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Abstract We describe a new method for numerical integration, dubbed bandlimited collo-
cation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits
to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses gen-
eralized Gaussian quadratures for bandlimited functions. This new method allows us to use
significantly fewer force function evaluations than explicit Runge–Kutta schemes. In partic-
ular, we use a low-fidelity force model for most of the iterations, thus minimizing the number
of high-fidelity force model evaluations. We also investigate the dense output capability of
the new scheme, quantifying its accuracy for Earth orbits. We demonstrate that this numerical
integration technique is faster than explicit methods of Dormand and Prince 5(4) and 8(7),
Runge–Kutta–Fehlberg 7(8), and approaches the efficiency of the 8th-order Gauss–Jackson
multistep method. We anticipate a significant acceleration of the scheme in a multiprocessor
environment.
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1 Introduction

We present a new numerical integration technique, developed by Beylkin and Sand-
berg at the University of Colorado (Beylkin and Sandberg 2014; Beylkin and Monzón
2002), and compare its performance in propagating orbits to existing techniques com-
monly used in Astrodynamics. The new scheme, dubbed the bandlimited collocation implicit
Runge–Kutta (BLC-IRK) method, is an Implicit Runge–Kutta (IRK) collocation scheme
which uses generalized Gaussian quadratures for bandlimited exponentials rather than the
classical quadratures for orthogonal polynomials. We note that IRK methods have been
constructed for a variety of polynomial based quadratures, such as Gauss–Legendre, Gauss–
Lobatto, and Chebyshev (e.g., see discussions in Jones and Anderson 2012; Iserles 2009;
Hairer et al. 2002). Among polynomial based IRK collocation schemes, only the scheme
based on Gauss–Legendre quadratures achieves the highest order of approximation, is A-
stable, and symplectic. The new BLC-IRK scheme is also A-stable and symplectic, achieves
any user-selected accuracy and, in addition, allows one to use a large number of nodes within
each time interval without the penalty of excessive node concentration near the endpoints of
the interval. The properties of BLC-IRK scheme significantly affect the approach to using it
in Astrodynamics.

Motivated by the need to improve the computational performance of existing schemes as
the number of objects to be tracked orbiting Earth is expected to increase significantly in the
near future, we compare the performance of the new scheme with the traditional methods used
in Astrodynamics. The growing cloud of spent rocket bodies, defunct satellites, and other
debris in Earth orbit is a serious threat to our use of space, particularly in densely populated
low-Earth orbits and the orbits within the geosynchronous belt. In 2005, NORAD tracked
about 10,000 objects and close approaches were already a common occurrence, taking place
hundreds of times each week (Kelso and Alfano 2005). Currently, the public space catalog
consists of between 15,000 objects1 and 17,000 objects2 in Earth orbit that are at least
10 centimeters in diameter. Although conjunction assessment for the entire space catalog
is manageable at this time, it will become difficult in the near future. In part, the expected
difficulty is due to the planned improvements in sensing and computation capabilities. These
new capabilities are anticipated to increase the space catalog to hundreds of thousands,
making the current method for performing orbit determination and conjunction assessment
challenging. Since orbit determination and propagation take up a majority of the computation
time, faster numerical integration techniques are considered necessary. Furthermore, fast
integrators may be used for tracking and propagation of asteroids and can also aid Monte
Carlo analyses used in research and mission design (Parcher and Whiffen 2011).

Recently, IRK methods have received a lot of attention for use in orbit and uncertainty
propagation, mainly due to the fact that these methods can be parallelized and have improved
stability properties when compared to the traditional methods (Barrio et al. 1999; Jones
and Anderson 2012; Jones 2012; Bradley et al. 2012; Bai 2010; Bai and Junkins 2011a;
Aristoff and Poore 2012; Aristoff et al. 2012, 2014; Herman et al. 2013). Specifically, Gauss–
Legendre implicit Runge–Kutta (GL-IRK) is symplectic, A-stable, B-stable, and has been
shown to outperform explicit Runge–Kutta (ERK) methods for both orbit propagation and
uncertainty propagation (Jones 2012; Aristoff and Poore 2012; Aristoff et al. 2012, 2014).
Similarly, BLC-IRK is both symplectic and A-stable (see Beylkin and Sandberg 2014 for
details). Collocation methods have also been used for boundary value problems in trajectory

1 Based on bulk TLE data sets from Space-Track.org in March of 2013.
2 Based on NASA Orbital Debris Quarterly News, Vol. 18, Issue 1, January 2014.
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Runge–Kutta integration for Astrodynamics 145

design and optimization (Herman and Conway 1996, 1998; Betts and Erb 2003; Ozimek et
al. 2009, 2010; Grebow et al. 2010, 2011; Bai and Junkins 2011b, 2012). Another method
for parallelized evaluation of the force model, dubbed Modified Chebyshev–Picard Iteration
(MCPI), uses the Gauss–Lobatto–Chebyshev nodes in an algorithm similar to collocation
(Bai 2010; Bai and Junkins 2011a).

While a Runge–Kutta scheme with the Gauss–Legendre nodes provides an excellent dis-
cretization of a system of ordinary differential equations (ODEs), using a large number of
nodes per time interval is not advisable. The reason is that the nodes of the Gauss–Legendre
quadratures (as well as any other polynomial-based Gaussian quadratures) accumulate rapidly
towards the end points of the interval. For such quadratures, the ratio of the distances between
the nodes near the end of the interval and those in the middle, is asymptotically inversely
proportionate to their number. This behavior effectively puts an upper limit on useful step
size and the number of nodes, since computations become increasingly wasted near time
interval boundaries as the number of nodes increases. On the other hand, the node accumu-
lation of the generalized Gaussian quadratures for bandlimited functions is moderate and
the ratio of distances is asymptotically a constant that depends only on the desired accuracy
(further discussion may be found in Beylkin and Sandberg 2014). The consequence of this
fact is that the solution may be sought on a large time interval using a large number of nodes.
Since BLC-IRK is parallelizable at the node level, using more nodes can improve the speed
of the implementation if multiple processors are used. Additionally, the use of generalized
Gaussian nodes for bandlimited functions minimizes the total number of nodes required to
achieve a given accuracy (Beylkin and Sandberg 2014; Beylkin and Monzón 2002). The
implementation of BLC-IRK for this paper takes advantage of speed improvements during
force model evaluation. We reduce the computational cost associated with iteration at each
node by employing a low-fidelity force model for a majority of the required force evaluations.
Forms of this technique used in Jones (2012) and Aristoff et al. (2014) have shown to vastly
improve performance when applied to a GL-IRK scheme (see also Beylkin and Sandberg
2014).

Unlike the classical Gaussian quadratures for polynomials which integrate exactly a sub-
space of polynomials up to a fixed degree, the Gaussian type quadratures for exponentials in
Beylkin and Monzón (2002) use a finite set of nodes to integrate an infinite set of functions,
namely,

{
eibx

}
|b|≤c on the interval |x | ≤ 1. While there is no way to accomplish this exactly,

these quadratures are constructed so that all exponentials with |b| ≤ c are integrated with
accuracy of at least ε, where ε is arbitrarily small but finite. We note that if the accuracy ε is
chosen to be around 10−16, such quadratures are effectively exact within the double precision
of machine arithmetic.

