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We consider issues of stability of time-discretization schemesaxgletireatment
of thelinear part(ELP schemes) for solving nonlinear PDEs. A distinctive feature of
ELP schemes is the exact evaluation of the contribution of the linear term, that is if the
nonlinear term of the equation is zero, then the scheme reduces to the evaluation of
the exponential function of the operator representing the linear term. Computing and
applying the exponential or other functions of operators with variable coefficients in
the usual manner requires evaluating dense matrices and is highly inefficient. It turns
out that computing the exponential of strictly elliptic operators in the wavelet system
of coordinates yields sparse matrices (for a finite but arbitrary accuracy). This obser-
vation makes our approach practical in a number of applications. In particular, we
consider applications of ELP schemes to advection—diffusion equations. We study
the stability of these schemes and show that both explicit and implicit ELP schemes
have distinctly different stability properties if compared with known implicit—explicit
schemes. For example, we describe explicit schemes with stability regions simi-
lar to those of typical implicit schemes used for solving advection—diffusion equa-
tions. (© 1998 Academic Press

1. INTRODUCTION

In this paper we consider a new class of time-discretization schemes for solving nonlil
evolution equations,

U = Lu+ N(), (1.1)

where £ represents the linear antl(-) represents the nonlinear terms of the equatiol
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respectively. A distinctive feature of these new schemes is the exact evaluation of
contribution of the linear part. That s, if the nonlinear part is zero, then the scheme red
to the evaluation of the exponential function of the operator (or mafrisdpresenting the
linear part. We show that such schemes have very good stability properties and, in
describe explicit schemes with stability regions similar to those of typical implicit schen
used in, for example, fluid dynamics applications.

Computing and applying the exponential or other functions of operators in the u:
manner typically requires evaluating dense matrices and, for that reason, is highly ineffic
An exception is the case where there is a (fast) transform that diagonalizes the ope
For example, if£ is a convolution (or a circulant) matrix which is diagonalized by th
Fourier transform (FT), then computing functions of operators can be accomplished
fastalgorithm, e.g. the FFT. Itis clear that in this case the need for FT for the diagonalize
prevents one from extending this approach to the case of variable coefficients.

We note that the problem of computing the exponential of large matrices has bee
interest in numerical analysis (see, e.g. [11] and references therein) due to the ubiqu
nature of this operator in physics and mathematics. It turns out [5] that the wavelet trans
produces sparse representations (up to a finite but arbitrary accuracy) for a wide class «
erators. This fact may be used for computing functions of operators (see [5, 6]), in partic
of elliptic operators with variable coefficients. In the wavelet system of coordinates cc
puting the exponential of such operators always results in sparse matrices and, ther:
using the exponential of operators for numerical purposes is an efficient option [7].

In this paper we further develop the approach of [7], concentrating on issues of stak
of time-discretization schemes wielxacttreatment of thdinear part (ELP) schemes. We
study the stability of these schemes using an approach developed in [14] and show tha
schemes have distinctly different stability properties as compared with known implic
explicit schemes.

In particular, we are interested in applications of ELP schemes to advection—diffu:
equations. Among equations for which ELP schemes appear to be very natural are
example, the Navier-Stokes equations which may be written in the form (1.1) (
Appendix A). The stability properties of time-discretization schemes for advection—
fusion equations are controlled by the linear term and, therefore, these equations requ
implicit treatment to avoid choosing an unreasonably small time step. As we show in
paper, using an explicit ELP scheme, it is possible to achieve stability usually associ
with implicit predictor—corrector schemes. Even if an implicit ELP scheme is used, a
done in [7], an approximation is used only for the nonlinear term, giving one a cha
to clearly distinguish numerical errors due to that term. Moreover, in the usual impl
schemes for advection—diffusion equations the corrector part of the scheme requires
ations that involve either both linear and nonlinear terms or only the linear term (see
3)). It is well known that, due to the high condition number of the matrix representing |
linear (diffusion) term, the fixed-point iteration is not a good option. More sophisticated :
computationally more expensive choices are required, since otherwise the size of the
step is greatly reduced. Implicit ELP schemes do not involve the linear term and typic
the fixed-point iteration is sufficient [7].

As we already pointed out, implementation of the new schemes requires applying fi
tions of operators (e.g. the exponential). For a wide class of operators with noncon:
coefficients these functions are sparse in the wavelet system of coordinates (up to
but arbitrary accuracy) and, for that reason, are best computed and applied in that dot
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A consistent adaptive approach may be used to perform all computations in the wa
domain [7]. We note, however, that applying the exponential function of operators in
wavelet domain may also be combined with the evaluation of the nonlinear part in
physical domain. This may be the simplest way to implement ELP schemes, short of
plementing adaptive schemes of [7]. ELP schemes may also be used in combination
pseudo-spectral methods in space. For example, using the pseudo-spectral Fourier r
for solving equations with constant coefficients, differential operators can be applied ir
Fourier domain and the nonlinear part in the physical domain.

