legendre polynomials
Pi, n = 0, 1, . . . indicates the level of refinement, and l = 0, 1, . . .,
2n − 1 indexes the subinterval. These scaling functions are orthonor-
mal for a fixed n and form a complete basis in the limit n →∞ for
a given value of k. The condition for ending refinement is checked
using the wavelet coefficients in the following way: For any n, let Vn
be the space of all scaling functions at the nth level of refinement.
This space is a subspace of Vn+1. Put another way,

V0 ⊂ V1 ⊂ V2 ⊂ ⋯. (13)

The space Wn is defined as the complement of Vn in Vn+1.
Then, another way to write Vn+1 is

Vn+1 ≡ V0 ⊕W0 ⊕W1 ⊕⋯⊕Wn. (14)

This space Wn is spanned by a set of multiwavelets that can be
constructed from the functions spanning Vn+1 (Ref. 15). By this con-
struction, the wavelet basis functions are mutually orthogonal across
all refinement levels and orthogonal to all scaling functions at the
same and coarser levels. The resulting vanishing moments of these
functions mean that functions that are smooth (as many physically
relevant integral operators are) have sparse representations in the
multiwavelet basis.

By the relationship shown in Eq. (14), the projection of some
function in Wn can be seen as the error in representing the said
function in Vn as opposed to Vn+1. Thus, the wavelet basis coeffi-
cients provide a measure of when refinement can be stopped, and
adaptivity is achieved by repeating this treatment individually for
each subinterval. Through this method of refinement, any finite
but arbitrary bound on the 2-norm of the error in the function
representation can be enforced.13,15

Because the basis functions are discontinuous, derivative oper-
ators in the multiwavelet basis do not exist in the traditional sense.
However, one can construct transition matrices for the derivative in
the weak form, as is done in Ref. 15. Derivatives constructed in this
manner will be used to apply the directional derivatives present in
hd of Eq. (8). Straightforward application of integral operators over
more than one dimension is prohibitively expensive in the multi-
wavelet basis. Therefore, efficient application of integral operators
in this basis requires constructing separated representations. Here,
this is accomplished for the integral operator necessary in applying
Gi by representing the bound-state Helmholtz Green’s function as a
sum of Gaussians via numerical integration of the following relation,
as is done in Ref. 13:

e−μr

r
=

2
√
π ∫

∞

−∞
e−r

2e2s−μ2e−2s+sds (15)

for μ ≥ 0. In the case μ = 0, Eq. (15) gives the Coulomb operator,
which is required in application of the J and K operators. One key
feature of MADNESS is the ability to represent a function either in
the basis of scaling functions or in the “compressed” form of scal-
ing functions and multiwavelets. Transformation between the two
representations is fast and unitary, giving MADNESS the ability to
quickly and accurately switch to the representation best suited to
each operation.
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II. METHODS
Equation (6) leads to a method of iterating a function repre-

sented in the multiwavelet basis to convergence. Letting n represent
the calculation iteration, we have

φn+1
i = Gn

i (r) ∗ [(K − J − V)φ
n
i (r)], (16)

εni =
⟨φn

i ∣hd + J − K + V ∣φn
i ⟩

⟨φn
i ∣φn

i ⟩
. (17)

This iteration is motivated by the successful application of a
similar one for nonrelativistic quantum Monte Carlo calculations by
Kalos16 and the subsequent extension to the multiwavelet basis by
Harrison et al.13 Here, we extend it to the relativistic case.

It is worth noting that there are three different possibili-
ties for application of the Green’s function [Eq. (8)]. Given some
4-component wavefunction ϕ(r), the convolution with G can be
written as (omitting subscripts for brevity)

G ∗ ϕ =
1

2mc2 (ϕ ∗ ([hd + ε]g))

=
1

2mc2 [hd + ε](ϕ ∗ g)

=
1

2mc2 (([hd + ε]ϕ) ∗ g)).

The three different formulations are analytically equivalent;
however, there is a computational trade-off. The first formulation
is numerically preferable due to the error-smoothing effect of the
integral operators, as long as care is taken when constructing the
derivative of g. However, the second method is considerably faster,
due largely to the low cost of applying a derivative operator com-
pared to an integral operator, and any loss of precision has been
observed to be negligible for the systems studied here. Therefore,
in all MADNESS calculations reported, the second method has been
used. The third formulation has not been studied but is included for
completeness.

