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Abstract 

A class of algorithms is introduced for the rapid numerical application of a class of linear operators 
to arbitrary vectors. Previously published schemes of this type utilize detailed analytical information 
about the operators being applied and are specific to extremely narrow classes of matrices. In contrast, 
the methods presented here are based on the recently developed theory of wavelets and are applicable 
to all Calderon-Zygmund and pseudo-differential operators. The algorithms of this paper require order 
O( N) or O( N log N) operations to apply an N X N matrix to a vector (depending on the particular 
operator and the version of the algorithm being used), and our numerical experiments indicate that 
many previously intractable problems become manageable with the techniques presented here. 

1. Introduction 

The purpose of this paper is to introduce a class of numerical algorithms designed 
for rapid application of dense matrices (or integral operators) to vectors. As is well 
known, applying directly a dense N X N-matrix to a vector requires roughly N 2  
operations, and this simple fact is a cause of serious difficulties encountered in 
large-scale computations. For example, the main reason for the limited use of integral 
equations as a numerical tool in large-scale computations is that they normally 
lead to dense systems of linear algebraic equations, and the latter have to be solved, 
either directly or iteratively. Most iterative methods for the solution of systems of 
linear equations involve the application of the matrix of the system to a sequence 
of recursively generated vectors, which tends to be prohibitively expensive for large- 
scale problems. The situation is even worse if a direct solver for the linear system 
is used, since such solvers normally require O( N 3 )  operations. As a result, in most 
areas of computational mathematics dense matrices are simply avoided whenever 
possible. For example, finite difference and finite element methods can be viewed 
as devices for reducing a partial differential equation to a sparse linear system. In 
this case, the cost of sparsity is the inherently high condition number ofthe resulting 
matrices. 

For translation invariant operators, the problem of excessive cost of applying 
(or inverting) the dense matrices has been met by the Fast Fourier Transform 
( F m )  and related algorithms (fast convolution schemes, etc.). These methods use 
algebraic properties of a matrix to apply it to a vector in order Nlog( N) operations. 
Such schemes are exact in exact arithmetic, and are fragile in the sense that they 
depend on the exact algebraic properties of the operator for their applicability. A 
more recent group of fast algorithms ( see [ 1 1, [ 2 1, [ 5 1, [ 9 ] ) uses explicit analytical 
properties of specific operators to rapidly apply them to arbitrary vectors. The 
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algorithms in this group are approximate in exact arithmetic (though they are 
capable of producing any prescribed accuracy), do not require that the operators 
in question be translation invariant, and are considerably more adaptable than the 
algorithms based on the FFT and its variants. 

In this paper, we introduce a radical generalization of the algorithms of [ 11, 
[ 21, [ 51, [ 91. We describe a method for the fast numerical application to arbitrary 
vectors of a wide variety of operators. The method normally requires order O( N) 
operations, and is directly applicable to all Calderon-Zygmund and pseudo-differ- 
ential operators. While each of the algorithms of [I], [2], [ 5 ] ,  [9] addresses a 
particular operator and uses an analytical technique specifically tailored to it, we 
introduce several numerical tools applicable in all of these (and many other) sit- 
uations. The algorithms presented here are meant to be a general tool similar to 
FFT. However, they do not require that the operator be translation invariant, and 
are approximate in exact arithmetic, though they achieve any prescribed finite 
accuracy. In addition, the techniques of this paper generalize to certain classes of 
multi-linear transformations (see Section 4.6 below), 

We use a class of orthonormal “wavelet” bases generalizing the Haar functions 
and originally introduced by Stromberg [ 101 and Meyer [ 71. The specific wavelet 
basis functions used in this paper were constructed by I. Daubechies [4] and are 
remarkably well adapted to numerical calculations. In these bases (for a given 
accuracy) integral operators satisfying certain analytical estimates have a band- 
diagonal form and can be applied to arbitrary functions in a “fast” manner. In 
particular, Dirichlet and Neumann boundary value problems for certain elliptic 
partial differential equations can be solved in order N calculations, where N is the 
number of nodes in the discretization of the boundary of the region. Other appli- 
cations include an O ( N  log(N)) algorithm for the evaluation of Legendre series 
and similar schemes (comparable in speed to FFT in the same dimensions) for 
other special function expansions. In general, the scheme of this paper can be 
viewed as a method for the conversion (whenever regularity permits) of dense 
matrices to a sparse form. 

Once the sparse form of the matrix is obtained, applying it to an arbitrary vector 
is an order O ( N )  procedure, while the construction of the sparse form in general 
requires O ( N 2 )  operations. On the other hand, if the structure of the singularities 
of the matrix is known a priori (as for Green’s functions of elliptic operators or for 
Calderon-Zygmund operators) the compression of the operator to a banded form 
is an order O ( N )  procedure. The non-zero entries of the resulting compressed 
matrix mimic the structure of the singularities of the original kernel. 

Effectively, this paper provides two schemes for the numerical evaluation of 
integral operators. The first is a straightforward realization (“standard form”) of 
the matrix of the operator in the wavelet basis. This scheme is an order N log(N) 
procedure (even for such simple operators as multiplication by a function). While 
this straightforward realization of the matrix is a useful numerical tool in itself, its 
range of applicability is significantly extended by the second scheme, which we 
describe in this paper in more detail. This realization (“non-standard form”) leads 
to an order N scheme. The estimates for the latter follow from the more subtle 
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analysis of the proof of the “T( 1) theorem” of David and Journt (see [3]).  We 
also present two numerical examples showing that our algorithms can be useful for 
certain operators which are outside the class for which we provide proofs. The paper 
is organized as follows. In Section 2 we use the well-known Haar basis to describe 
a simplified version of the algorithm. In Section 3 we summarize the relevant facts 
from the theory of wavelets. Section 4 contains an analysis of a class of integral 
operators for which we obtain an order N algorithm and a description of a version 
of the algorithm for bilinear operators. Section 5 contains a detailed description 
and a complexity analysis of the scheme. Finally, in Section 6 we present several 
numerical applications. 

Generalizations to higher dimensions and numerical operator calculus con- 
taining O( N log( N)) implementations of pseudodifferential operators and their 
inverses will appear in a sequel to this paper. 

2. The Algorithm in the Haar System 

The Haar functions hj,k with integer indices j and k are defined by I 

2-JI2 for 

for 

elsewhere. 

2 j ( k  - 1)  < x < 2 j ( k  - 1 / 2 )  

2 J ( k  - 1 / 2 )  5 x < 2 J k  (2.1) 

Clearly, the Haar function hj,k(X) is supported in the dyadic interval Ij,k 

We will use the notation hJ,,(x) = h4.k(x) = h,(x) = 2-jI2h(2-’x - k + l ) ,  where 
h ( x )  = ho, , (x) .  We index the Haar functions by dyadic intervals Ij,k and observe 
that the system hI,,k(x) forms an orthonormal basis of L 2 ( R )  (see, for exam- 
ple, [Sl) .  

We also introduce the normalized characteristic function qk( x )  

(2 .3)  

where 1 Ij,kl denotes the length of I j ,k ,  and will use the notation Xj,k = X q k .  

4 off  
Given a function f E L2( R) and an interval ZC R, we define its Haar coefficient 

I We define the basis so that the dyadic scale with the index j is finer than the scale with index j + 1.  

This choice of indexing is convenient for numerical applications. 
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(2.4) 

and “average” sI off  on I as 

and observe that 

where I’ and I” are the left and the right halves of I .  
To obtain a numerical method for calculating the Haar coefficients of a function 

we proceed as follows. Suppose we are given N = 2 “ “samples” of a function, which 
can for simplicity be thought of as values of scaled averages 

of fon  intervals of length 2-”. We then get the Haar coefficients for the intervals 
of length 2-“+ via (2.6), and obtain the coefficients 

We also compute the “averages” 

(2.9) 

on the intervals of length 2-”+’. Repeating this procedure, we obtain the Haar 
coefficients 

(2.10) 

and averages 

(2.11) 
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for j = 0, . . - , n - 1 and k = 1 ,  . . . ,2”-’-  ’ . This is illustrated by the pyramid 
scheme 

{s!} - {s:} - { S i }  - { $ } * * *  
(2.12) L I I 

{ d : }  { d i }  { d : } . . . .  