In Section 2 we introduce new multistep methods where the linear part is treated ex:
and the nonlinear part is evaluated either implicitly or explicitly. We introduce an integ
representation for the time evolution problem and then discretize the integral eque
in time. Finally, we derive expressions for the operator-valued coefficients represen
contributions from different time levels. Then, in Section 3, we describe algorithms for
evaluation of the operator-valued coefficients and in Section 4 we study stability regi
of new schemes. We describe a method for linear stability analysis following [14]
construct stability regions for the new class of schemes in order to analyze their prope

2. SCHEMES WITH EXACT TREATMENT OF THE LINEAR TERM

2.1. Integral Formulation

We are interested in the solution of nonlinear evolution equations of the form
U =Lu+N@u) inQeRY, (2.1)
whereu=u(x, t), xeR%, d=1, 2, 3, andt € [0, T]. We also supply the initial conditions,
u(x, 0) = up(x) in<, (2.2)
and the linear boundary conditions
Bu(x,t)=0 onaQeRY L tel0, T]. (2.3)

An important example that we have in mind is advection—diffusion equations and
particular, the Navier—Stokes equations which we rewrite in the form (2.1) in Appendix
An adaptive scheme of ELP type has been used in [7] and in this paper we develoy
formalism and study stability properties of such schemes in a more general setting.

We split the operator on the right-hand side of (2.1) into the linear gart,and the
nonlinear part/N'(u). Following [7], we use the standard semigroup approach in order
convert the initial value problem (2.1), (2.2) to the nonlinear integral equation of the fol

t
u(x,t):etﬁu(x,0)+/ e ILN (u(x, 1)) d. (2.4)
0

We note that the ter&“u(x, 0) in (2.4) can always be replaced &y "*u(x, ),0<n <t,

providedu(x, n) is known. Such a form of the integral operator is slightly more gener
than that used in [7] (wherg=0). Choosingn £ 0 allows us to study a wider class of
ELP schemes and has a significant effect on their stability properties. A still more gen
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form of (2.4),

n

n t
ux, ) = ce M Eux ) + / e"EN U ) dr, Y 6 =1 (25)
0

i=1 i=1

can be considered, wheugx, n;),i,1...,n, are assumed to be known (we use (2.5) wit
n=1).

The operator” and the exponential operatdten (2.4) incorporate the boundary con-
ditions. For example, writingi(x, t) = €“tug(x) implies that the functionu(x, t) solves
u; = Lu with the initial conditionu(x, 0) = ug(x) and the boundary conditidu(x, t) =0
forx € 0Q2.

The integral equation (2.4) is easy to use for numerical purposes if, for exathfde,
an operator with constant coefficients amés a periodic function. In this casg can be
represented by a diagonal matrix in the Fourier basis. For instantés the Laplacian and
u(x) =€**, thenAu = —k?u and, in such a case, the exponential operefof’* simply
reduces to multiplication by~¥®=" However, for a general linear operatowith variable
coefficients, the exponential operators appearing in this equation are represented by
matrices. As far as we know, this is the main reason for the limited use of (2.4) as a sta
point of numerical discretization.

We observe that the situation is different for the exponential operators on a wide cla:
linear operators in a wavelet system of coordinates. The sparsity of the exponential opel
was utilized in [7] for constructing a numerical algorithm for the solution of PDEs of tl
form (2.1). In this paper we develop this approach further in order to construct a collec
of high order discretizations of (2.4) with good stability properties.

2.2. A Procedure for Time Discretization

In order to simplify the notation in our derivation, we replace a linear operataoy a
scalarqg since the coefficients of the scheme are analytic (operator) functiofis ®ihce
all such functions commute with each other, it is sufficient to consider a scalar in deri
the coefficients of the numerical scheme.

Thus, instead of (2.1) and (2.4), it is sufficient to examine

U = qu+ N(U) (2.6)

and
t
u(x, t) = e1"Mu(x, n) +/ 1IN (u(x, 7)) dr, (2.7)
0

where O< n <t andu(x, n) is given.
Let us consider the functiam(x, t) at the discrete moments of time= to + nAt, where
At is the time step so that, = u(x, t,) andN, = N (u(x, t,)). Discretizing (2.7) yields

M-1
un+l = quAtun+l_| + At <'}/ Nn+l + Z ﬂm Nn—m) ) (28)

m=0

whereM + 1 is the number of time levels involved in the discretization badVl. The
expression in parenthesis in (2.8) may be viewed as the numerical quadrature for the int
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in (2.7). The coefficienty and B, are the functions of| At (to simplify the notation, we
suppress the dependenceyofind Sy, onl).