The class of functions well approximated by the bandlimited exponentials
{
eibx

}
|b|≤c

includes functions with the support of the Fourier transform restricted to the interval [−c, c].
A basis for such bandlimited functions was constructed in a series of seminal papers (Slepian
and Pollak 1961; Landau and Pollak 1961, 1962; Slepian 1964, 1965, 1978, 1983) the goal
of which was to optimize (simultaneously) the localization of functions in the space and
Fourier domains. These papers showed that the time-limiting and band-limiting integral oper-
ator commutes with the differential operator whose eigenfunctions are the so-called Prolate
Spheroidal Wave Functions (PSWFs) of classical mathematical physics, i.e., the integral and
differential operators share the eigenfunctions. In spite of the importance of bandlimited
functions, efficient quadratures for integrating and interpolating them were constructed only
recently (Beylkin and Monzón 2002; Xiao et al. 2001). These quadratures are essential for
using bandlimited functions in numerical analysis and, in particular, in the BLC-IRK method.
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146 B. K. Bradley et al.

The intent of this paper is to provide a mathematical overview of the new BLC-IRK inte-
gration scheme and compare its efficiency in orbit propagation with other more commonly
used techniques. We start by outlining the framework of implicit Runge–Kutta collocation
based methods and describe the details of the new scheme. We then consider the advantages
of the new framework, the required input parameters, and then compare them to other integra-
tion techniques. Three orbit types are used to compare results of four numerical integration
techniques (frequently used in the Astrodynamics community): Runge–Kutta–Fehlberg 7(8),
Dormand–Prince 8(7), Dormand–Prince 5(4), and an 8th-order Gauss–Jackson. A low-Earth
orbit, Molniya orbit, and geostationary orbit are propagated for 3 revolutions using a 70×70
gravity field and lunisolar perturbations. The dense output capability of BLC-IRK is then
detailed and we conclude with a summary of the results and recommended future work.

2 Mathematical overview

This section details the mathematical techniques of the new BLC-IRK method as well as the
basics of implicit Runge–Kutta and collocation methods to put the new scheme into context.
We consider the initial value problem (IVP) for an ODE

y′ = f (t, y), y(0) = y0, t ≥ 0. (1)

The solution y at some time h can then be written as a Picard integral

y(h) = y0 +
h∫

0

f (s, y(s))ds. (2)

Runge–Kutta methods are based on using quadratures for discretization of the integral in
Eq. 2.

2.1 Runge–Kutta methods

While ERK are commonly used in Astrodynamics problems, the use of IRK methods is still
infrequent. Runge–Kutta methods use M stages (nodes) within a time interval to solve Eq. 2
above. The basic form of Runge–Kutta methods uses quadratures to integrate from time t = 0
to time t = h as

y(h) = y0 + h
M∑

j=1

w j f (hτ j , y(hτ j )), τ ∈ [0, 1] (3)

with weights {w j }M
j=1 and nodes {τ j }M

j=1. Using ξ i to denote values of the solution at the
nodes y(hτ j ), we have

ξ i = y0 + h
M∑

j=1

Si j f (hτ j , ξ j ), (4)

where S is the integration matrix (Iserles 2009), and find y(h) as

y(h) = y0 + h
M∑

j=1

w j f (hτ j , ξ j ). (5)
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Runge–Kutta integration for Astrodynamics 147

The quadrature nodes {τ j }M
j=1, weights {w j }M

j=1, and entries of the integration matrix Si j are
typically displayed in a Butcher tableau,

τ S
wT (6)

which expands to

τ1 S1,1 · · · S1,M

τ2 S2,1 · · · S2,M
...

...
...

τM SM,1 · · · SM,M

w1 · · · wM

(7)

We use τ , w, and S, for representing nodes, weights, and the integration matrix and note that
the variables c, b, and A have also been used for this purpose in the literature.

In ERK methods, the integration matrix is lower triangular, Si j = 0 for j ≥ i , and,
consequently, such methods are explicit. In IRK methods, the set of nonlinear equations in
Eq. 4 has to be solved on each time interval. Several techniques are available, such as fixed-
point or Newton iterations (Iserles 2009; Atkinson et al. 2009). The advantages, disadvan-
tages, and implementation of each method are discussed in Jones and Anderson (2012),
Hairer et al. (1993, 2002), and Hairer and Wanner (1996).

Historically, IRK methods have been used sparingly in Astrodynamics due to the additional
computations required to iteratively solve for the values of the solution at the nodes y(hτ j )

and the fact that ERK methods are simple to code, well-documented, and include several
adaptive step methods. Advances in computational power and changes in computer archi-
tecture, however, have evened out the computational cost of explicit and implicit schemes.
IRK methods lend themselves to multi-core computers and graphics processing units (GPUs)
since, within a single iteration, the force model evaluation f may be performed simultane-
ously at all nodes. We refer to Jones and Anderson (2012) for a summary of methods and
references on this topic specific to Astrodynamics.

We note that in the traditional use of Runge–Kutta methods the time interval (or step size),
h, is small, typically between 15 and 60 seconds for orbit propagation. In the new method,
the time interval does not have to be small since the number of nodes, M , may be selected to
be large.

2.2 Collocation IRK

Among IRK methods of particular interest are those based on collocation. Consider the
polynomial, u(t), matching the solution at the nodes,

u(0) = y0

u̇(hτ j ) = f (hτ j , u(hτ j ))
(8)

where y(hτ j ) = u(hτ j ), j = 1, . . . , M . As demonstrated in e.g., Iserles (2009), this for-
mulation leads to an IRK method. Introducing Lagrange interpolating polynomials {L j (τ )}
with nodes {τ j }M

j=1, we approximate f to a given accuracy ε on [0, h],
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148 B. K. Bradley et al.

‖ f (hτ, y(hτ)) −
M∑

j=1

f (hτ j , y(hτ j ))L j (τ )‖ ≤ ε, τ ∈ [0, 1]. (9)

Equation 2 is then rewritten using Eq. 9 as

y(hτ i ) = y0 + h
M∑

j=1

f (hτ j , y(hτ j ))

τi∫

0

L j (s)ds, i = 1, . . . , M (10)

or

y(hτ i ) = y0 + h
M∑

j=1

Si j f (hτ j , y(hτ j )) (11)

where Si j = ∫ τi
0 L j (s)ds are the entries of the integration matrix. We use M quadrature

nodes such that

y(h) = y0 + h
M∑

j=1

w j f (hτ j , y(hτ j )) (12)

yields the solution at time t = h and, thus, Eqs. 11 and 12 form a collocation IRK scheme.
The most commonly used polynomial-based quadratures are Gauss–Legendre (Butcher

1964) and Gauss–Lobatto, although the use of Chebyshev quadratures (Barrio et al. 1999;
Bai 2010; Bai and Junkins 2011a) has captured some attention in Astrodynamics recently.
We note that only the Gauss–Legendre quadratures yield symplectic, A-stable IRK schemes
with the maximum order 2M , where M is the number of stages (nodes).

2.3 New scheme: BLC-IRK

Polynomial-based quadrature has a long history of use due to tradition, ease of use, and
node/order optimality (Jones and Anderson 2012; Iserles 2009). Polynomial-based quadra-
tures are constructed so that

1∫

−1

f (x)W (x)dx =
M∑

j=1

w j f (τ j ), (13)

for all polynomials f less than some fixed degree. Here W (x) ≥ 0 is the weight, τ j are
quadrature nodes, and w j are quadrature weights. Given a fixed number of nodes, M , the
classical Gaussian quadratures maximize the degree of polynomials for which Eq. 13 is exact.
We note that Gauss–Legendre quadratures correspond to the weight W (x) = 1 whereas
Chebyshev quadratures correspond to the weight W (x) = 1/

√
1 − x2.