It is easy to see that evaluating the whole set of coefficients dl, sI in (2.12) 
requires 2( N - 1 ) additions and 2N multiplications. 

In two dimensions, there are two natural ways to construct Haar systems. The 
first is simply the tensor product h,,, = hI 0 hJ, so that each basis function hlXJ 
is supported on the rectangle Z X J .  The second basis is defined by associating three 
basis functions: h,(x)hIr(y) ,  hI (x )xIr (y ) ,  and x1(x)hI(y)  to each square I X Z’, 
where I and I’ are two dyadic intervals of the same length. 

We consider an integral operator, 

(2.13) T ( f ) ( x )  = J K ( x ,  Y ) f ( Y )  dY, 

and expand its kernel (formally) as a function of two variables 
sional Haar series 

K(x, .Y) = 2 ~ ~ h I ( x ) h I 4 ~ )  + 2 P U ~ ~ I ( ~ ) X I ~ Y )  
1,I’ ],I’ 

(2.14) 

n the two-dimen- 

where the sum extends over all dyadic squares Z X I’ with I ZI = I Z’I , and where 

(2.15) 

and 

(2.17) 

When Z = G,k ,  I’ = Ij ,k (see (2.2)), we will also use the notation 

.i (2.18) k,k ‘ = a l j , , k l j , , kT  2 
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defining the matrices 
2 ” - J .  Substituting (2.14) into (2.13), we obtain 

= {a:,,}, PJ = { &,}, y J  = { r;,,}, with i, 1 = 1, 2, 9 * . , 

T ( f ) ( x )  = C h i ( x )  C aiiTdif + h ~ ( x )  C P / / ~ s / ~  
I I ’  I I’ 

(2.21) 

(recall that in each of the sums in (2.2 1 ) I and I’ always have the same length). 
To discretize (2.2 1 ), we define projection operators 

(2.22) 

and approximate T by 

(2.23) T N To = POTPO, 

where Po is the projection operator on the finest scale. An alternative derivation of 
(2.2 1 ) consists of expanding To in a “telescopic” series 

n 
(2.24) = C [ ( P j - l - P j ) T ( P j - l  - P j ) + ( P j - l - P j ) T P j  

j =  I 

+ P,T(Pj-l  - Pj)]  + PnTPn. 

Defining the operators Qj with j = 1, 2, - . . , n, by the formula 

Q .  = p .  (2.25 ) j 1-1 - Pj, 

we can rewrite (2.24) in the form 

n 
(2.26) To = (Qj TQj + Qj TPj + Pj TQj) + Pn TP,. 

j =  1 
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The latter can be viewed as a decomposition of the operator T into a sum of con- 
tributions from different scales. Comparing (2.14) and (2.26), we observe that 
while the term P,,TP,, (or its equivalent) is absent in (2.14), it appears in (2.26) 
to compensate for the finite number of scales. 

Observation 2.1. Clearly, expression (2.2 1 ) can be viewed as a scheme for the 
numerical application of the operator T to arbitrary functions. To be more specific, 
given a function fi we start with discretizing it into samples sp, k = 1, 2, - - , N ,  
(where N = 2'7, which are then converted into a vectorf E R 2 N - 2  consisting of 
all coefficients di, d; and ordered as follows 

Then, we construct the matrices a', p J ,  yJ forj  = 1,2, - * .  , n (see (2.15)-(2.20) 
and Observation 3.2) corresponding to the operator T,  and evaluate the vectors 
iJ = { ŝ; ] , & = { & ] via the formulae 

(2.28) dJ = a J ( d ' )  + p'(sJ) 

(2.29) ; j  == y j ( d j ) ,  

where dj = { d i > ,  sj = {sJk], k = 1,2, . * * , 2 " - J ,  with j = 1, * * , n .  Finally, we 
define an approximation T f  to To by the formula 

Clearly, T t ( f )  is a restriction of the operator To in (2.23) on a finite-dimensional 
subspace of L2( R). A rapid procedure for the numerical evaluation of the operator 
Tg is described (in a more general situation) in Section 3 below. 

* , n into 
a single matrix, depicted in Figure I ,  and for reasons that will become clear in 
Section 4, the matrix in Figure 1 will be referred to as the non-standard form of 
the operator T ,  while (2.14) will be referred to as the "non-standard" representa~on 
of T (note that the (2.14) is not the matrix realization of the operator To in the 
Haar basis). 

It is convenient to organize the matrices a', p ' ,  y J  withj = 1,2, 

3. Wavelets with Vanishing Moments and Associated Quadratures 

3.1. Wavelets with Vanishing Moments 
Though the Haar system leads to simple algorithms, it is not very useful in 

actual calculations, since the decay of a f f f ,  y f f g  away from diagonal is not 
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Figure 1 .  Representation of the decomposed matrix. Submatrices a, p, and y on 
different scales are the only nonzero submatrices. In fact, most of the entries of these 
submatrices can be set to zero given the desired accuracy (see examples in Figures 2-8 ) . 

sufficiently fast (see below). To have a faster decay, it is necessary to use a basis in 
which the elements have several vanishing moments. In our algorithms, we use the 
orthonormal bases of compactly supported wavelets constructed by I. Daubechies 
[ 41 following the work of Y .  Meyer [ 7 ] and S. Mallat [ 61. We now describe these 
orthonormal bases. 

Consider functions I) and cp (corresponding to h and x in Section 2 ) ,  which 
satisfy the following relations: 

(3 .2)  

where 

( 3 . 3  1 k =  1, , 2 M  
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and 

(3.4) p(x) d x  = 1. 

The coefficients { hk ] $1 :” are chosen so that the functions 

(3.5) +j( (x)  = 2-J’*+(2-’x - k + 1 ) ,  

wherej and k are integers, form an orthonormal basis and, in addition, the function 
$ has M vanishing moments 

(3.6) J $ ( X ) X M  d x  = 0, m = 0, . . -  , M -  1. 

We will also need the dilations and translations of the scaling function cp, 

(3.7 1 &x) = 2-J’2cp(2-Jx - k + 1). 

Note that the Haar system is a particular case of (3.1 )-( 3.6) with M = 1 and 
hl = h2 = l / f i ,  cp = X and $ = h ,  and that the expansion (2.14)-(2.17) and the 
non-standard form in (2.26) in Section 2 can be rewritten in any wavelet basis by 
simply replacing functions x and h by cp and $ respectively. 

Remark 3.1. Several classes of functions cp, $ have been constructed in recent 
years, and we refer the reader to [ 41 for a detailed description of some of them. 

Remark 3.2. Unlike the Haar basis, the functions (or, cpJcan have overlapping 
supports for J f I .  As a result, the pyramid structure (2.12) “spills out” of the 
interval [ 1, N ]  on which the structure is originally defined. Therefore, it is technically 
convenient to replace the original structure with a periodic one with period N .  This 
is equivalent to replacing the original wavelet basis with its periodized version 
(see [S l ) .  

3.2. Wavelet-Based Quadratures 
In the preceding subsection, we introduce a procedure for calculating the 

coefficients s;, d; for a l l j  2 1, k = 1,2, . , N ,  given the coefficients s! for k = 
1, 2, * . * , N .  In this subsection, we introduce a set of quadrature formulae for the 
efficient evaluation of the coefficients s! corresponding to smooth functionsf. The 
simplest class of procedures of this kind is obtained under the assumption that 
there exists an integer constant such that the function p satisfies the condition 
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( 3 . 8 )  s (o(x + TM)xrn dx = 0, for rn = 1 ,  2 ,  . . . , M - 1 ,  

i.e., that the first M - 1 "shifted" moments ofp are equal to zero, while its integral 
is equal to 1 .  Recalling the definition of s!, 

s: = 2n/2  s / ( x ) ( o ( Z " x  - k + 1 )  dx 

(3.10) 

= 2"12 s f ( x  + 2-"(k - l ) ) p ( 2 " x )  dx,  

expanding finto a Taylor series around 2-"(k - 1 + TM) ,  and using (3 .8) ,  we 
obtain 

In effect, (3.1 1 ), is a one-point quadrature formula for the evaluation of s!. Applying 
the same calculation to s i  with j 2 1, we easily obtain 

which turns out to be extremely useful for the rapid evaluation of the coefficients 
of compressed forms of matrices (see Section 4 below). 