We observe that the algorithm is explicitjif=0 and it is implicit otherwise. Typically,
for a givenM, the order of accuracy il for an explicit scheme anbll + 1 for an implicit
scheme, due to one more degree of freedprtsee later for a more detailed discussion)
We refer to this family of schemes as exact linear part (ELP) schemes.

Remark 1. Using (2.8) to discretize partial differential equations (or, in general, usi
semigroup approach as in (2.4)) may be viewed as a way to “reduce” partial differentic
ordinary differential equations. For example, one can apply the first Dahlquist criterion
(2.8) (see, e.g. [12]) to determine the maximal order for the implicit schemes. The rec
this can be done is that the operator coefficients in (2.8) commute with each other and,
polynomials with such coefficients can be manipulated in the usual manner.

Remark 2. In the particular case whete-2, y =0, andM =1, Eq. (2.8) turns into the
explicit scheme known as the “slave-frog” scheme,

st _ 1
Uny1 = e2thunfl + AtBoNn, fo= ———. (2.9)
gqAt
This scheme has been used in computational fluid dynamics (see, e.g. [9]). We do not |
other examples of temporal schemes related to the family (2.8). As we will see below,

scheme in (2.9) does not have good stability properties (see Section 4.2).

Let us first consider the case=1 (so thaty =t, in Eq. (2.7) is the nearest time level
tn+1),

M-1
Unt1 = €%%u, + At (y Nni1 + Z Bm Nn_m> . (2.10)
m=0
Our task now is to find the coefficiengsand 8, of scheme (2.10) in terms ofAt. In [7]
these coefficients are derived so that (i) the expression in parentheseMis-dnorder
guadrature approximation to the integral in (2.7) and (ii) the quadrature uses the fe
number of nonzero coefficientgy,. In this paper we adopt a different approach and obta
expressions for the coefficiengsand g, in (2.10) by using the differential equation (2.6)
and by expanding the termag, ; ande?2tuy, into the Taylor series. The resulting expression
differ from those in [7] by higher order terms @At which are beyond the order of the
approximation (see discussion below).
We start by expanding,. 1 in the Taylor series at the time levigl

Sl k
(At)
Uns1 =D U= =, (2.11)
k=0 ’
where
ak
k) _
u,” = —u()
" otk =,

The differential equation (2.6) yields relations between the derivativasaafl those of
the nonlinear term, namely,

u® =qu+ N,
u? =qu® + N® = q2u+gN+ ND, (2.12)
u® =qu+g?N +gqN® + N@,
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etc., and, in general,
k=1 _
u® — qku + Z N(J)qk—l—l. (2.13)
j=0

Substituting (2.12) into (2.11), we have

Unjp1 = qu(At) Un+ZZN(]) Ke—1— J(At)

k=1 j=0

x K i (ADKHL
=eu,+> Y NUq ](k+1)!' (2.14)

k=0 j=0

Changing the order of summation, we obtain

ook k+1 o] o0 k+1
At) i _j (AD)
33 N k- (AT — 3 ONDY gl
pr g, k+DI = =7 (k+ D)
() Ao <th)
ZZN(])(At)J+1< Z )
j=0 (th)Hl k=j+1 k!
=Y NY@a)*Qju(@ab), (2.15)
j=0
where we denote
e —E;i(x
Q=S (2.16)
X!
and where
171k
Ej(x) = g o (2.17)

is a truncated expansion of the exponentfalkéhus, we obtain from (2.14) and (2.15),
Uni1 = €Uy + At ND(ADIQjua(gAl). (2.18)
j=0
Also, for the nonlinear part of (2.10), we have
M-1 ( t) M-1
YNas1+ Y fmNoom = Z N < + (=D Y Bm mJ) (219)
m=0 j=0 ’ m=0

where we expand,.; and N,_n, around the time leve},. Substituting (2.18) and (2.19)
into (2.10), we obtain equations for the coefficiepteind Bn,. In the implicit casey #0
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TABLE |
Coefficients of Implicit ELP Schemes forl =1, where Q = Qk(qAt)

M 12 Bo B B2 Order
1 Q Q-Q; 0 0 2
2 Q/2+ Qs Q1 —2Q; Qs —Q/2 0 3
3 Q83+ Q+Q Q+Q/2-2Q%-3Q4 -Q+Q+3Q Q6-Q 4

and we have
M-1
Y+ Bn=Q
e (2.20)
13 <y+( 1)"Zmﬁm> =Qu1, k=1,...,M,
m=1
In the explicit caser =0 and we obtain
M-1
Bm = QL
i (2.21)

(- 1)k

Zmﬂm—QkH, k=1,...,M-1

Forl =1 we provide Tables | and Il fav = 1, 2, 3 with expressions for the coefficients
of the implicit (y # 0) and the explici{y =0) schemes in terms of G Qk(qAt).