The new scheme described in this paper is a collocation IRK method that uses gener-
alized Gaussian quadratures for bandlimited exponentials instead of polynomials (Beylkin
and Sandberg 2014). Consult Beylkin and Monzón (2002) and Xiao et al. (2001) for the
development of generalized Gaussian quadratures for exponentials. These quadratures are
constructed so that

∣
∣
∣
∣

1∫

−1

e2ict x W (t)dt −
M∑

j=1

w j e
2icτ j x

∣
∣
∣
∣ < ε2, x, τ j ∈ [−1, 1] (14)
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Runge–Kutta integration for Astrodynamics 149

for the user-selected accuracy ε > 0, bandlimit 2c > 0, and weights w j > 0. The nodes
τ j and weights w j depend on the bandlimit and accuracy. In the BLC-IRK method the
weight W (t) = 1 and the nodes correspond to the zeros of discrete prolate spheroidal wave
functions (DPSWFs) (Slepian 1978). As it is traditional, generalized Gaussian quadratures
are constructed on the interval [−1, 1] although we use them on [0, 1] (with the appropriate
linear transformation).

Beylkin and Monzón (2002) show that by finding quadrature nodes for exponentials with
bandlimit 2c and accuracy ε2, we can generate an interpolating basis for bandlimited functions
with bandlimit c and accuracy ε. These interpolating basis functions are defined as

R j (x) =
M∑

l=1

r jl e
icτl x (15)

for j = 1, . . . , M with

r jl =
M∑

k=1

w j�k(τ j )
1

ηk
�k(τl)wl , (16)

where the matrix �k(τl) is obtained by solving an algebraic eigenvalue problem,

M∑

l=1

wl e
icτlτm �k(τl) = ηk�k(τm), k, m = 1, . . . , M. (17)

Following Beylkin and Monzón (2002), accurate approximations to the first M PSWFs are
then defined as

�k(τ ) = 1

ηk

M∑

l=1

wl�k(τl)e
icτlτ , k = 1, . . . , M. (18)

Given interpolating basis functions R j (s), the elements of the integration matrix for BLC-
IRK are then computed as

Si j =
τi∫

0

R j (s)ds. (19)

We note that in Beylkin and Sandberg (2014), the construction of interpolating functions
and integration matrix is modified in order to assure that the resulting BLC-IRK method is
symplectic.

The quadratures for exponentials offer certain advantages over polynomial-based quadra-
tures. It is well known that the nodes of polynomial-based quadratures cluster significantly
towards the ends of each interval as the number of nodes increases (a simple heuristic expla-
nation is that polynomials can grow rapidly toward the end points of an interval causing high
node concentration). Nodes of quadratures for exponentials, however, do not accumulate as
rapidly at the endpoints.

Typically only a small number of nodes of polynomial-based quadratures are used in
IRK methods to avoid oversampling at the interval boundaries (e.g., 2–4 nodes). Following
Beylkin and Sandberg (2005), we define a ratio

r(M, ε) = τ2 − τ1

τ�M/2	 − τ�M/2	−1
, (20)

123



150 B. K. Bradley et al.

Fig. 1 Comparison of node
accumulation for exponential and
polynomial-based quadratures. a
Generalized Gaussian quadrature
for bandlimited exponentials with
different interpolation accuracies.
Marker dots indicate values for
quadratures used in this study. b
Polynomial-based quadratures.
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to represent the extent of node accumulation near the interval endpoints. Since the distance
between nodes decreases monotonically towards the end of the interval, Eq. 20 yields a
quantitative comparison of node accumulation property. The ratio is the distance between
two nodes closest to the interval edge divided by the distance between two nodes in the
middle of the interval. Figure 1 displays the behavior of the ratio as a function of the number
of nodes for polynomial-based quadratures and quadratures for exponentials.

The ratio for polynomial-based quadrature nodes asymptotically approaches zero as the
number of nodes increase. This ratio for nodes of quadratures for exponentials, however,
approaches a finite limit. This asymptote is a function of the accuracy, ε, to which the quadra-
ture is constructed, as seen in Eq. 14. This property of generalized Gaussian quadratures for
bandlimited functions allows us to use larger time intervals with a large number of nodes per
interval when compared to polynomial-based methods.

We provide quadrature data needed to implement BLC-IRK numerical integration online.
The accompanying data files are described in “Appendix”. Data files necessary to perform
dense output, discussed in Sect. 4.2, are also given.

3 Implementation and analysis of BLC-IRK

This section describes the input parameters necessary for the BLC-IRK method and demon-
strates the effect these parameters have on the accuracy of orbit propagation around Earth.
As mentioned previously, BLC-IRK is implemented using both a low- and high-fidelity force
model to save computational effort during iteration. Figure 2 illustrates time intervals and
nodes within these intervals to aid in our discussion.

The current implementation of the BLC-IRK method requires 5 parameters to be specified
by the user in order to execute the integration. Each parameter is described in the list below. We
plan to develop an approach to determine appropriate values of each parameter automatically
based on the orbit and force model.

– Accuracy (ε): Interpolation accuracy for which the generalized Gaussian quadratures
are constructed. In the current implementation this accuracy is fixed to ε ≈ 10−13. It
may be made available to the user in future implementations.
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Runge–Kutta integration for Astrodynamics 151

– Number of nodes per interval (bandlimit) (M): For a given accuracy ε, the number of
nodes per interval determines bandlimit and vice versa. More nodes per interval equates
to a higher bandlimit.

– Number of Intervals (NI ): A time interval NI is similar to a step size h in traditional
integration schemes where NI = (t f − t0)/h and t f denotes the final time of the entire
orbit propagation. Each interval contains the same number and placement of nodes (i.e.,
this is a fixed-step and fixed-order implementation). Choice of number of nodes, or
bandlimit, will affect the number of intervals required to achieve a certain propagation
accuracy, however, number of intervals NI is a user-defined input parameter. This is
similar to choosing a step size in fixed-step integration schemes. As demonstrated later,
there is a distinct, optimal NI for a given number of nodes per interval.

– Number of Low-Fidelity Force Model Iterations (N1): The number of evaluations of
the low-fidelity force model at each node before the high-fidelity force model is evaluated.
Iteration is used to solve for each vector function, ξ , placing the solution at each node in
a location that is close to its true location.

– Number of Iterations After Accessing High-Fidelity Model (N2): The number of
evaluations of the low-fidelity force model at each node after the high-fidelity force
model has been evaluated once. Each iteration uses the same contribution from the high-
fidelity model in combination with the updated low-fidelity information to refine the
solution at each node.