Though the compactly supported wavelets found in [ 41 do not satisfy the con- 
dition (3 .8) ,  a slight variation of the procedure described there produces a basis 
satisfying ( 3 . 8 ) ,  in addition to ( 3 . 1  )-( 3.6) .  Coefficients of the filters { h k }  corre- 
sponding to M = 2 ,4 ,  6 and appropriate choices of TM can be found in Appendix 
A, and we would like to thank I. Daubechies for providing them to us. 

It turns out that the filters in Table 1 are 50% longer than those in the original 
wavelets found in [ 41, given the same order M. Therefore, it might be desirable to 
adapt the numerical scheme so that the "shorter" wavelets could be used. Such an 
adaptation (by means of appropriately designed quadrature formulae for the eval- 
uation of the integrals ( 3.10)) is presented in Appendix B. 

Remark 3.3. We do not discuss in this paper wavelet-based quadrature for- 
mulae for the evaluation of singular integrals, since such schemes tend to be problem- 
specific. Note, however, that for all integrable kernels quadrature formulae of the 
type developed in this paper are adequate with minor modifications. 
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3.3. Fast Wavelet Transform 
For the rest of this section, we treat the procedures being discussed as linear 

transformations in RN,  viewed as the Euclidean space of all periodic sequences 
with the period N .  

Replacing the Haar basis with a basis of wavelets with vanishing moments, 
and assuming that the coefficients sz, k ='1, 2 ,  * , N are given, we replace the 
expressions (2.8)-( 2.1 1 ) with the formulae and 

(3.13) 

(3.14) 

where s; and d ;  are viewed as periodic sequences with the period 2"-' (see also 
Remark 3.2 above). As is shown in [ 41, the formulae (3.13) and (3.14) define an 
orthogonal mapping 0, : R , converting the coefficients s i -  I with 

the inverse of 0, is given by the formulae 

2 " - J f l  - ~ 2 " - J + l  

k = 1 ,  2, . . . , 2"-J+l into . the coefficients s/k, d; with k = 1 ,  2, . * * , 2n-J, and 

Obviously, given a function fof the form 

2"-1 

f ( x )  = 2 S ; ~ ( " - J ) / ~ ( P ( ~ ~ - J X  - ( k  - 1 ) )  
k =  I (3.16) 

2"-J  

+ 2 d-'k2("-')'*$(2"-Jx - ( k  - I ) ) ,  
k =  1 

it can be expressed in the form 

2"- ,  + I 

(3.17) f ( x )  = 2 SJI-12(n-J+l)/2 (P(2"-'+'x - ( I  - l ) ) ,  
I =  I 
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Observation 3.1. Given the coefficients s&, k = 1, 2, . . , N ,  recursive appli- 
cation of the formulae (3.13), (3.14) yields a numerical procedure for evaluating 
the coefficients s i ,  d i  for a l l j  = 1, 2, * , n ,  k = 1, 2, * * , 2"- J ,  with a cost 
proportional to N .  Similarly, given the values d i  for a l l j  = 1, 2, . . * , n ,  k = 1, 2, 
. . .  , 2"-/ ,  and s; (note that the vector s" contains only one element) we can 
reconstruct the coefficients s& for all k = 1, 2, . . , N by using (3.15) recursively 
for j = n ,  n - 1, . . , 0. The cost of the latter procedure is also O ( N ) .  Finally, 
given an expansion of the form 

n 2"-J 

f (x)  = c 2 s'k2"'-')'2p(2"-Jx - ( k  - 1) )  
j = O  k = l  

(3.18) 
n 2"-J 

+ 2 2 dJk2(n-J)'2+(2n-J~ - (k  - I ) ) ,  
J = O  k = l  

it costs O ( N )  to evaluate all coefficients s&, k = 1, 2, . . . , N by the recursive 
application of the formula (3.17) with j = n ,  n - 1, - , 0. 

Observation 3.2. It is easy to see that the entries of the matrices a ' ,  P ' ,  yJ 
withj = 1,2, . . . , n ,  are the coefficients of the two-dimensional wavelet expansion 
of the function K(x, y ) ,  and can be obtained by a two-dimensional version of the 
pyramid scheme (2.12), (3.13), (3.14). Indeed, the definitions (2.15)-(2.17) of 
these coefficients can be rewritten in the form 

(3.19) a{,/ = 2-JS-s s_", K(x, y)+(2-'x - ( i  - 1))+(2-'y - ( I  - 1 ) )  dxdy, 

00 

(3.20) = 2-j r" r K ( x ,  y)+(2-'x - ( i  - l))p(2-'y - ( I  - 1)) dx dy,  
J -m J -m 

and we will define an additional set of coefficients s{,/ by the formula 

(3.22) s:,/ = 2-J sp, K(x,y)p(2-'x- ( i -  i))p(2-jy- ( I -  1))dxdy. 

Now, given a set of coefficients s& with i, 1 = 1,2, . . . , N ,  repeated application of 
the formulae (3.13), (3.14) produces 
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with i, 1 = 1, 2, . . . , 2”-/ j = 1, 2, . . . , n. Clearly, formulae (3.23)-(3.26) are a 
two-dimensional version of the pyramid scheme (2.12), and provide an order N 2  
scheme for the evaluation of the elements of all matrices a J , p j ,  yJ  with j = 1, 2, 
. . .  , n .  

4. Integral Operators and Accuracy Estimates 

4.1. Non-Standard Form of Integral Operators 
In order to describe methods for “compression” of integral operators, we restrict 

our attention to several specific classes of operators frequently encountered in 
analysis. In particular, we give exact estimates for pseudo-differential and 
Calderon-Zygmund operators. 

We start with several simple qbservations. The non-standard form of a kernel 
K(x, y )  is obtained by evaluating the expressions 

and 

(4.3) 

(See Figure 1 .) Suppose now that K is smooth on the square I X I’. Expanding K 
into a Taylor series around the center of I X Z’, combining (3.6) with (4.1 )-( 4.3), 
and remembering that the functions +,, are supported on the intervals I, I‘ 
respectively, we obtain the estimate 
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Obviously, the right-hand side of (4.4) is small whenever either I ZI or the derivatives 
involved are small, and we use this fact to “compress” matrices of integral operators 
by converting them to the non-standard form and discarding the coefficients that 
are smaller than a chosen threshold. 

To be more specific, consider pseudo-differential operators and Calderon-Zyg- 
mund operators. These classes of operators are given by integral or distributional 
kernels that are smooth away from the diagonal, and the case of Calderon-Zygmund 
operators is particularly simple. These operators have kernels K( x ,  y )  which satisfy 
the estimates 

(4.5 1 

(4.6) 

for some M L 1. To illustrate the use of the estimates (4.5) and (4.6) for the 
compression of operators, we let M = I in (4.6) and consider 

(4.7) 

where we assume that the distance between Z and Z’ is greater than I ZI  . Since 

(4.8) hI(x )  dx = 0, 

we have 

where xI denotes the center of the interval Z. In other words, the coefficient 
decays quadratically as a function of the distance between the intervals I ,  I’, and 
for sufficiently large Nand finite precision of calculations, most of the matrix can 
be discarded, leaving only a band around the diagonal. However, algorithms using 
the above estimates (with M = 1 ) tend to be quite inefficient, due to the slow decay 
of the matrix elements with their distance from the diagonal. The following simple 
proposition generalizes the estimate (4.9) for the case of larger M ,  and provides 
an analytical tool for efficient numerical compression of a wide class of operators. 
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PROPOSITION 4.1. Suppose that in the expansion (2.14), the wavelet basis has 
A 4  vanishing moments, i.e., the functions cp and $ (replacing x and h )  satisfy the 
conditions (3.1)-( 3 .6 ) .  Then for any kernel K satisfying the conditions (4.5) and 
(4.6), the coeficients a:,/, pi,,, y $  in the nonstandard form (see (2.18)-(2.20) 
and Figure 1 ) satisfy the estimate 

(4.10) 

for all 

(4.11) li-11 2 2 M  

Remark 4.1. For most numerical applications, the estimate (4.10) is quite 
adequate, as long as the singularity of K is integrable across each row and each 
column (see the following section). To obtain a more subtle analysis of the operator 
To (see (2.23) above) and correspondingly tighter estimates, some of the ideas 
arising in the proof of the “T( 1 )” theorem of David and JournC are required. We 
discuss these issues in more detail in Section 4.5 below. 