For anyl,1<I| <M, in (2.8), we can repeat the above considerations and obtain cc
ficients of the corresponding scheme. In Tables Ill and IV we provide the coefficient:
implicit and explicit schemes in the calse 2 in terms of G = Qc(2qAt) for M =1, 2, 3.

The prescribed number of time levels in the discretization scheme (2.8) determine
the order of the scheme. Usually, implicit schertesz 0) are of ordeqAt)M+1, whereas
explicit schemesgy = 0) are of ordergAt)M. However, there might be exceptions due to
symmetry. For example, the explicit scheme (2.9) witk 0, | =2, andM = 1 is of second
order, since the first-order terms cancel when we expangdandu,_; at the time levet,.

Remark 3. Although for a givenM, systems (2.20) and (2.21) have unigue solution
the terms on the right-hand side,,@an be modified by adding terms of higher orders (th
order depends ok). These additional terms appear as contributions of higher order ter
in the discretized integral equation (2.8). For example, in (2.20) we can perturblty a
term of O(qAt), Qu by a term ofO((qAt)?), ..., Q1 by aterm ofO((qAt)M+1), without

TABLE Il
Coefficients of Explicit ELP Schemes foll = 1, where Q. = Qx(qAt)

M Bo B B> Order
1 o 0 0 1

2 Q+Q —-Q2 0

3 Q+3Q/2+Qs —2(Q2+Qq) Q2/2+ Qs 3




NEW TIME DISCRETIZATION SCHEMES FOR PDES 369

TABLE IlI
Coefficients of Implicit ELP Schemes forl = 2, where (f = Q«(20At)

M Y Bo B B2 Order
1 G- 2 -3 0 0 2
2 Q@E-Qy2 AR - Q-3Q@2+Q@ 0 3
3 —Q/6+Q; QG+QB-3Q¢ Qf-Q/2-25+3Q¢ -Q/3+Q%-QF 4

changing the order of the resulting scheme. Adopting terminology used in perturba
theory, we refer to the coefficients of the schemes obtained as solutions of (2.20) and (
as “bare,” and the coefficients obtained as solutions of the perturbed equations as “modi
Such modified coefficients were used in [7]. Although the order of the scheme does
change if one uses modified coefficients instead of bare coefficients, it turns out tha
stability properties are rather sensitive to such perturbations. Let us also mention here
some schemes in [7] use modified coefficients (in our sense) in combination with mi»
time levels within the nonlinear part. We note that such schemes cannot be obtained wit
formalism presented here since they depend on the particular form of the nonlinear te

Remark 4. The nonlinear term in Eq. (2.6) may consist of several parts that can
treated differently. Suppose that the nonlinear term is split into two parts,

ur = qu+ N w) + NP,

and, therefore, the discretized equation (e.g., in thelcasB has the form
M, —1 My —1

Uns1 = €%uy + At <y<'>Né21+ > ﬂﬁn')Né'Jm> + At (y“”NéiH > ﬁé!”Né'l?n).
m=0 m=0

Using previous considerations, we can show that each group of coeffigiehtss")} and
{y, gD} independently satisfy (2.20). For example, we can use an explicit scheme
the first part withy ("’ = 0 and an implicit scheme for the second one with’ 0.

3. EVALUATION OF THE OPERATOR-VALUED QUADRATURE COEFFICIENTS

The key point in our approach is an observation that operator-valued quadrature cc
cients can be represented by sparse matrices (for a finite but arbitrary accuracy). Thi
order to make ELP schemes practical we have to provide an algorithm for their evalua

TABLE IV
Coefficients of Explicit ELP Schemes foll =2, where G = Qx(29At)

M Bo B B2 Order
1 @ 0 0 2
2 < Q- 0 2
3 Q&G/2+Q3 & -2Q -Q3/2+ Q4 3
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As we have shown in Section 2, the coefficients of ELP schemes are written in term
operators Q= Qy(LAt), where

eFAt — Ej(LAY)

and
7 LAtk
Bj(can =3 — 3:2)
k=0 :
for j=0,1,.... We have
Qo(LAt) = €A,
_ At -1
Qu(LAL) = (ef I)(LAD)T, (3.3)

Qx(LAL) = (652 — T — LAD(LAL)?,

We will now describe a method that permits us to compute operaterQQy, ...
without computing(£LAt)~1. The problem in using the Taylor expansion directly is that
will result in a loss of accuracy due to possibly large singular value&df To avoid this
problem in computing the exponentiahQve use the scaling and squaring method. Thi
method results in a fast algorithm if the evaluation is performed in a wavelet basis wi
sufficient number of vanishing moments (for a chosen accuracy) [6].