Traditionally, evaluation of a high-fidelity force model dominates the computational load
of any orbit propagation. The iteration process inside the current version of BLC-IRK has been
modified from a traditional IRK method to make use of low-fidelity and high-fidelity force
models to reduce the number of evaluations of the high-fidelity force model. IRK methods
use iteration to solve the nonlinear equations for ξ , thus involving several calls to the force
model, f , at each node. We first use a low-fidelity force model, flow, containing point-mass
and 3 × 3 gravity field effects of the Earth, for the first few iterations to place the solution at
each node close to the final value. The high-fidelity force model, fhigh, is then evaluated once
and the difference between the low- and high-fidelity model, �f , is stored. The high-fidelity
force model used in this study is comprised of a 70 × 70 EGM96 gravity model (Lemoine
et al. 1998) and third-body gravitational effects from the Sun and Moon. Drag and solar
radiation pressure were omitted from this initial study to simplify the analysis. A second set
of low-fidelity force model iterations is then used to finalize the iteration process. During this
second set of iterations, �f is added to the low-fidelity evaluation. This improves the solution
by using information from the high-fidelity force model without expending computation time
evaluating it again. We rely on the assumption that the solution at each node is already close
to its final value and that the high-fidelity perturbations do not vary much on this scale.
Algorithm 1 describes the overall iteration process used in this study in greater detail.

The results in this paper were generated using a second call to the high-fidelity force model.
The second evaluation ensures satisfactory orbit propagation accuracies in the current setup.
However, the low-fidelity force model used here is not necessarily the optimal choice. The
low-/high-fidelity force models and the iteration implementation can be adjusted for different
situations. For example, a satellite in the Jovian system might want to include approximate
third-body effects in the low-fidelity force model.

We also note that use of a single relative tolerance value for iteration instead of fixing the
number of iterations N1 and N2 would improve the ease-of-use for the user and guarantee
that excess computations were kept to a minimum. The use of a relative tolerance setting
is common in many implementations of IRK schemes (e.g., for fixed-point iteration see
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152 B. K. Bradley et al.

Algorithm 1 Iteration Using Low- and High-Fidelity Force Models
Inputs are number of iterations N1 and N2, number of nodes M , and low- and high-fidelity force models
f low and f high.

Note: This algorithm is to be used for each interval

for i1 = 1 → N1 do
for m = 1 → M do

Update ξm by evaluating f m
low

end for
end for

for m = 1 → M do
Evaluate f m

high and store � f m = f m
high − f m

low
end for

for i2 = 1 → N2 do
for m = 1 → M do

Evaluate f m
low

Update ξm with f m
low + � f m

end for
end for

for m = 1 → M do
Update ξm by evaluating f m

high
end for

Hairer et al. 2002 and Jones 2012) as well as adaptive step explicit Runge–Kutta schemes
(see e.g., Prince and Dormand 1981). This paper specifies each iteration count in an effort to
illustrate the low-/high-fidelity force model use. As demonstrated in the results, this method
proves sufficient, but a more user-friendly interface may be desirable.

The force model evaluation may be accelerated using multi-core processors. While this is
a property of all IRK methods, BLC-IRK will benefit the most from parallelization due to the
large number of nodes per interval. Future work will include optimizing BLC-IRK for use
with multiple cores and comparing evaluation times with other integration techniques (see
e.g., Bai (2010) and Bai and Junkins (2011a) investigating the use of GPUs to parallelize a
Chebyshev-based collocation method (MCPI) with tens to hundreds of nodes per interval).

3.1 Case study description

This investigation uses three types of orbits to evaluate BLC-IRK and compare its perfor-
mance to commonly used integrators in the Astrodynamics community. A low-Earth orbit
(LEO), geostationary orbit (GEO), and a Molniya orbit (MOL) were chosen to investigate
different orbital regimes and eccentricities. Table 1 lists the Keplerian orbital elements at
epoch (0h January 1st, 2011) for each of the three orbits and includes the perigee altitude,
h p .

A range of values for each BLC-IRK input parameter are used to examine the full range
of accuracies. For each orbit type, BLC-IRK is implemented using 1–130 intervals over the
duration of the propagation as well as 1–3 iterations for both N1 and N2. For all analyses
that follow, results are displayed for propagations lasting 3 orbital revolutions of the orbit in
question. The truth trajectory is generated by an 8th-order Gauss–Jackson (GJ 8) integration
scheme using a 5-second time step. The Gauss–Jackson scheme is a multi-step predictor-
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Runge–Kutta integration for Astrodynamics 153

Table 1 Initial osculating Keplerian orbital elements and perigee altitude of each orbit investigated in this
study

Name a (m) e i (◦) � (◦) ω (◦) ν (◦) h p (km)

LEO 6,730,038.57 0.000802 35.00 5.00 335.05 19.95 346.5

MOL 26,553,376.35 0.740969 63.40 330.21 270.00 0.00 500.0

GEO 42,164,118.25 0.000999 0.01 27.30 10.00 2.30 35,743.8

Truth Data Points, XT

BLC-IRK Data Points, XC

XT , interp

Fig. 3 Illustration of interpolation strategy. X denotes position solutions. Error comparisons are made at
solution points of the method we are testing (e.g., BLC-IRK). The dense truth trajectory is interpolated to
these points using a cubic spline to eliminate interpolation error

corrector method that has been used by US Space Surveillance centers for orbit propagation
for over 50 years and is especially efficient at propagating near-circular orbits (Jackson 1924;
Fox 1984; Berry and Healy 2004; SPADOC Computation Center 1982). Note, however, that
Gauss–Jackson is neither symplectic nor A-stable.

Evaluating the performance of a numerical integration scheme requires careful consid-
eration of two things: (1) how to generate the truth trajectory, and (2) interpolation of the
solution. Berry and Healy (2003) and Berry (2004) investigate several techniques for mea-
suring integration error, specifically, what to use for the truth trajectory when propagating
orbits with perturbations. They conclude that step size halving and higher-order integration
both work well for generating truth trajectories when perturbations are present. As stated
previously, we use truth trajectories generated by the GJ 8 scheme with a fixed step size of
5 seconds and compare integration accuracy only. The implementation of GJ 8 follows that
of Berry and Healy (2004). The use of a small step size for truth requires us to assume that
the use of a small step size yields a more accurate trajectory and that round-off error is not
significantly affecting the solution. As the number of force model evaluations is increased,
each integration method we are comparing approaches the reference trajectory with differ-
ences below 10−5 meters. This indicates that round-off error is not affecting our results for
the accuracy range we are considering, i.e., 10−4 to 102 meters. Other truth trajectories were
also assessed, including GJ 8 with 2 and 10 second step sizes, and the 8th-order Dormand
and Prince scheme, DOPRI 8(7), with similar steps. Each of these trajectories match the
5-second GJ 8 truth trajectory to the order of 10−5 meters.

The interpolation strategy can have a notable impact on computing the error of an inte-
gration method. As depicted in Fig. 3, we interpolate the truth trajectory to times where we
have a solution from the method we are comparing. A slightly different execution of interpo-
lating at fixed 30-second intervals, however, has shown to introduce errors too large for this
study on integration accuracy. This is especially true with high-order variable-step integration
schemes because they take larger time steps than a lower 4th-order method. Since we are
limiting ourselves to only interpolating the dense truth trajectory, error due to interpolation
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Fig. 4 RMS values of position
errors for propagations of the
LEO, GEO, and MOL orbits
using a range of number of
intervals per orbit. Each
propagation has a duration of 3
orbit revolutions and uses 64
nodes per interval. Every
combination of {1, 2, 3} N1
iterations and {1, 2, 3} N2
iterations were used
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is essentially eliminated. Based on several tests, the observed maximum interpolation error
is on the order of 10−5 meters for the LEO and MOL orbits, and down to 10−8 meters for
GEO. These errors are below the accuracy range we are considering. The root-sum-square
(RSS) position error at each time, ti , is computed by

�ri = ∥
∥XCi − XT,interpi

∥
∥ (21)

where X denotes position solutions. The root mean square (RMS) position error for the entire
trajectory is then computed using all �ri . All propagation comparison plots report this RMS
error for the entire trajectory. The maximum and mean errors were also considered, however,
these values are of the same order of magnitude as the RMS error. Given the log plots and
similar behavior of each propagation scheme, the general error magnitude and performance
relations between each scheme stay approximately the same. For this reason, we display the
RMS values only.