Similar considerations apply in the case of pseudo-differential operators. Let 
T be a pseudo-differential operator with symbol a(x, [) defined by the formula 

where K is the distributional kernel of T .  Assuming that the symbols u of T and 
CT* of T* satisfy the standard conditions 

we easily obtain the inequality 

(4.15) 

for all integer i, I. 

Remark 4.2. A simple case of the estimate (4.15 ) is provided by the operator 
T = d / d x ,  in which case it is obvious that 
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(4.16) P i [ =  ${ , - -cp /  - 2-J $(2-’x-  i +  1 )  ( : J ) -  s 
X cp’(2-J~ - I + 1)2-’dx = 2-J@;- / ,  

where the sequence { p i }  is defined by the formula 

provided a sufficiently smooth wavelet cp(x) is used. 

4.2. Numerical Calculations and Compression of Operators 
Suppose now that we approximate the operator TON by the operator T$3 ob- 

tained from TON by setting to zero all coefficients of matrices a = { all!}, P = { P I l r } ,  

y = { yII* } outside of bands of width 3 1 2M around their diagonals. It is easy to 
see that 

where C is a constant determined by the kernel K.  In other words, the matrices a, 
P, y can be approximated by banded matrices aB, BB, y B  respectively, and the 
accuracy of the approximation is 

(4.19) 
C 
- log&. 
BM 

In most numerical applications, the accuracy E of calculations is fixed, and the 
parameters of the algorithm (in our case, the band width B and order M )  have to 
be chosen in such a manner that the desired precision of calculations is achieved. 
If M is fixed, then B has to be such that 

(4.20) 

or, equivalently, 

(4.21) 

In other words, TON has been approximated to precision E with its truncated 
version, which can be applied to arbitrary vectors for a cost proportional to 
N ( ( C / E ) ~ O ~ ~ N ) ’ / ~ ,  which for all practical purposes does not differ from N .  A 
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considerably more detailed investigation (see Remark 4.1 above and Section 4.5 
below) permits the estimate (4.2 I ) to be replaced with the estimate 

(4.22) 

making the application of the operator T," to an arbitrary vector with arbitrary 
fixed accuracy into a procedure of order exactly O( N) . 

Whenever sufficient analytical information about the operator T is available, 
the evaluation of those entries in the matrices a, P, y that are smaller than a given 
threshold can be avoided altogether, resulting in an O ( N )  algorithm (see Section 
4.3 below for a more detailed description of this procedure). 

Remark 4.3. Both Proposition 4.1 and the subsequent discussion assume that 
the kernel K is non-singular everywhere outside the diagonal, on which it is permitted 
to have integrable singularities. Clearly, it can be generalized to the case when the 
singularities of K are distributed along a finite number of bands, columns, rows, 
etc. While the analysis is not considerably complicated by this generalization, the 
implementation of such a procedure on the computer is significantly more involved 
(see Section 5 below). 

4.3. Rapid Evaluation of the Non-Standard Form of an Operator 
In this subsection, we construct an efficient procedure for the evaluation of the 

elements of the non-standard form of an operator T lying within a band of width 
B around the diagonal. The procedure assumes that T satisfies conditions (4.5) 
and (4.6) of Section 4, and has an operation count proportional to N .  B (as opposed 
to the O ( N 2 )  estimate for the general procedure described in Observation 3.2). 

To be specific, consider the evaluation of the coefficients Pi,/ for all j = 1, 2, 
. . . , n ,  and I i - I1 S B. According to (3.24), 

which involves the coefficients s:</! in a band of size 3 B defined by the condition 
li' - 1'1 5 3B. Clearly, (3.26) could be used recursively to obtain the required 
coefficients sic/!, and the resulting procedure would require order N 2  operations. 
We therefore compute the coefficients s $ ~ !  directly by using appropriate quadra- 
tures. In particular, the application of the one-point quadrature (3.12) to K ( x ,  y ) ,  
combined with the estimate (4.6), gives 
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If the wavelets used do not satisfy the moment condition (3.8),  more complicated 
quadratures have to be used (see Appendix B to this paper). 

4.4. The Standard Matrix Realization in the Wavelet Basis 
While the evaluation of the operator T via the non-standard form (i.e., via the 

matrices a J , ,d J , y J ) is an efficient tool for applying it to arbitrary functions, it is 
not a representation of Tin any basis. There are obvious advantages to obtaining 
a mechanism for the compression of operators that is simply a representation of 
the operator in a suitably chosen basis, even at the cost of certain sacrifices in the 
speed of calculations (provided that the cost stays O( N) or O( N log N)) . It turns 
out that simply representing the operator T in the basis of wavelets satisfying the 
conditions (3.6) results (to any fixed accuracy) in a matrix containing no more 
than O(N log N ) non-zero elements. Indeed, the elements of the matrix repre- 
senting Tin this basis are of the form, 

(4.25 ) 

with I, J all possible pairs of diadic intervals in R, not necessarily such that 1 I( = 
1 J ( .  Combining estimates (4.5), (4.6) with (3.6), we see that 

(4.26) 

where CM is a constant depending on M ,  K, and the choice of the wavelets 
(d(Z,  J )  denotes the distance between I ,  J) and it is assumed that 1 I /  d I JI . It is 
easy to see that for large N and fixed t I 0, only O( N log N ) elements of the 
matrix (4.25) will be greater than E ,  and by discarding all elements that are smaller 
than a predetermined threshold, we compress it to O( N log N elements. 

Remark 4.4. A considerably more detailed investigation (see [ 81) shows that 
in fact the number of elements in the compressed matrix is asymptotically pro- 
portional to N, as long as the images of the constant function under the mappings 
Tand T* are smooth. Fortunately, the latter is always the case for pseudo-differential 
and many other operators. 

Numerically, evaluation of the compressed form of the matrix { TIjf starts 
with the calculation of the coefficients so (see (2.7)) via an appropriately chosen 
quadrature formula. For example, if the wavelets used satisfy the conditions (3.8), 
(3.9), the one-point formula (3.10) is quite adequate. Other quadrature formulae 
for this purpose can be found in Appendix B to this paper. Once the coefficients 
so have been obtained, the subsequent calculations can be carried out in one of 
three ways. 

1 .  The naive approach is to construct the full matrix of the operator Tin  the 
basis associated with wavelets by following the pyramid (2.12). After that, 
the elements of the resulting matrix that are smaller than a predetermined 
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threshold, are discayded. Clearly, this scheme requires O( N 2 )  operations, 
and does not require any prior knowledge of the structure of T .  

2. When the structure of singularities of the kernel K is known, the locations 
of the coefficients of the matrix { TIj} exceeding the threshold 6 can be de- 
termined a priori. After that, these can be evaluated by simply using appro- 
priate quadrature formulae on each of the supports of the corresponding 
basis functions. The resulting procedure requires order O ( N  log( N ) )  oper- 
ations when the operator in question is either Calderon-Zygmund or pseudo- 
differential, and is easily adaptable to other distributions of singularities of 
the kernel. 

3. The third approach is to start with the non-standard form of the operator 
T ,  compress it, and then convert the compressed version into the standard 
form. The conversion procedure starts with the formula 

which is an immediate consequence of (2.16), (2.19). Combining (4.27) 
with (3.14), we immediately obtain 

TIJ = 2-(2,+ 1112 J" sp, K(x7 Y) 
- W  

(4.28) 
2M 

X +(2-'x - (k - 1))+(2-(J+l)y - ( i  - 1 ) )  dx dy = 2 gl/3ik,1+2i-2, 
l=  1 

where Z = Zj,,k and J = Z,+ I , i .  Similarly, we define the set of coefficients { SI,J} 
via the formula 

(4.29) 

and observe that these are the coefficients s{+ in the pyramid scheme (2.12). 
In general, given the coefficients SIJ on step m (that is, for all pairs (I, J )  
such that I JI = 2 I Z I ), we move to the next step by applying the formula 
(4.28 ) recursively. 