The scaling and squaring method for the exponential is based on the identity

Qo(2x) = Q3(x). (3.4)

First we compute @ £LAt2™") for somd chosen so that the largest singular valug att 2~
is less than one. This computation is performed using the Taylor expansion. Using (:
the resulting matrix is then squaretimes to obtain the final answer.

A similar algorithm may be used for computing @At), j =1,2, ..., for any finitej.
Let us illustrate this approach by considering:1, 2, ..., 6.

It is not difficult to verify that

1
Qu(2x) = E(QO(X)Ql(X) + Q1(x)),
1
Qx(2x) = Z(Ql(X)Ql(X) + 2Qx(X)),
1
Q3(2x) = é(Ql(X)QZ(X) + 2Q3(X) + Q2(X)),
1 (3.5)
Qu(2x) = 1—6(Q2(X)Q2(X) + 2Qu(x) + 2Qs(x)),
1 1
Qs(2x) = 2 (Qz(X)Qs(X) + 2Q5(X) 4 2Qua(X) + EQ:;(X)),

1
Qs(2x) = 6—4(Q3(X)Q3(X) +2Q6(X) + 2Qs(X) + Qa(X)),
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The identities in (3.5) are obtained by considering the difference betwe@n(2) and
Qj2(X)Qj2(x) if j is even, and Q_1),2(X)Q(j+1,2(X) if j is odd. This difference is then
expressed using a linear combination Q. Qj_1(x), ... .

Thus, a modified scaling and squaring method for computing operator-valued qué
ture coefficients for ELP schemes starts by the computationof ®t27"), Qi (LAt27"),
Q.(L£At27"), ... for some selected so that the largest singular value of all three operat
is less than one. For this evaluation we use the Taylor series. We then proceed by usir
identities in (3.4) and (3.9)times to compute the operators for the required value of tl
argument.

The speed of the evaluation and application of operator-valued coefficients in sp
dimensions two and three is one of the important factors in the practicality of ELP scher
Although the algorithms described above scale properly with size in all dimensions,
tablishing ways of reducing constants in operation counts remains an important tas
dimensions two and three. We will address these issues in a separate paper.

4. STABILITY ANALYSIS

4.1. Preliminary Considerations

The standard linear stability analysis of discrete schemes (see, e.g. [8]) deals with :
problem,

Ut = uu, 4.1)

whereu =, + iy is a complex number. Applying a discretization method to Eq. (4.1
we obtain a homogeneous linear difference equation,

M

> (elin-k — AUn-1) = 0 (4.2)
k=0

which is solved explicitly. We then consider a region in the compleglane where the
solution of the discretized equation (4.2) is boundea as oo (n is the number of time
steps). This region of (absolute) stability may be compared to the actual region of decay
growth of solutions of (4.1) in order to ascertain the properties of the numerical schen

In the stability analysis of the ELP method we adopt an extension of the appro
suggested in [14]. The proposal of [14] is to compute a family of curves (boundarie:
stability regions) for a more general test problem,

Us = —qu+ pu, (4.3)

where different curves correspond to different valueg.ofhe point is that the first and
second terms on the right-hand side of (4.3) may be discretized using different sche
For example, these two terms may represent linear and nonlinear parts of the differe
equation. For a fixed the analysis proceeds as in the standard method.

If we discretize the test problem (4.3), then paramegensdy will appear in combination
with the time stepAt. Let us fix the parametarAt and plot the family of boundaries of
stability regions in the complex plarig, At, uj At), wherepw = ur + iui. A technique of
computing the boundaries of stability regions is described in Appendix B.
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We start by providing several examples of stability diagrams for discretization meth
discussed in [14] in order to establish a baseline for comparison with the stability prope
of ELP schemes.