Starting guesses are generated from a nonrelativistic Hartree-
Fock routine, either generated by MADNESS’s own or generated
by NWChem17 and then projected into the multiwavelet basis. For
a spin-restricted orbital, one nonrelativistic spatial function (here,
represented with the single-valued function φnr) generates two start-
ing guesses, each representing one electron, in the following way:
Two values for the large component are chosen as

φl = [
φnr

0
] or φl = [

0
φnr
], (18)

and in each case, the small component is initialized as

φs =
1
2c
σ ⋅ pφl (19)

in order to maintain the correct nonrelativistic relationship between
the large and small components. For a spin-unrestricted orbital, each
nonrelativistic spatial function instead only generates one starting
guess. It should be noted that in practice, to prevent loss of accuracy
by frequent multiplication of c, the small component is stored and
computed with cφs and is rescaled by c−1 as needed for computation
of properties.

Following construction of the initial guess function, the overall
algorithm for the ground-state energy calculation emulates that in
Ref. 13 and involves the following:

1. Computation of the Fock matrix in the space of occupied
orbitals.

2. Diagonalization of the Fock matrix in the space of occupied
orbitals and transformation of the occupied orbitals, as well as
exchange orbitals, into the eigenbasis.

3. Convolution with the Green’s function [Eq. (8)].
4. Application of the Krylov-Accelerated Inexact Newton (KAIN)

solver.18

5. Orthogonalization of the orbitals.
6. Application of exchange, Coulomb, and nuclear potential

operators for the next iteration. Calculation of updated orbital
energy.

Some notes on implementation: The ordering of the above
algorithm implies that the result of applying the potential to each
initial guess orbital has been computed before iterating. In addition,
because the KAIN solver requires a consistent history of orbitals,
arbitrary phases as well as rotations within degenerate eigenspaces,
introduced by the eigensolver used in the diagonalization step, must
be removed.

All calculations were performed without spatial or time-
reversal symmetry, meaning the code computes with one (four-
component) wavefunction in 3D-space for each electron.

III. RESULTS
In MADNESS, the user may select the number of scaling func-

tions (derived from Legendre polynomials) to use in each refined
interval (defined with k) as well as the tolerance (enforced on the
2-norm of the error in the function) for refinement. All MADNESS
calculations reported in this paper used k = 8 and a tolerance of 10−6.
An internal parameter determines whether the refinement tolerance
is enforced on a function itself or on both the function and its first
derivative. While the latter setting does increase the accuracy of cal-
culation, it also substantially increases the memory requirement of
the computation. Therefore, for these calculations, this parameter
was left at the former setting.

Tables I and II show the results of Dirac-Fock calculations on
atoms and molecules, respectively. In the case of atoms, compar-
isons are to GRASP4 code calculations from the literature (Ref. 9),
and both codes use a Fermi nuclear charge distribution model.9 Note
that the potential due to a Fermi nuclear charge model has no ana-
lytic form. Instead, the nuclear charge distribution is projected into
the multiwavelet basis, and application of the Coulomb operator
[Eq. (15) for μ = 0] yields the potential.

In the case of molecules, comparison is to the DIRAC rela-
tivistic quantum chemistry package19 using the built-in all-electron
double-, triple-, and quadruple-zeta basis sets of Dyall20–22 with
⟨SS|SS⟩ integrals computed explicitly, and both codes instead use
a Gaussian nuclear charge distribution model.9 All numbers (both
atomic and molecular) reported are rounded at the 5th decimal
place. The MADNESS Dirac-Fock code was able to reproduce the
total energies calculated by GRASP to at least six significant dig-
its. For molecules, MADNESS was able to obtain energies similar
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TABLE I. Comparison of MADNESS and GRASP Dirac-Fock ground state energy calculations for atoms.