3.2 Intervals (step size)

First, we look at how the number of intervals affects propagation accuracy. Figure 4 shows
the relationship between the number of intervals used per orbit and the RMS of position error
for all three orbit types. When compared to a small number of intervals per orbit, adding
intervals reduces the integration error significantly.

There reaches a point, however, where additional intervals do not reduce the integration
error. Usually, this accuracy floor is caused by the finite precision of computing or the
accumulation of roundoff error. In this case, it is due to the iteration algorithm being used
for BLC-IRK, as described in Sect. 3. Standard implementations of IRK schemes used fixed-
point, or Picard, iteration until convergence to some tolerance, e.g., 10−13 (Hairer et al.
2002; Jones and Anderson 2012; Herman et al. 2013). However, a small amount of accuracy
is sacrificed for faster evaluation time as fewer force model evaluations are performed, as is
the case with the relatively few number of low-/high-fidelity force model evaluations used in
this paper. This is acceptable when position accuracies below the micron or even centimeter
level are not needed, or even possible, due to imperfect force model knowledge.

In operational use, an acceptable choice could be to aim for the “knee” in the curve,
in terms of number of intervals, to ensure sufficiently accurate results while minimizing the
number of force model calls. Determining the location of this knee automatically and reliably
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Table 2 Number of nodes per interval and the corresponding bandlimits

Nodes per interval 32 46 64 114 200

Bandlimit 5π 10π 17π 40π 81π

Fig. 5 RMS values of position
errors for the LEO orbit using a
range of number of nodes per
interval. Each propagation has a
duration of 3 orbit revolutions
and used every combination of
{1, 2, 3} N1 iterations and
{1, 2, 3} N2 iterations
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requires additional analysis due to its dependence on the orbit, force model, and number of
nodes used.

3.3 Nodes

As mentioned previously, the number of nodes that are contained in each interval is tied to the
bandlimit. Table 2 lists several node counts and their associated bandlimits. The displayed
bandlimits are those that have been used to compute and store integration matrices, and are
the only ones considered in this study.

Figure 5a illustrates the impact that number of nodes has on the relationship between
number of function calls and integration accuracy. Note that when number of function calls
is plotted for the BLC-IRK method, we are plotting the number of high-fidelity force model

123



156 B. K. Bradley et al.

evaluations. This is justified by the fact that the high-fidelity force model requires sev-
eral orders of magnitude more mathematical operations than the low-fidelity force model.
This is mainly due to the high degree and order 70 × 70 spherical harmonic gravity model
computation.

The results reveal that the choice of node count does not affect how many high-fidelity
force model evaluations are necessary to achieve a given accuracy. At first, the fact that the
number of nodes does not affect the outcome of Fig. 5a seems odd. However, this feature
is actually a byproduct of the node accumulation ratio of the generalized Gaussian quadra-
tures illustrated in Fig. 1a. Since the ratio asymptotically approaches a constant greater than
zero, additional force model evaluations are not wasted towards the interval endpoints as
with polynomial-based quadratures. As nodes are added, the number of intervals required to
achieve a given level of accuracy is reduced, thereby lowering the number of force model
evaluations. This point is illustrated in Fig. 5b. Jones (2012) demonstrates this weakness of
polynomial-based quadrature schemes by showing the diminishing return of adding nodes
in a GL-IRK scheme. As nodes are added, there comes a point when the number of force
model evaluations necessary to achieve the certain precision starts increasing. Therefore,
BLC-IRK will benefit from parallelization even more than a polynomial-based scheme such
as GL-IRK since additional nodes (and thus processors) may be added without the same
diminishing return.

3.4 Symplectic property

As with GL-IRK methods (Sanz-Serna 1988), the BLC-IRK method is symplectic (Beylkin
and Sandberg 2014). By imposing constraints on the integration matrix and weights of the
generalized Gaussian quadratures, the BLC-IRK method becomes symplectic, making it
an excellent tool for long-term orbit propagation. Specifically, in order to be symplectic a
Runge–Kutta method must satisfy the conditions (Sanz-Serna 1988)

wi Si j + w j S ji − wiw j = 0, i, j = 1, . . . , M. (22)

We demonstrate the symplectic property of the BLC-IRK method by using an energy-like
integral analogous to the Jacobi integral of the Restricted Three-Body Problem. The Jacobi
constant, K , is computed by

V 2

2
− μ

R
− U ′(R) = K = constant (23)

where μ is the gravitational parameter of the central body, R and V are the orbital radius
and inertial velocity of the satellite, respectively, and U ′(R) is the gravitational potential
of the Earth (without the point-mass contribution) (Tapley et al. 2004; Bond and Allman
1996). Equation 23 is valid when the gravitational potential consists of zonal terms only. The
inclusion of a time-varying gravity field, i.e., sectoral and tesseral terms, requires a slight
modification to Eq. 23 (Bond and Allman 1996).

The Jacobi constant is an energy-like parameter that, in theory, remains constant over
time when integrating a system involving a central gravity field. The purpose of a symplectic
integrator is to enforce an approximate version of this property numerically since, otherwise,
it is not maintained due to the finite precision of computation. The relative change in Jacobi
constant compared to its initial value is plotted in Fig. 6 for a 10-year propagation of the
LEO orbit using BLC-IRK and the explicit Runge–Kutta method DOPRI 8(7) (Prince and
Dormand 1981). BLC-IRK maintains a bounded Jacobi constant over 10 years while the
explicit Runge–Kutta method fails to maintain the Jacobi constant over long integration
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Fig. 6 Change in Jacobi constant
during a 10-year GEO
propagation using point-mass and
zonals J2 − J4 only. BLC-IRK
propagation performed using 4
intervals/orbit and 64
nodes/interval. DOPRI 8(7)
propagation performed with a
relative tolerance of 10−15 for
step size control
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times. It is known that non-symplectic integrators (e.g., all ERK methods Sanz-Serna 1988)
do not maintain a bounded energy, or Jacobi constant, due to the accumulation of roundoff
error. The symplectic property of the BLC-IRK method is of great benefit to long-term
propagations where the accumulation of roundoff error is a problem. In particular, long-
term asteroid propagation and debris field evolution with timescales on the order of tens
to hundreds of years benefit from using symplectic integrators. Breiter and Métris (1999),
Mikkola (1999), and Mikkola et al. (2000) have also investigated symplectic schemes for use
in space debris propagation and satellite tracking in Earth orbit.

4 Performance comparison

4.1 Orbit propagation

In this section, we compare the propagation efficiency of BLC-IRK to commonly used inte-
gration methods for the three orbits given in Table 1. Three of the four integration methods
are explicit Runge–Kutta schemes with step size control and the fourth is the 8th-order
Gauss–Jackson method.

– Runge–Kutta–Fehlberg 7(8) (RKF 7(8)13): a 13-stage explicit Runge–Kutta method
of order 7 and an embedded method of order 8 used for step size control developed by
Erwin Fehlberg (Fehlberg 1968). The software package Systems Tool Kit, by Analytical
Graphics Inc., uses this as the default integrator (other options are available as well). The
implementation of RKF 7(8) used in this study is not using local extrapolation (i.e., the
7th-order result is used as the solution).