Let us first provide an interpretation for parametgrand . for a model advection—
diffusion equation,

Ut = alUyy + Uuy, 4.4)

whereU is a constant convective velocity and> 0 is a damping constant. Considering
periodic boundary conditions, we obtain for the Fourier transfomfthe functionu,

0; = —ak?0 +ikUQ. (4.5)

The equation (4.5) has the same structure as Eq. (4.3)withk? > 0 andu =ikU. For
nonlinear equations under consideration the splitting of the right-hand side of (4.5) into
terms corresponds to the splitting into linear (diffusion) and nonlinear (advection) pe
respectively.

We now turn to an example from [14] which deals with a mixed implicit—explicit metho
where the linear term is approximated using the implicit third-order Adams—Moult
scheme and the nonlinear term is approximated using the explicit third-order Adal
Bashforth scheme as

2 3
Un = Up_1 — qAt Zakunfk + 1At Z BrUn—k. (4.6)
k=0 k=1
whereag=5/12, o1 =8/12, a; =—1/12, andp, =23/12, , =—16/12, B3=5/12. The
corresponding stability diagram is plotted in Fig. 1. We observe that this method is c
ditionally stable with a region of stability that separates from the imaginary (vertical) a
for gAt > 6 (that is, for high wavenumbers, singexk?). In this figure, as well as other
stability diagrams below, the label of the curve (the boundary of the stability regje),
can be identified by finding the point of intersection of the corresponding curve with-
horizontal axis in the right half-plane.

In our second example, borrowed from the same paper [14], we reproduce the stal
diagram for a third-order stiffly stable scheme. According to [10], a method is stiffly stabl
itis consistentin a neighborhood of the origin and absolutely stable away from the origi
the left imaginary plane. Stiffly stable multistep methods are implicit and their coefficie
are available up to eleventh order (see [13]).

In [14] a mixed explicit—implicit stiffly stable scheme has been introduced,

3 3
Z okUn—k = —QAtU, + pAt Z BrUn—k, 4.7)
k=0 k=1

with a-coefficients being those of the standard third-order stiffly stable scheme from [:
ap=11/6, a1 = —3, ap = 3/2, andwz = 1/3. The coefficients for the explicit part afe =

3, B,=—3, andBsz = 1. The corresponding stability diagram is shown in Fig. 2. The st
bility region of this scheme is significantly broader than that of the third-order Adan
Moulton/Adams—Bashforth family in Fig. 1. We note that a larger amount of dissipatic
g, stabilizes the convection term, i.e., the region of stability increases along the ver
(imaginary) axis ag becomes larger.
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FIG. 1. Stability diagram of the third-order Adams—Moulton/Adams—Bashforth scheme. The curves co
spond to different values of the paramejext (qAt =0 corresponds to the explicit scheme). This plot reproduce
Fig. 6 in [14].

1.5 T T T T T T
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15 ] 1 1 1 1 !
-1.5 -1 -0.5 0 0.5 1 1.5 2 25

FIG. 2. Stability diagram of the mixed implicit—explicit stiffly stable scheme of third ordgxt(= 0 corre-
sponds to the explicit scheme). This plot reproduces Fig. 7 in [14].
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FIG. 3. Stability diagram for the scheme (2.9) with- 2, M = 1 (slave-frog). The region of (absolute) stability
collapses to the vertical line ag\t — 0.

4.2. Stability Analysis of ELP Schemes

We start our analysis with the “slave-frog” type schemes, which we obtain by sett
I =2in (2.8). It turns out that the weak instability with respect to long waves known for t
classical slave-frog scheme (2.9) with=1, also appears to be typical for other scheme
of this family (at least for the most practical, wiM =2 and 3). We then consider a class
of ELP schemes whete= 1 with significantly better stability properties.

Family of ELP schemes withd 2. We display the regions of (absolute) stability for the
second-order explicit scheme (2.9) in Fig. 3. As the paranteterO, the stability region
shrinks to the line on the imaginary axis. This is expected since in thedimit0, Eq. (2.9)
turns into the explicit midpoint scheme, which is known to be stable only on an interval of
imaginary axis (see, e.g. [8]). Therefore, this scheme does not provide enough dissip
for smallq (or for the long waves if we have in mind the model problem (4.4)). Neverthele
(2.9) has been used for numerical solution of some CFD problems. In order to overcol
weak instability with respect to the long waves, some additional ad-hoc “tricks” have b
invented, such as “mixing” (from time to time) the contribution from several previous tir
levels. However, the problem with such ad-hoc approaches is that they severely dec
the accuracy of the method.

From our analysis it is clear that the weak instabilitgjat 1 is a common problem for
all schemes where=2. In Fig. 4 we show the stability region for the third-order implici

schemel(=2, M =2; see Table 3). Again, a— 0 the region of stability collapses to the
vertical line.
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FIG. 4. Stability diagram for the implicit third-order scheme witks 2, M =2 (see Table IlI).