Atom MADNESS GRASP Error Relative error

Be −14.575 89 −14.575 89 −9.7× 10−7 6.7× 10−8

Ne −128.691 94 −128.691 93 −8.9× 10−6 6.9× 10−8

Mg −199.935 09 −199.935 07 −2.1× 10−5 1.1× 10−7

Ar −528.683 80 −528.683 76 −3.6× 10−5 6.8× 10−8

Ca −679.710 20 −679.710 16 −3.9× 10−5 5.7× 10−8

Zn −1 794.613 01 −1 794.612 97 −3.1× 10−5 1.7× 10−8

Kr −2 788.860 65 −2 788.860 58 6.8× 10−5 2.4× 10−8

Sr −3 178.079 90 −3 178.079 91 8.1× 10−6 −2.5× 10−9

Cd −5 593.318 96 −5 593.318 45 −5.1× 10−4 9.2× 10−8

Xe −7 446.894 75 −7 446.894 39 −3.6× 10−4 4.9× 10−8

Ba −8 135.643 61 −8 135.643 58 −2.9× 10−5 −3.6× 10−9

Yb −14 067.664 61 −14 067.666 91 2.3× 10−3 −1.6× 10−7

Hg −19 648.850 95 −19 648.858 22 7.3× 10−3 −3.7× 10−7

Rn −23 602.012 58 −23 602.023 31 1.1× 10−2 −4.5× 10−7

TABLE II. Comparison of MADNESS and DIRAC Dirac-Fock ground state energy calculations for molecules.

Molecule ae2z ae3z ae4z MADNESS

HF −100.151 91 −100.162 04 −100.163 04 −100.163 18
N2 −109.041 90 −109.057 43 −109.059 20 −109.059 40
BH3 −26.405 18 −26.409 48 −26.409 93 −26.410 00
H2O −76.111 24 −76.122 01 −76.123 27 −76.123 45
H2S −399.819 30 −399.837 96 −399.838 93 −399.839 02
H2Se −2 429.753 03 −2 429.794 62 −2 429.795 71 −2 429.795 72
H2Te −6 794.858 30 −6 794.876 55 −6 794.877 33 −6 794.877 04
H2Po −22 232.156 69 −22 232.176 86 −22 232.178 07 −22 232.175 91

to the corresponding DIRAC basis-set calculations; however, direct
comparison between the fully numerical MADNESS results and the
basis-set DIRAC results is not straightforward due to the possibility
of prolapse.23,24

To give the reader an idea of the scale of a MADNESS Dirac-
Fock calculation, we describe the calculation of the ground state of
Rn. In this case, each orbital is represented with a total of O(106)
coefficients across all four components. The maximum depth of the
refinement tree over all orbitals is 18 levels. With an interval of
computation of [−50, 50]3 atomic units, the smallest box for which
coefficients are computed has a side length of 2−18

≈ 3.8 × 10−4,
which is approximately the scale at which the nuclear charge distri-
bution becomes smooth. All MADNESS calculations were run using
16 nodes with 40 Intel Skylake cores per node (2.1 GHz). The average
time per iteration for the Rn calculation was about 627 s.

A detailed cost comparison between codes is omitted, as this
study merely seeks to demonstrate accuracy, and the MADNESS
Dirac-Fock code is currently lacking many potential optimizations.
However, a few statements can be made about the multiwavelet
code: The number of iterations required for convergence increases
with the charge of the nucleus. We suspect that this is due to the

nonrelativistic solution being a poor initial guess for those sys-
tems with highly charged nuclei. Analytically, the cost per iteration
scales quadratically with respect to the number of electrons; how-
ever, the systems reported in this paper are not large enough to see
the asymptotic scaling.

The MADNESS Dirac-Fock code maintains relative errors con-
sistent with the truncation threshold, as shown in Table I. The
desired accuracy is a parameter selected by the user, and the com-
putational cost increases accordingly.

IV. CONCLUSIONS
For the first time, a fully numerical approach to four-

component relativistic quantum chemistry calculations for general
molecules has been described and demonstrated. In this approach,
the single-particle Dirac Green’s function is used to form an inte-
gral equation that can be iterated to solution. The said iteration is
accomplished in the multiresolution multiwavelet basis via the soft-
ware package MADNESS. The accuracy of this method is demon-
strated through Dirac-Hartree-Fock calculations of the ground state
energies of several atoms and molecules, with comparisons made
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to GRASP and DIRAC. While this approach is unlikely to replace
grid-based calculations for atoms in the near future, to the best of
our knowledge it is the only fully numerical approach for general
molecules.
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