– Dormand & Prince 8(7) (DOPRI 8(7)13 or RK 8(7)13): similar to the 13-stage RKF
7(8), but uses an 8th-order method for the solution and a 7th-order method for step size
control (Prince and Dormand 1981).

– Dormand & Prince 5(4) (DOPRI 5(4)7 or RK 5(4)7): a 7-stage explicit Runge–Kutta
method of order 5 and an embedded method of order 4 used for step size control (Dormand
and Prince 1980). This integration scheme is available in MATLAB where it is known as
ode45 (Shampine and Reichelt 1997). The integration matrix and weights of DOPRI 5(4)
were designed with a beneficial feature called FSAL (first-same-as-last). This means that
the final stage evaluation at time tn is equal to the first stage evaluation at the next time
tn+1, thus saving one evaluation of the force model per time step.
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– Gauss–Jackson 8th-order (GJ 8): a multi-step predictor-corrector method of 8th-order
which uses a fixed step size (Jackson 1924; Fox 1984; Berry and Healy 2004). This
scheme has been used by US Space Surveillance Centers since the 1960’s due to its
highly efficient propagation of near-circular orbits (SPADOC Computation Center 1982;
Berry and Healy 2004).

In space surveillance and many other applications, we often have an option to sacri-
fice accuracy for reduced computation time. Thus, we desire an integration scheme which
achieves a necessary level of accuracy while minimizing the number of force model evalu-
ations and computation time required. We compare each integrator based on the number of
force model evaluations (function calls) that are used to achieve various levels of position
error. It is important to remember that this study evaluates integration error only and we are
not considering the separate topic of force model errors. Note that the reported number of
function calls for BLC-IRK is the number of high-fidelity force model evaluations only.

BLC-IRK is executed serially (without any parallelization) using 64 nodes per interval (M)
and 2 function calls per node. Results for BLC-IRK are shown for propagations performed
using {1, 2, . . . , 130} intervals (NI ) and {1, 2, 3} first set (N1) and second set (N2) iterations.
Thus, the circular markers for BLC-IRK in the following figures are not connected by a line.
Results for RKF 7(8), DOPRI 8(7), and DOPRI 5(4) are shown for propagations using relative
tolerances ranging from 10−8 to 10−15. Relative tolerance is used to adaptively control step
size for these three embedded ERK methods. The implementation of step size control closely
follows that of Dormand and Prince (1980). Results for GJ 8 were generated using a wide
range of fixed step sizes while a 5-second time step is used as truth for all comparisons. Note
that GJ 8 was forced to use only 1 iteration (i.e., force model evaluation) per step. Details
on the interpolation of the reference trajectory for integrator comparison can be found in
Sect. 3.1.

Figure 7a contains results for the GEO propagation (see Table 1 for orbital elements) and
demonstrates the well-known observation that more evaluations of the force model yields
more accurate propagations with conventional schemes (until some accuracy floor is reached).
BLC-IRK clearly outperforms all of the ERK methods in GEO, requiring many fewer function
calls to achieve sub-centimeter accuracy. At the meter level, BLC-IRK closely matches the
performance of GJ 8, but requires about twice as many function calls at the centimeter to
millimeter range. The performance of BLC-IRK in GEO may be improved with a better
selection of low-fidelity force model. The low-fidelity model used here is just an example.
As mentioned in Sect. 3.2, the higher accuracy floor of BLC-IRK is due to the fact that we
are not iterating to a small relative tolerance, but are instead performing only a few force
model evaluations. While this floor is greater than the floor for the other methods, it is still
well within force model errors.

Results of the LEO propagation, shown in Fig. 7b, demonstrate a significantly different
distribution of integration schemes than Fig. 7a. Results for the ERK methods are now more
clustered together and overlap slightly. This is due to the increased spatial variation in the
disturbing gravity field at LEO. Each scheme is required to take small time steps to com-
pensate for the increase in spatial variation of perturbations, resulting in similar propagation
accuracies. Note that BLC-IRK closely matches the efficiency of GJ 8 and is more efficient
than the explicit methods.

Figure 8 demonstrates the differences in magnitude and temporal variation between the
low- and high-fidelity force models for the LEO and GEO orbits. For both LEO and GEO,
the difference in magnitude between the low- and high-fidelity models is several orders of
magnitude smaller than that of the low-fidelity model itself. The fact that the low-fidelity
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Fig. 7 Comparison of RMS
position errors over a 3-orbit
GEO (a) and LEO (b)
propagation
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model constitutes the bulk of the acceleration on a satellite is the reason for the benefit of
using both low- and high-fidelity force models. Furthermore, the difference between the force
models in LEO is greater than at GEO by about 1 order of magnitude. The smaller difference
between the force models and the reduced spatial variation of acceleration in GEO allows the
variable step methods to perform well. Since the Gauss–Jackson scheme uses a polynomial
to generate an initial prediction of the solution at each time step, GJ 8 also performs well in
the “smoothly” varying GEO regime.

As shown in Fig. 7b, BLC-IRK has the ability to match Gauss–Jackson in LEO, largely
due to the fact that the low-/high-fidelity force model scheme has a greater advantage in
that region. BLC-IRK uses approximately the same number of force model evaluations as
GJ 8 at centimeter to millimeter accuracy and outperforms the ERK methods significantly.
Since the majority of objects in the space catalog reside in the LEO regime, this approach
is very compelling. Furthermore, BLC-IRK can be massively parallelized, using a separate
processor for each node in an interval.

We now consider a highly eccentric test case (e = 0.74), the Molniya orbit, shown in Fig. 9.
With this orbit type the variable step size methods, particularly RKF 7(8) and DOPRI 8(7),
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Fig. 8 Comparison of low- and
high-fidelity force models used in
this study over 1 orbit period for
GEO and LEO. The low-fidelity
force model includes Earth
point-mass and a 3 × 3 gravity
field. The high-fidelity force
model includes Earth point-mass,
a 70 × 70 gravity field, and
third-body gravitational forces
from the Sun and Moon
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Fig. 9 Comparison of RMS
position errors over a 3-orbit
Molniya propagation
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show a vast improvement over the GJ 8 scheme. This makes intuitive sense since the variable
step size integrators are able to take very large steps near apogee and then shrink back down
towards perigee. Alternatively, the fixed-step GJ 8 is forced to use a small step size for
the duration of the propagation in order to deal with the high dynamics at perigee. Since
BLC-IRK is currently implemented as a fixed-step integrator, it performs similarly to GJ 8.

Table 3 provides a quantitative summary of the performance of each integration scheme.
Additional entries are given for a 2-processor parallelized and an ideally parallelized imple-
mentation of BLC-IRK to demonstrate the ability of this IRK method when parallelization
is taken advantage of. Since we are using 64 nodes per interval, ideally parallelized means
the use of 64 processors and no communication overhead. This number of processors is eas-
ily taken care of if GPUs are utilized. Note that the term “ideal” is used because an actual
parallel implementation would inherently contain added computation time due to commu-
nication/data transfer as well as memory management. This extra overhead could be quite
large and is especially sensitive to implementation. Table 3 demonstrates that BLC-IRK
outperforms Gauss–Jackson in all scenarios if only 2 processors are used. Using BLC-IRK
with 2 processors even outperforms the explicit variable-step methods for the highly-elliptic
Molniya orbit. A further improvement in efficiency can be gained by ideally parallelizing the
implementation of BLC-IRK.