We provide in Appendix C an explanation for such behavior of the stability region of 1
| =2 schemes in the limij — 0. We now turn to a class of schemes with better stabili
properties.

Implicit ELP schemegd = 1). We start by showing in Fig. 5 the stability diagram for the
second-order scheme= 1, M = 1; see Table I). The region of absolute stability include
the entire left half-plane and also a part of the right half-plane. In thedjmit0 the stability
region coincides with the left half-plane.

This stability diagram is obtained using the bare coefficients (see Remark 3in Section
namely,y = Q, and o= Q1 — Q2 in (2.10). If, instead, we use modified coefficients
choosing them ag = 1/2 andf, = Q1/2, then the stability boundaries become the vertic
straight lines, intersecting the horizontal axis at the distaceto the right of the origin as
shown in Fig. 6. The coefficienis= 1/2 andf, = Q;/2 satisfy the first equation in (2.20)
and the second equation in (2.20) wikk= 1, whereQ- is perturbed by ai®(qAt) term.
This scheme was used in [7] and its stability diagram corresponds fesdable scheme
(see e.g.[8]). Such schemes have the same stability regions as the differential equatior
of the test problem, namely, the solution decaysfor g < 0 and it grows otherwise. The
A-stability of this scheme is shown analytically in Appendix D.

The stability diagram for the third-order implicit scheme with the exact coefficients frc
Table | is plotted in Fig. 7. The stability region is much larger than that of the third-orc
stiffly stable scheme in Fig. 2. Moreover, @i\t =2 the stability boundary turns into a
straight (vertical) line, and fogAt > 2 all the left half-plane and a part of the right half-
plane become stable (the scheme is super-stable with respect to high wave numbers
“islands” of instability in the right half-plane contract@At increases. The stability region
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15 T T T T

-15 1 1 [l 1
0 5 10 15 20 25

FIG.5. Stability diagram for the second-order implicit scherive£ 1, | = 1) using bare coefficients= Q,
andg, = Q; — Q, from Table I. (Here the interior of the curves are the regionssthbility.)

80 T T T T T

60 1

20 [ 1
STABLE UNSTABLE

-80 1 1 1 ] 1
0 0.1 0.2 0.3 0.4 0.5 0.6

FIG.6. Stability diagram for the second-order ELP implicit schemde£ 1, | = 1) with modified coefficients
7 = Bo= Q1/2 (A-stable scheme).



NEW TIME DISCRETIZATION SCHEMES FOR PDES 377

20 T T I 1

15F T b

ob  qa-ts Y I— 1
107 :

5 y E

STABLE

S

o
o
Ay //
\\\ /’/ Prad ‘

-20 1 1 1 1
-30 -20 -10 0 10 20 30

FIG. 7. Stability diagram for the third-order implicit scheme witke: 1, M = 2 and coefficients from Table I.

of the fourth-order implicit scheme is shown in Fig. 8. It is still larger than that of t
third-order stiffly stable scheme. This scheme becomes super-stalgjéfor 4.26 (not
shown in Fig. 8).

Explicit ELP schemeg =1). Finally, we consider the stability of explicit ELP schemes
Let us illustrate the stability regions of the secdvid=2 and thirdM = 3 order schemes
in Figs. 9 and 10. We note that the stability regions of these schemgafas 0 are more
reminiscent of those for implicit schemes (compare, for example, Fig. 10 with Fig. 2).
the limitgAt — 0 the stability regions tend to those of the second- and third-order Adan
Bashforth schemes. This is expected since in (2.8) the exponential fueftibas> 1 as
gAt — 0, and the bare coefficiengx in (2.10) coincide with those of the corresponding
order Adams—Bashforth scheme.

For useful schemes it is important that the stability regions obtained via the stab
analysis of [14] grow ag|At becomes larger as, for example, in Fig. 2. In explicit ELI
schemes the region of stability grows for lagyst (although for the third-order scheme this
growth is not monotonic; agAt varies from 0 to 1, the stability region shrinks somewhe
and then starts to increase).