Remark 4.5. Clearly, the above procedure amounts to simply applying the 
pyramid scheme (2.12) to each row of the matrix P ' .  
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K ( x ,  y )  dx dy Id,, 

4.5. Uniform Estimates for Discretizations of Calderon-Zygmund Operators 
As has been observed in Remark 4.1, the estimates (4.10) are adequate for 

most numerical purposes. However, they can be strengthened in two important 
respects. 

1. The condition (4.1 1 ) can be eliminated under a weak cancellation condition 
(4.30). 

2. The condition (4.10) does not by itself guarantee either the boundedness of 
the operator T, or the uniform (in N) boundedness of its discretizations To. 
In this section, we provide the necessary and sufficient conditions for the 
boundedness of T, or, equivalently, for the uniform boundedness of its dis- 
cretizations To. This condition is, in fact, a reformulation of the “T( 1 ) ”  
theorem of David and Journt. 

5 C /  ZI 

UNIFORM BOUNDEDNESS OF THE MATRICES a, p, y. We start by observing 
that estimates (4.5), (4.6) are not sufficient to conclude that a:,/, y{,/ are 
bounded for I i - /I  6 2 M  (for example, consider K ( x ,  y) = 1 /( I x - y I)). We 
therefore need to assume that Tdefines a bounded operator on L2 or a substantially 
weaker condition 

(4.30) 

for all dyadic intervals I (this is the “weak cancellation condition”; see [ 81 ). Under 
this condition and the conditions (4.5), (4.6) Proposition 4.1 can be extended to 

(4.31) 

forall i, /(see [8]). 

UNIFORM BOUNDEDNESS OF THE OPERATORS To. We have seen in (2 .26)  a 
decomposition of the operator To into a sum of contributions from the different 
scales J .  More precisely, the matrices a I ,  p I ,  yf act on the vector { s i }  , { d ; } ,  
where df are coordinates of the function with respect to the orthogonal set of func- 
tions 2-f’2$(2-Jx - k), and the s J  are auxiliary quantities needed to calculate the 
d:. The remarkable feature of the non-standard form is the decoupling achieved 
among the scales j followed by a simple coupling performed in the reconstruction 
formulas (3.17). (The standard form, by contrast, contains matrix entries reflecting 
“interactions” between all pairs of scales.) In this subsection, we analyze this coupling 
mechanism in the simple case of the Haar basis, in effect reproducing the proof of 
the “T( I ) ”  theorem (see [3]). 

For simplicity, we will restrict our attention to the case where a = y = 0, and 
p satisfies conditions (4.31 ) (which are essentially equivalent to (4.5), (4.6), and 
(4.30)). In this case, for the Haar basis we have 
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(4.32) 

which can be rewritten in the form 

where 

and 

(4.35) 

It is easy to see (by expressing sI in terms of dI)  that the operator 

is bounded on L2  whenever (4.31) is satisfied with M = 1. We are left with the 
“diagonal” operator 

(4.37) 

with 

(4.39) 

Clearly 

$I = ( f ,  X I ) .  

(4.40) I1 B2(f) I1 t = c P12312. 

If we choose f =  xJ where J i s  a dyadic interval we find sI = I ZI ‘ I 2  for I G J from 
which we deduce that a necessary condition for B2 to define a bounded operator 
on L2(R) is given as 
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but since the hl for I c J are orthogonal in L2( J), 

with 

(4.43) 

Combining (4.4 1 ) with (4.42) we obtain 

(4.44) m,( @) I dx 5 C. 

Expression ( 4.44) is usually called bounded dyadic mean oscillation condition 
(BMO) on P, and is necessary for the boundedness of B2 on L2. It has been proved 
by Carleson (see, for example, [ 81) that the condition (4.4 1 ) is necessary and 
sufficient for the following inequality to hold 

(4.45) 

Combining these remarks we obtain: 

THEOREM 4.1 (G. David, J. L. Journk). Suppose that the operator 

(4.46) 

satis-es the conditions (4.5), (4.6), (4.30). Then the necessary and suficient con- 
dition for T to be bounded on L2 is that 

belong to dyadic BMO, i.e., satisfy condition (4.44). 

We have shown that the operator T in Theorem 4.1 can be decomposed as a 
sum of three terms 
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(4.49) T = BI + B2 + B3, 

where 

(4.50) 

(4.51) 

and 

(4.52) 

with I I1 ‘I2pr = (hr ,  p), I Z’) */*yrt  = ( h r f ,  y), /3 = T( l ) ,  and y = T*( 1 ) .  
The principal term B 1 ,  when converted to the standard form, has a band struc- 

ture with decay rate independent of N. The terms B2, B3 are bounded only when 
p, y are in BMO (see [S]). 

4.6. Algorithms for Bilinear Functionals 
The terms B2 and B3 in (4.49) are bilinear transformations in (p,  f ), (y, f ), 

respectively. Such “pseudo products” occur frequently as differentials (in the di- 
rection p )  of non-linear functionals of f(see [ 3 ] ) .  In this section, we show that 
pseudo-products can be implemented in order N operation (or for the same cost 
as ordinary multiplication). To be specific, we have the following proposition. 

PROPOSITION 4.2. Let K ( x ,  y ,  z )  satisfy the conditions 

(4.53) 

(4.54) 

for some M 

(4.55) 

t 1, and the bilinear functional B( f ,  g )  be defined by the formula 

Then the bilinear functional B ( f ,  g )  can be applied to a pair of arbitrary functions 
f, g for a cost proportional to N ,  (where N is the number of samples in the discre- 
tization of the functions f and g ) ,  with the proportionality coeficient depending on 
M and the desired accuracy, and independent of the kerne1.K. 

The following is an outline of an algorithm implementing such a procedure. 
As in the linear case, we use the wavelet basis with Mvanishing moments and write 
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+ P I , Q $ I ( ~ ) ~ P Q ( Y ,  Z )  

Substituting in (4.56) into (4.55) we obtain 

( 1 )  (2 )  ( 3 )  ( 1 )  ( 2 )  ( 3 )  where ~ I , J , J ~ ,  ~ I , J , J ’ ,  ~ I , J , J T ,  PI ,J ,J~ ,  and Y I , J , J ’ ,  Y I , J , J J ,  YI,.T,J’, denote the coefficients 
of the function K ( x ,  y ,  z )  in the three-dimensional wavelet basis. Therefore, com- 
bining (4.58) with Observation 3.1, we obtain an order O ( N )  algorithm for the 
evaluation of (4.55) on an arbitrary pair of vectors. 

It easily follows from the estimates (4.53) and (4.54) that 

(4.59) laI,J,J,l + IPI ,J ,J~I  + I Y I , J , J ~ ~  (dist(1, J) + dist(Z, J’) = 

resulting in banded matrices and a “compressed” version having O( N )  entries 
(also, compare (4.59) with (4.10)). 

Similar results can be obtained for many classes of non-linear functionals whose 
differentials satisfy the conditions analogous to (4.53) and (4.54). 

5. Description of the Algorithm 

In this section, we describe an algorithm for rapid application of a matrix To 
discretizing an integral operator T to an arbitrary vector. It is assumed that T 



FAST WAVELET TRANSFORMS A N D  NUMERICAL ALGORITHMS I 165 

satisfies the estimates (4.5), (4.6), or the more general conditions described in 
Remark 4.3. The scheme consists of four steps. 

Step 1. Evaluate the coefficients of the matrices a J ,  ,f3 I, y J ,  j = 1,2, , n 
corresponding to To (see (2.18)-( 2.20) above), and discard all elements of these 
matrices whose absolute values are smaller than c. The number of elements re- 
maining in all matrices a J ,  / 3 J ,  y J  is proportional to N (see estimates 
(4.21), (4.22)). 

Depending on the a priori information available about the operator T ,  one of 
two procedures is used, as follows. 

1 .  If the a priori information is limited to that specified in Remark 4.3 (i.e., 
the singularities of K are distributed along a finite number of bands, rows, 
and columns, but their exact locations are not known), then the extremely 
simple procedure described in Observation 3.2 is utilized. The resulting cost 
of this step is O ( N 2 ) ,  and it should only be used when the second scheme 
(see below) can not be applied. 