This paper compares BLC-IRK with common ERK methods and the multistep GJ 8
scheme, but does not look at other IRK methods. A recent study by Herman et al. (2013),
however, directly compares BLC-IRK with a fixed-step implementation of GL-IRK. Herman
et al. (2013) demonstrates that BLC-IRK always performs as well or better than GL-IRK (i.e.,
requiring fewer function calls for the same accuracy). The study ensures a fair comparison by

123



Runge–Kutta integration for Astrodynamics 161

Table 3 Performance summary of integration methods over three orbit periods

Orbit Method Function calls
(<1 m error)

Function calls
(<1 cm error)

LEO RKF 7(8) 1500 2320

DOPRI 8(7) 1230 2230

DOPRI 5(4) 1350 3800

GJ 8 370 600

BLC-IRK 640 640

BLC-IRK (2 processors) 320 320

BLC-IRK (ideal parallel) 10 10

GEO RKF 7(8) 1370 2630

DOPRI 8(7) 815 1300

DOPRI 5(4) 2050 5520

GJ 8 210 270

BLC-IRK 256 512

BLC-IRK (2 processors) 128 256

BLC-IRK (ideal parallel) 4 8

MOL RKF 7(8) 2690 3860

DOPRI 8(7) 2600 3470

DOPRI 5(4) 3870 9350

GJ 8 4930 8610

BLC-IRK 4608 6140 (3 cm)

BLC-IRK (2 processors) 2304 3070 (3 cm)

BLC-IRK (ideal parallel) 72 96 (3 cm)

The approximate number of function calls required to reach a given level of accuracy for each orbit type and
each numerical integration technique discussed in this study. Additional entries are given for a 2-processor
parallelized and an ideally parallelized BLC-IRK implementation (i.e., 64 processors used and neglecting
communication overhead). Note that GJ 8 was restricted to only use 1 iteration (i.e., force model evaluation)
per step

operating both schemes in fixed-step mode and uses fixed-point iteration instead of low- and
high-fidelity force models. While BLC-IRK and GL-IRK perform quite similarly for GEO
orbits, BLC-IRK outperforms GL-IRK in both LEO and highly-eccentric orbits, which is
due to the improved node spacing of the BLC-IRK nodes. Similarly, the benefit of BLC-IRK
over GL-IRK is enhanced as more nodes are used. Note that all cases in Herman et al. (2013)
were restricted to the use of a large number of nodes (i.e., 32 and 200). Figure 1 of this paper
implies that GL-IRK and BLC-IRK may not exhibit much of a difference for cases with
fewer nodes.

Future work will include developing an efficient step size control algorithm for BLC-IRK.
Unlike the embedded ERK methods that exist, no such IRK method has been developed with
a second, embedded method, to be used for step size control. However, a few algorithms
to control step size for IRK methods do exist. Jones (2012) discusses the implementation
of a variable-step algorithm from Houwen and Sommeijer (1990) with a GL-IRK scheme.
Jones (2012) demonstrates that the variable-step algorithm, dubbed VGL-s, improves upon
the fixed-step GJ 8 for highly-eccentric orbits, but recommends that further work be done to
improve the efficiency of the algorithm. Aristoff et al. (2014) develops a variable-step GL-
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IRK implementation, dubbed VGL-IRK, for orbit and uncertainty propagation and compares
its performance against DOPRI 8(7), VGL-s, and MCPI. Aristoff et al. (2014) shows that
their VGL-IRK scheme outperforms the other integration methods in LEO, GEO, and highly-
eccentric orbits, making their variable-step version of GL-IRK very attractive. As BLC-IRK
contains more efficient node spacing than GL-IRK, a variable-step implementation of BLC-
IRK should outperform VGL-IRK, in theory. As mentioned, this is an important part of
our future work. Other recently developed integration schemes (mainly symplectic) and
comparison studies of note include Hubaux et al. (2012), Blanes and Iserles (2012), Blanes
et al. (2013), Farrés et al. (2013), Rose and Dullin (2013), and Nguyen-Ba et al. (2013).

4.2 Dense output

All collocation-based IRK schemes have built-in interpolation to evaluate solutions at arbi-
trary points. This section outlines and examines the dense output capability of the BLC-IRK
method. We first describe how to interpolate a solution computed at the quadrature nodes
{τm}M

m=1 to an arbitrary time τ . For clarity, we present the necessary equations for the case
where the quadrature nodes τm lie on the interval [−1, 1], noting that if the time τ̃ is given in the
interval [α, β], we can easily rescale it to the interval [−1, 1] as τ = (2τ̃−α−β)/(β−α). Data
files necessary for executing the dense output algorithm are provided online and described
in “Appendix”.

The input data for interpolation is given as the values y(τm) at the nodes τm ∈ [−1, 1],
m = 1, 2, . . . , M . The function y(τ ) is then interpolated via

y(τ ) =
M∑

k=1

bk�k(τ ), (24)

where the approximate PSWFs �k(τ ) are defined in Eq. 18 and the coefficients bk satisfy
the condition

y(τm) =
M∑

k=1

bk�k(τm), m = 1, 2, . . . , M, (25)

so that

bk =
M∑

m=1

Bkm y(τm), (26)

where the matrix {Bkm}M
k,m=1 is the inverse of {�k(τm)}M

m,k=1. From Eq. 18, we also have

y(τ ) =
M∑

l=1

ale
icτlτ , (27)

where

al =
M∑

k=1

Alkbk, Alk = wl

ηk
�k(τl). (28)

In the event that the matrix �k(τm) may be ill-conditioned for large M , we note that this
matrix can be pre-computed with extended precision (e.g., using Mathematica), and then
tabulated. Computing and storing matrix �k(τm) and its inverse in advance, we compute
the coefficients bk and ak from the values {y(τm)}M

m=1 by applying these matrices. Matrix
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Fig. 10 BLC-IRK collocation
interpolation error for a GEO
propagation. BLC-IRK
propagation performed using 4
intervals/orbit and 64
nodes/interval. Interpolation is
performed every 5 seconds. Note
that the plotted error is due to
both interpolation and integration
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�k(τm) and its inverse may have to be computed and applied with extra precision to avoid
losing accurate digits.

We use Eq. 27 to evaluate the function y at arbitrary points in [−1, 1]. The advantage
of Eq. 27 is that we can use Unequally Spaced Fast Fourier Transform (USFFT) (Dutt and
Rokhlin 1993; Beylkin 1995) to compute values of y at N points in [−1, 1] in O(N log N )+
O(M) operations. However, if M is relatively small (e.g., M ≤ 64), the direct evaluation via

y(τ ) =
M∑

l=1

Re(al) cos(cτlτ) − Im(al) sin(cτlτ), (29)

requires O(N M) operations and may turn out to be faster.
Figure 10 displays the interpolation accuracy achieved for a GEO propagation performed

using BLC-IRK and the collocation algorithm. A 6-hour segment of the 3-orbit propagation
is shown, revealing each of the 64 nodes used in this interval. Note that the y-axis has units
of millimeters. The error grows over time because the actual BLC-IRK integrated trajectory
is being interpolated and compared to the truth trajectory. Hence, the error already contained
in the orbit propagation is still present. The BLC-IRK interpolation (blue line) yields a very
smooth and continuous solution with errors similar to those of the nodes. This result highlights
the benefit of collocation techniques.

For comparison, Fig. 11 demonstrates the accuracy of Lagrange interpolation used on orbit
propagations generated by BLC-IRK and DOPRI 8(7). Lagrange interpolation was chosen
for comparison due to the easy implementation and long history of use of the polynomial-
based scheme. During the same 6-hour time span shown in Fig. 10, the 5th-order Lagrange
interpolation yields slightly larger errors than the collocation algorithm for BLC-IRK. How-
ever, the interpolation error in Fig. 11a has a maximum of only 0.1 mm. Note that this is only
a 5th-order implementation of Lagrange and that a higher order Lagrange method (e.g., 7 or
9) yields errors similar to that of BLC-IRK collocation.

Figure 11b demonstrates the degraded accuracy achieved by interpolating a DOPRI 8(7)
trajectory using a 5th-order Lagrange scheme as compared to BLC-IRK. Polynomial-based
interpolation performs much better when using the higher density BLC-IRK nodes rather
than the sparse DOPRI 8(7) steps.

It should also be noted that explicit Runge–Kutta schemes can have dense output capa-
bilities as well. Several researchers have developed dense output schemes for the 5th-
and 8th-order methods used in this study. Two dense output schemes have been devel-
oped for the DOPRI 5(4) method. Dormand and Prince (1986) develop a 4th-order “free”
interpolant (meaning additional function evaluations are not required), which is also dis-
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Fig. 11 Interpolation errors of
BLC-IRK (a) and DOPRI 8(7)
(b) trajectories using a 5th-order
Lagrange scheme. Interpolations
are performed every 5 seconds. A
relative tolerance of 10−13 was
used for step size control of the
DOPRI 8(7) propagation
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cussed in Hairer et al. (1993). Calvo et al. (1990) provides a 5th-order interpolant for the
DOPRI 5(4) method, requiring 2 additional stage evaluations per step. Additionally, Bogacki
and Shampine (1990) have developed a 5th-order “free” interpolant for the higher-order
DOPRI 8(7) scheme. Tsitouras (2007) discusses several Runge–Kutta interpolants that have
been developed and presents a new high-order interpolation method for the RK 9(8) developed
by Tsitouras (2001). Other options include Runge–Kutta Triples which have dense output
capability, including embedded ERK and Runge–Kutta–Nyström schemes (Montenbruck
and Gill 2000).

While a few of the dense output options for ERK methods are “free”, they are of lower order
than the integration scheme itself. Collocation methods allow for the state to be computed
at anytime on the trajectory for “free”, utilizing a continuous solution that is coupled to
the integration scheme. Even if another interpolation strategy (e.g., Lagrange) is desired,
the increased density of solutions due to the collocation nodes provides a more accurate
interpolated solution, as seen in Fig. 11.

5 Conclusions and future work

This paper describes a new numerical integration scheme, BLC-IRK, for orbit propagation
and outlined its implementation towards propagating orbits with perturbing forces. As a sym-
plectic and A-stable IRK method, BLC-IRK is of particular interest because it is paralleliz-
able. In addition, the generalized Gaussian quadratures for bandlimited functions on which
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BLC-IRK is based, yield node spacing that is more efficient than traditional polynomial-
based quadrature methods such as Gauss–Legendre, Gauss–Lobatto, and Chebyshev. This
promotes the use of large time intervals and a large number of nodes per interval, reducing
the computational load near the clustered endpoints as with polynomial-based quadratures.
Additionally, the A-stable property of BLC-IRK makes its use appealing to solving stiff
ODEs, including atmospheric entry.

We demonstrated superior performance of BLC-IRK over commonly used ERK methods
for near circular orbits while closely matching GJ 8, even when operating in serial mode
(no parallelization). Note that the GJ 8 results presented here were done with an imple-
mentation that uses one force model evaluation per step only. Ordinary versions of GJ 8
would likely contain iteration, resulting in several force model evaluations at each step. The
presented BLC-IRK implementation of using both low- and high-fidelity force models is
a major contributor to the efficiency. The specific execution can be tuned for each unique
scenario, leaving room for improvement even on the implementation presented here. The
low-fidelity model used here is just an example. Deep space and GEO scenarios may benefit
from including a rough third-body contribution into the low-fidelity model. It should also
be noted that this low-/high-fidelity implementation is applicable to any IRK method. While
BLC-IRK is slightly less efficient than GJ 8, BLC-IRK is a brand new technique, leaving
room for additional research and improvement. In contrast, the Gauss–Jackson scheme has
been around for many years and has essentially maximized its potential. Gauss–Jackson
is also neither symplectic nor A-stable. When applicable, parallelization would result in a
significant improvement in efficiency over the GJ 8 scheme.

This paper outlined the dense output algorithm for BLC-IRK as well. We demonstrated
that interpolating a BLC-IRK trajectory using its collocation algorithm yields a high accuracy,
smooth, and continuous solution. We also showed that the accuracy of Lagrange interpolation
of a BLC-IRK trajectory is superior to that of a Dormand and Prince 8(7) propagated orbit.
This is an appealing aspect of collocation methods, where the higher node density provides
a better base for interpolation. This is especially important to conjunction assessment where
solutions are required at various points in time along a trajectory.

The current implementation of the BLC-IRK scheme requires several user-defined tuning
parameters. While these parameters can affect the efficiency and accuracy of the resulting
orbit propagation, this paper gives a rough idea of satisfactory choices for these parameters in
several orbit regimes. Future work will aim to: (1) determine optimal low- and high-fidelity
force models for Earth orbiting objects, (2) develop a step size control algorithm for BLC-
IRK, and (3) investigate its use in boundary value problems. The first two items will allow a
more autonomous and efficient implementation of BLC-IRK while the third allows for its use
in trajectory optimization. It is also important to note that further systematic studies of the
integration schemes compared in this paper and other recently developed integrators would
aid in better defining the relative merits and capabilities of each scheme. We include data files
online, containing all quadrature data, necessary for implementing BLC-IRK integration and
interpolation. Details on the provided data can be found in the Appendix.
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Appendix: BLC-IRK data files

ASCII-files with quadrature data for M = 24 nodes (corresponding to bandwidth c = 2.5π)
and M = 70 nodes (corresponding to bandwidth c = 20π) are provided as an online resource.
For each bandwidth, we provide six files:

– nodesM.txt: Contains the quadrature nodes {τk}M
k=1 for the interval [−1, 1].

– weightsM.txt: Contains the quadrature weights {wk}M
k=1 for the interval [−1, 1].

– integrationMatrixM.txt: Contains the elements of the integration matrix S (stored row-
wise) with respect to the interval [−1, 1].

– BmatrixM.txt: Contains the elements of the matrix B (stored row-wise), Eq. (26), with
respect to the interval [−1, 1].

– AmatrixRealPartM.txt: Contains the elements of the real part of the matrix A (stored
row-wise), Eqs. (28) and (29), with respect to the interval [−1, 1]

– AmatrixImagPartM.txt: Contains the elements of the imaginary part of the matrix A
(stored row-wise), Eqs. (28) and (29), with respect to the interval [−1, 1].

These data files allow the reader to implement the BLC-IRK scheme for numerical inte-
gration and to perform the interpolation described in Sect. 4.2. The files are linked to the
online version of the paper (Electronic Supplementary Material).
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