2. If the operator T satisfies the estimates (4.5), (4.6) for some M 2 1 ,  and the 
wavelets employed satisfy the condition (3.8), then the more efficient pro- 
cedure described in Section 4.3 is used. While the implementation of this 
scheme is somewhat involved, it results in an order O ( N )  algorithm, and 
should be used whenever possible. 

Step 2. Evaluate the coefficients s;, d: for all j = 1, 2, * . .  , n,  k = 1 ,  2, . . , 
2"-'(see formulae (3.13),  (3.14) and Observation 3.1).  

Step 3 .  Apply the matrices a ' ,  P J ,  yJ  to the vectors s J ,  d', obtaining the 
vectors 9, d J  for j = 1 ,  2, * + * , n (see formulae (2.28), (2.30)). 

Step 4. Use the vectors iJ, dJ to evaluate To(f) via the formula (3 .15)  (see 
Observation 3.1 ). 

Remark 5.1. It is clear that Steps 2-4 in the above scheme require order O ( N )  
operations, and that Step 1 requires either order O ( N )  or O ( N 2 )  operations, de- 
pending on the a priori information available about the operator T .  It turns out, 
however, that even when Step 1 requires order N operations, it is still the dominant 
part of the algorithm in terms of the actual operation count. In most applications, 
a single operator has to be applied to a relatively large number of vectors, and in 
such cases it makes sense to produce the nonstandard form of the operator T and 
store it. After that, it can be retrieved and used whenever necessary, for a very small 
cost (see also Section 6 below). 

Remark 5.2.  In the above procedure, Step 1 requires O ( N 2 )  operations when- 
ever the structure of the operator T is not described by the estimates (4.5), (4.6). 
Clearly, it is not the only structure of T for which an order O ( N )  procedure can 
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be constructed. In fact, this can be done for any structure of T described in Remark 
4.3, provided that the location of singularities of T is known a priori. The data 
structures required for the construction of such an algorithm are fairly involved, 
but conceptually the scheme is not substantially different from that described in 
Section 4.3. 

6. Numerical Results 

A FORTRAN program has been written implementing the algorithm of the 
preceding section, and numerical experiments have been performed on the SUN- 
3/ 50 computer equipped with the MC6888 1 floating-point accelerator. All calcu- 
lations were performed in three ways: in single precision using the standard (direct) 
method, in double precision using the algorithm of this paper with the matrices a, 
8, y truncated at various thresholds (see Section 4.2 above), and in double precision 
using the standard method. The latter was used as the standard against which the 
accuracy of the other two calculations was measured. 

We applied the algorithm to a number of operators; the results of six such 
experiments are presented in this section and summarized in Tables 1-6, and il- 
lustrated in Figures 2-9. Column l of each of the tables contains the number N of 
nodes in the discretization of the operator, columns 2 and 3 contain CPU times 
T,, T,  required by the standard (order O( N 2 ) )  and the “fast” (0( N ) )  schemes to 
multiply a vector by the resulting discretized matrix respectively, and column 4 
contains the CPU Td time used by our scheme to produce the non-standard form 
of the operator. Columns 5 and 6 contain the L2 and L, errors of the direct cal- 
culation respectively, and columns 7 and 8 contain the same information for the 
result obtained via the algorithm of this paper. Finally, column 9 contains the 
compression coefficients Ccomp obtained by our scheme, defined by the ratio of N 2  
to the number of non-zero elements in the non-standard form of T.  In all cases, 
the experiments were performed for N = 64, 128, 256, 512, and 1024, and in all 
Figures 2-9, the matrices are depicted for N = 256. 

Example 1. In this example, we compress matrices of the form 

and convert them to a system of coordinates spanned by wavelets with six first 
moments equal to zero. Setting to zero all entries in the resulting matrix whose 
absolute values are smaller than lo-’, we obtain the matrix whose non-zero elements 
are shown in black in Figure 2. The results of this set of experiments are tabulated 
in Table 1. The standard form of the operator A with N = 256 is depicted in 
Figure 9. 



FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS I 167 

Figure 2. Entries above the threshold of lo-' of the decomposed matrix of Example 
1 are shown black. Note that the width of the bands does not grow with the size of the 
matrix. 

Table 1. Numerical results for Example 1. 

Error of single 
precision Error of FWT 

Input Time multiplication multiplication Compression 
size coefficient 
(N) T, T, T, L,-norm &-norm L2-norm L,-norm C,,, 

64 0.12 0.16 7.76 1.26. 3.65. 8.89. 1.72. 1.39 
128 0.48 0.38 32.62 2.17. 8.64. 1.12- 9.94. lo-' 2.22 
256 1.92 0.80 96.44 2.81 - loT7 1.12- 1.25. 5.30. lo-' 3.93 
512 7.68 1.80 252.72 4.21 - lo-' 1.75. 1.23. 5.16- lo-' 7.33 

1024 30.72 3.72 605.74 6.64. 3.90. 1.36. lo-' 5.04. lo-' 14.09 

Example 2. Here, we compress matrices of the form 

1. otherwise 

logli - 2"-' I -log1 j - 2"-' I 
i - j  

. 
i # j ;  i # 2"-';  j # 2"-' 

A , .  = 
1J 

wherei , j=  1, , N a n d N = 2 " .  
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Figure 3. Entries above the threshold of of the decomposed matrix of Example 
2. Vertical and horizontal bands in the middle of submatrices as well as the diagonal bands 
are due to the singularities of the kernel (matrix). Note that in this case the kernel is not 
a convolution. 

This matrix is not a convolution and its singularities are more complicated. 
The decomposition of this matrix using wavelets with six vanishing moments dis- 
playing entries above the threshold of lo-’ is shown in Figure 3, and the numerical 
results of these experiments are tabulated in Table 2. In this case, the structure of 
the singularities of the matrix is not known a priori, and its non-standard form 
was obtained by converting the whole matrix to the wavelet system of coordinates, 

Table 2. Numerical results for Example 2. 

Error of single 
precision Error of FWT 

Input Time multiplication multiplication Compression 
size coefficient 
(N) T, T, T, L,-norm L,-norm &-norm L,-norm Ccomp 

64 0.12 0.16 8.62 1.87. 7.53. 8.24. lo-* 2.87. 1.23 
128 0.48 0.34 35.06 3.18- 8.62. 1.14. 3.79- 2.02 
256 1.92 0.84 142.82 4.30- 2.03. 1.33. 4.72. 3.76 
512 7.68 1.72 574.86 6.63- 4.42. 1.44. 4.80. 7.50 

1024 30.72 3.30 2,298.7 9.25. 6.06 - 1.71 . 6.77 * 15.68 
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and discarding the elements that are smaller than the threshold (see Section 4.2). 
Correspondingly, the cost of constructing the non-standard form of the operator is 
proportional to N2 (see column 4 of Table 2) .  The standard form of the operator 
A with N = 256 is depicted in Figure 10. 

Example 3. In this example, we compress and rapidly apply to arbitrary vectors 
the matrix converting the coefficients of a finite Chebyshev expansion into the 
coefficients of a finite Legendre expansion representing the same polynomial (see 
[ 1 1 ) .  The matrix is given by the formulae 

A , .  = M N  v 2i2 j 

where i, j = 1 ,  . . . , Nand N = 2" and M t i s  defined as 

if 0 = i S j < Nand j i s  even 

if 0 < i 5 j < N and i + j is even 

n- 

A( ( j  - i ) / 2 ) A (  ( j  + i)/ 2) 
2 

0 otherwise, 

where A( z )  = r( z + 1 /2 ) /  I'( z + 1 ) and I?( z )  is the gamma function. Alternatively, 

if 0 = i i j < N 

A . .  v = 1 A( j - i )A( j + i) if 0 < i 5 j < N. 

otherwise 

We used the threshold of lop6 and wavelets with five vanishing moments to obtain 
the numerical results depicted in Table 3 and Figure 4. As a corollary, we obtain 
an algorithm for the rapid evaluation of Legendre expansions of the same complexity 
(and roughly the same actual efficiency) as that described in [ 11. 

Example 4. Here, 

log(i - j ) 2  i # j 
i = j  

We use wavelets with six vanishing moments and set to zero everything below 
Table 4 and Figure 5 and Figure 6 describe the results of these experiments. 
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Figure 4. Entries above the threshold of of the decomposed matrix of Example 
3. This matrix is one of two transition matrices to compute Legendre expansion from 
Chebyshev expansion. 

Example 5 .  In this example, 

i#j 
1 

i - j + ~ ( C O S  i j )  

Table 3. Numerical results for Example 3. 

Error of single 
precision Error of FWT 

Input Time multiplication multiplication Compression 
size coefficient 
(N) T, T ,  Td L2-norm L,-norm L2-norm La-norm Cmmp 

64 0.12 0.12 10.28 2.64. lo-’ 7.19. 8.09. 2.34- 1.73 
128 0.48 0.30 42.70 6.19. lo-’ 3.94- 1.66- 8.02. 2.89 
256 1.92 0.66 133.66 1.28. 5.23 * 2.51 * 1.21 - 5.18 
512 7.68 1.40 344.60 2.24. 1.35. 3.75. 3.31. 9.70 

1024 30.72 2.78 805.90 4.45 * 2.42. 6.40. 9.00- 18.60 
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Figure 5. Entries above the threshold of of the decomposed matrix of Example 4. 

and it is easy to see that this operator does not satisfy the condition (4.10). None- 
theless, when a low order version of our scheme is applied to it, the results are quite 
satisfactory, albeit with an expectedly low accuracy (we used wavelets with two 
vanishing moments, and set the threshold to The results of these numerical 
experiments can be seen in Figure 7 and Table 5. 

Table 4. Numerical results for Example 4. 

Error of single 
precision Error of FWT 

Input Time multiplication multiplication Compression 
size coefficient 
(N) T, T, T, &-norm L,-norm L,-norm L,-norm C,,, 

64 0.12 0.14 8.84 2.22. 6.31 - 1.13. 2.33. 1.37 
128 0.48 0.34 38.42 6.23. lo-’ 1.62. 2.07. 5.19. 2.19 
256 1.92 0.84 120.22 2.1 I 6.99 - 2.99 * LO-6 8.46 - 3.82 
512 7.68 1.76 310.86 7.90. 2.47. 4.08. 1.23. 7.04 

1024 30.72 3.70 736.8 2.65 - 9.44. 6.53 7 2.19. 13.43 
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Scale j = 1, f i ~  

0.42592E+00 
-.30115E-04 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 

0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
-.10046E+00 

0.00000E+00 

-st column of thc 

0.31311E+00 
-.16471E-05 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0. oooooE+oo 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.31312E+00 

Scale j=1, first column of the 

-.10075E+00 0.27192E-01 
0.65200E-05 0.34067E-05 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.00000E+00 0.00000E+00 
0.29165E+00 0.90294E-01 

Figure 6. Entries of the first column of matrices (Y and /3 (on the fine scale) of 
Note Example 4. We observe fast decay away from the diagonal. The threshold is 

the large numbers at the end of the columns due to periodization (see Remark 3.2). 

Example 6 .  Here, 

,, { :cos(log i2) - j cos(1og j2) i P j  
A,.  = ( i  - j ) 2  

i = j  
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Figure 7. Entries above the threshold of of the decomposed matrix of Example 5 .  

Like in the preceding example, the operator being compressed satisfies the condition 
(4.10) with M = 1, and fails to do so for any larger M. Using wavelets with two 
vanishing moments, and setting the threshold to lop3, we obtain the results depicted 
in Figure 8 and Table 6. Again, the compression rate for this reasonably large 
threshold is quite satisfactory. 

Table 5. Numerical results for Example 5. 

Error of single 
precision Error of FWT 

Input Time multiplication multiplication Compression 
size coefficient 
(N) T, T, Td Lz-norm L,-norm L,-norm L,-norm C,,, 

64 0.12 0.10 2.84 1.93. 5.04. 1.18. 3.11. 1.99 
128 0.48 0.18 9.00 2.65- lo-’ 9.27, lo-’ 1.54. lo-’ 4.36. 3.51 
256 1.92 0.42 23.62 3.76- 1.83- 2.02. lo-’ 8.33- 6.58 
512 7.68 0.88 55.62 4.93. 2.46. 3.19- 3.91 * lo-’ 12.81 

1024 30.72 1.74 123.84 7.53. lo-’ 4.78 * 3.99 * lo-’ 7.57 * lo-’ 25.19 
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Figure 8. Entries above the threshold of of the decomposed matrix of Example 6. 

The following observations can be made from Tables 1-6 and Figures 2-7. 

1. The CPU times required by the algorithm of this paper to apply the matrix 
to a vector grow linearly with N, while those for the direct algorithm grow 
quadratically (as expected). 

2. The accuracy of the method is in agreement with the estimates of Section 
4, and when the threshold is set to the actual accuracies obtained tend 

Table 6. Numerical results for Example 6. 

Error of single 
precision Error of FWT 

Input Time multiplication multiplication Compression 
size coefficient 
(N) T, T,  Td L,-norm &-norm L2-norm La-norm ccnm, 

64 0.12 0.10 4.22 2.59. 8.76- 2.42. lo-’ 4.58- lo-’ 2.37 
128 0.48 0.20 16.60 3.71 - 1.07. 2.81 - lo-’ 8.61 * lo-’ 4.13 
256 1.92 0.38 66.70 5.03 - 2.12 - 3.62 * 1.38 * lo-* 8.25 
512 7.68 0.82 263.72 8.71 * 3.10. 3.68- lo-’ 1.60. lo-* 14.80 

1024 30.72 1.50 1,107.6 1.12. 5.52. 4.56. 4.12. lo-’ 33.07 
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Figure 9. Entries above the threshold of lo-’ of the standard form for Example 1 .  
Different bands represent “interactions” between scales. 

Figure 10. Entries above the threshold of lo-’ of the standard form for Example 2. 
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to be slightly better than those obtained by the direct calculation in single 
precision. 

3. In many cases, the algorithm becomes more efficient than the direct com- 
putation for N = 100, and for N = 1000 the gain is roughly of the factor of 
10. 

4. Even when the operator fails to satisfy the condition (4. lo), the application 
of the algorithm with a reasonably large threshold and small M leads to 
satisfactory compression factors. 

5 .  Combining the linear asymptotic CPU time estimate of the algorithm of this 
paper with the actual timings in Tables 1-6, we observe that whenever the 
algorithm of this paper is applicable, large-scale problems become tractable, 
even with relatively modest computing resources. 

7. Extensions and Generalizations 

7.1. Numerical Operator Calculus 
In this paper, we construct a mechanism for the rapid application to arbitrary 

vectors’of a wide variety of dense matrices. It turns out that in addition to the 
application of matrices to vectors, our techniques lead to algorithms for the rapid 
multiplication of operators (or, rather, their standard forms). The asymptotic com- 
plexity of the resulting procedure is also proportional to N .  When applied recursively, 
it permits a whole range of matrix functions (polynomials, exponentials, inverses, 
square roots, etc.) to be evaluated for a cost proportional to N ,  converting the 
operator calculus into a competitive numerical tool (as opposed to the purely an- 
alytical apparatus it has been). These (and several related) algorithms have been 
implemented, and are described in a paper currently in preparation. 

7.2. Generalizations to Higher Dimensions 
The construction of the present paper is limited to the one-dimensional case, 

i.e., the integral operators being compressed are assumed to act on L2(R). Its 
generalization to problems in higher dimensions is fairly straightforward, and is 
being implemented. When combined with the Lippman-Schwinger equation, or 
with the classical pseudo-differential calculus, these techniques should lead to al- 
gorithms for the rapid solution of a wide variety of elliptic partial differential equa- 
tions in regions of complicated shapes, of second kind integral equations in higher- 
dimensional domains, and of several related problems. 

7.3. Non-Linear Operators 
While the present paper discusses the “compression” of linear and bilinear 

operators, extensions to multilinear functionals (defined on the functions in one, 
as well as higher dimensions) is not difficult to obtain. These methods (together 
with some of their applications) will be described in a forthcoming paper. The 
underlying theory can be found in [ 31. 
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Appendix A 

The following table contains filter coefficients { hk} i I :” for M = 2, 4, 6 for 
one particular choice of the shift r. These coefficients have M - 1 vanishing mo- 
ments, 

where 7M is the shift, and have been provided to the authors by I. Daubechies (see 
also Section 3.2 above). For M = 2 there are explicit expressions for { hk}iI:M, 
and with 7 2  = 5, they are 

3 - f i  
h3 = - 

1 - 6  
8 f i  ’ 

, hZ=- 
f i - 3  

h,  =- 
16f i  ’ 16f i  

9 - 6  
, h g = - ,  

6+ 13 
16f i  16f i  

, h5 = h, = ___ 
6 + 3  

8 f i  

and for M = 4, 6, the coefficients { hk} are presented in the table below. 

k Coefficients hk k Coefficients h k  

M = 2  1 
r 2 = 5  2 

3 
4 
5 
6 

M = 4  1 
7 8 = 8  2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.038580777747887 
-0.12696912539621 
-0.077 16 1555495774 

0.60749164138568 
0.74568755893443 
0.226584265 19707 

0.00 1 1945726958388 

0.0248043305 19353 
0.050023519962135 

-0.01284557955324 

-0.15535722285996 
-0.07 1638282295294 

0.57046500145033 
0.75033630585287 
0.2806 1 165 190244 

-0.0074103835 1867 18 
-0.01461 1552521451 
-0.00 1358799059 I632 

M = 6  1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

7 6 = 8  2 
-0.00169 185 101949 18 
-0.0034878762 1998426 

0.0 19 19 1 160680044 
0.021671094636352 

-0.098507213321468 
-0.056997424478478 

0.456787 122 17269 
0.7893 19409004 16 
0.380557 13085 15 1 

-0.070438748794943 
-0.0565 14193868065 

0.0364099626 127 16 
0.0087601307091635 

-0.01 1194759273835 
-0.00 192 13354141 368 

0.00204 13809772660 
0.00044583039753204 

-0.0002 1625727664696 
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Appendix B 

In this appendix we construct quadrature formulae using the compactly sup- 
ported wavelets of [4] which do not satisfy condition (3.8). These quadrature 
formulae are similar to the quadrature formula ( 3.12) in that they do not require 
explicit evaluation of the function p(x)  and are completely determined by the filter 
coefficients { h k } % I : M .  Our interest in these quadrature formulae stems from the 
fact that for a given number M of vanishing moments of the basis functions, the 
wavelets of [ 41 have the support of length 2 M  compared with 3 M  for the wavelets 
satisfying condition (3.8). Since our algorithms depend linearly on the size of the 
support, using wavelets of [ 4 ]  and quadrature formulae of this appendix makes 
these algorithms 4 0 %  faster. 

We use these quadrature formulae to evaluate the,coefficients s; of smooth 
functions without the pyramid scheme (2.12), where s; are computed via (3.13) 
for j  = 1,  - - - , n .  

First, we explain how to compute { s!} %I y .  Recalling the definition of st, 

s!= 2 " / 2 s f ( x ) p ( 2 " x -  k +  1)dx 

(B.1) 
= 2"12 s f ( x  + 2-"(k - l ) )p(2"x)  dx, 

we look for the coefficients { c l }  f I f- I such that 

(B.2) 2"12 s f ( x  + 2-"(k - l ) )p(2"x)  dx 

for polynomials of degree less than M. Using (B.2), we arrive at the linear algebraic 
system for the coefficients q, 

where the moments of the function p(x) are computed in terms of the filter coef- 
ficients { h k } % I : M .  

Given the coefficients c1, we obtain the quadrature formula for computing 
SZ, 
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The moments of the function cp are obtained by differentiating (an appropriate 
number of times) its Fourier transform @, 

and setting [ = 0. The expressions for the moments j xmq(x)  dx in terms of the 
filter coefficients { hk } $ I :" are found using a formula for @ [ 41, 

where 

The moments j xmcp(x) dx are obtained numerically (within the desired ac- 
curacy) by recursively generating a sequence of vectors, { J$Ih}ZIf-l for r = 1, 
2, * * *  , 

starting with 

Each vector {Ah} E Z F - '  represents M moments of the product in (B.6) with 
r terms. 

We now derive formulae to compute the coefficients sjk of smooth functions 
without the pyramid scheme ( 2 . 1 2 ) .  Let us formulate the following 

PROPOSITION B 1 .  Let s', be the coeficients of a smooth function at some scale 
j .  Then 

is a formula to compute the coeficients s'," at the scale j + 1 from those at the 
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scale j .  The coeflcients { ql}  f1 r in (B. 10) are solutions of the linear algebraic 
system 

( B . l l )  

and where Mm are the moments of the coeficients hk scaled for convenience by 
1 /H(O)  = 2 - I J 2 ,  

(B.12) 

Using Proposition B 1 we prove the following 

LEMMA B1. Let s', be the coeficients of a smooth function at some scale j .  
Then 

is a formula to compute the coeficients s',+. at the scale j + rfvom those at the 
scale j ,  with r 2 1. The coeflcients { 9;) f I in (B. 13) are obtained by recursively 
generating the sequence of vectors { q f  } f I y ,  . , { qi}  f I y as solutions of the linear 
algebraic system 

(B.14) 
I = M  c q i (21 -  1)" = M k ,  m = 0, , M -  1, 
I=  I 

where the sequence of the moments { M i  = M, } , { M L  1,. * a ,  { M k  } is computed 
via 

(B.15) 

where 

(B.16) 
I = M  

L j =  c qf(1- 1 ) J .  
I= I 

We note that for r = 1 (B. 13) reduces to (B. 10). 
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Proof of Proposition B 1 : 
with the coefficients { hk } 5 :‘, 

Let H (  4 )  denote the Fourier transform of the filter 

(B.17) 
k = 2 M  

H (  [) = hkeikE. 
k =  I 

Clearly, the moments M ,  in (B. 12) can be written as 

(B.18) . .  . M -  1. 

Also, the trigonometric polynomial H (  [) can always be written as the product, 

where we choose Q to be of the form 

(B.20) 

and H to have zero moments 

By differentiating (B.19) appropriate number of times, setting [ = 0 and using 
(B.2 1 ) we arrive at (B. 1 1 ) . Solving (B. 1 1 ), we find the coefficients { q l }  f I y. 

Since moments of fi vanish, the convolution with the coefficients of the filter 
fi reduces to the one-point quadrature formula of the type in ( 3.12). Thus applying 
H reduces to applying Q and scaling the result by 1 /W(  0) = 2-’/*. Clearly, there 
are only M coefficients of Q compared to 2 M  of H ,  and the particular form of the 
filter Q (B.20) was chosen so that only every second entry of s:, starting with k = 
1, is multiplied by a coefficient of the filter Q. 

Proof of Lemma B 1 : Lemma B 1 is proved by induction. Since for r = 1 (B. 13 ) 
reduces to (B. lo), we have to show that given (B. 13 ), it also holds if r is increased 
by one. 

Let 5: be the subsequence consisting of every 2‘ entry of s; starting with k = 
1. Applying filter { qi}fIF to s: in (B.13) is equivalent to applying filter P r  to 
?:, where 

(B.22 ) 
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To obtain (B.13), where r is increased by one, we use the quadrature fopu la  
(B.lO) of Proposition B1. Therefore, the result is obtained by convolving f i  with 
the coefficients of the filter Q( ,$)P"( ,$), where Q( ,$) is defined in (B.20). 

Let us construct a new filter Qr+l by factoring Q(t)P' ( ,$)  similar to (B.19), 

(B.23) 

where we chose Q" to be of the form 

(B.24) 
I = M  

Q ' + I ( , $ )  = 2 q j + I e " 2 1 - " €  

I=  1 

and fi to have zero moments 

(B.25) 

Again, since moments of H vanish, the convolution with the coefficients of 
the filter fi reduces to scaling the result by 2-'12. 

To compute moments I of Q( ,$)P'( t )  we differentiate Q( ,$)P"( E )  appro- 
priate number of times, set ,$ = 0, and arrive at (B. 15 ) and (B. 16). To obtain the 
linear algebraic system (B. 14) for the coefficients qi+ I ,  we differentiate (B.23) 
appropriate number of times, set ,$ = 0, and use (B.25 ). 

Recalling that the filter P" is applied to the subsequence Sd, we amve at (B. 13), 
where r is increased by one. 
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