Letus compare the stability diagrams of the third-order explicit schemevvith3, | =1,
and coefficients from Table Il in Fig. 10 with that of the mixed implicit—explicit stiffly stabl
scheme of third order from [14] in Fig. 2. This comparison shows that the explicit sche
will require a time step only about one-half of that of the implicit scheme in orderto s
within the stability region. This is where ELP schemes may have an advantage since
do not require potentially expensive solves at each time step (especially in dimension:s
and three).
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FIG. 8. Stability diagram for the fourth-order implicit scheme with: 1, M = 3 and coefficients from Table I.
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-1.5 - -0.5 0 0.5 1 15 2

FIG.9. Stability diagram for the second-order explicit scheme Wth- 2, | = 1 and coefficients from Table Il.
The curve agjAt =0 corresponds to the boundary of the stability region of the second-order Adams—Bashf
method.
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FIG. 10. Stability diagram for the third-order explicit scheme with= 3, | = 1 and coefficients from Table II.
The curve agAt =0 corresponds to the boundary of the stability region of the third-order Adams—Bashfc
method.

In the ordinary explicit methods, due to stability restrictions, the time Atejs propor-
tional to (1/N)?, whereN is the number of degrees of freedom in the spatial discretizati
(e.g. the number of grid points or the number of terms in spectral expanslaxg). In the
explicit ELP schemes the time step may be chosen to be proportionaNtoak indicated
by the stability diagrams and the above comparison with an implicit scheme.

ExampPLE 1. Let us first consider a nonlinear diffusion equation with a forcing term,
U = alyx — Uy + f(X,t), x€][0,1]. (4.8)
For tests we select
u” = cogt) sin(2rwx), (4.9)

as a solution and generate the corresponding forcing fesmt). We then solve (4.8) with
this forcing term. For the space discretization we write the solution in multiwavelet ba
[1] using representations of differential operators and of the exponential of differer
operators constructed in [2].

We use explicit ELP schemes of the first, second, and third orders and plot in Fig
the numerical error as a function of time f@e= 1, w = 3. The time step i\t = 1073, By
choosing the number of subintervals- 16 and the order of multiwaveleks= 6, we make
the temporal errors dominant in this example.
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FIG. 11. Error as a function of time for Example 1 for first-, second-, and third-order explicit ELP scheme

EXAMPLE 2. Again using explicit ELP schemes in time and multiwavelets in space,
consider Burgers’ equation

Ut = vUyxyx — UUy, X€]0,1]. (4.10)
A reference solution with periodic boundary conditions may be written as

u(ref) - _2 ox(X —ct,t + 1)

, >0 (4.11)
d(X —Ct,t + 1)

where

oo
POt = > et (4.12)
n=-—00
In Fig. 12 we display the numerical solution foe=4, v =0.1/7, andr = 1/(27) (these
are parameters of the standard test case) so that the profile moves atspéedhe
pointwise numerical error for the solutiontat 1/16 is plotted in Fig. 13. The maximum
numerical error is given in Table V for the explicit first-, second-, and third-order EL

TABLE V
Maximum Error of the Solution of the Periodic Burgers’
Equation at the Timet=1/16,v=0.1/7,andc=0, 4

c\order First Second Third

0 96 x 104 3.6 x 1077 5.9 x 1071
4 30x 102 42 x10* 6.5 x 10°°
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FIG. 12. Solution of the periodic Burgers’ equationtat 0 andt =1/16;v=0.1/7, c=4.
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FIG. 13. The pointwise error for the solution of periodic Burgers’ equation-atl/16.
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schemes font = 1074, t = 1/16 andc = 0, c = 4. Again, the spatial resolution was choser
to make temporal errors dominant.

5. CONCLUSIONS

We have demonstrated excellent stability properties of both explicit and implicit E
schemes. The efficiency of using ELP schemes for nonlinear partial differential equat
depends on the sparsity of the exponential of the linear part of the operator (obtaine
setting the nonlinear part to zero). We have analyzed stability properties of ELP sche
for a class of advection—diffusion equations which includes the incompressible Nav
Stokes equations. Although the derivation remains valid for more general nonlinear pé
differential equations, the exponential operator may no longer be sparse in wavelet bas
remains an interesting problem to find sparse representations for the exponential ope
of the linear part for other classes of nonlinear partial differential equations.

APPENDIX A: THE NAVIER-STOKES EQUATIONS

Let us show that the incompressible Navier—Stokes equations in three spatial dimen
can be written in the form to which considerations of this paper are applicable.
We start with the usual form of the Navier—Stokes equations fof2 € R3,

Ut = vAU — (U101 + U232 + Uzdz)u — Vp, (A1)
01U1 + 02Up + d3u3 = 0, (A.Z)
u(x, 0) = up, (A.3)

(wherep denotes the pressure) and the boundary condition

ux,t)=0 onaQ,te[0, T]. (A.4)
Here we use the notation
(VEY X1
u= Uo , X= X2 s
us X3

and dx = d/0xk. Let us introduce the Riesz transforms which are defined in the Four
domain as

Rie =L@, =123 (AS5)

where f denotes the Fourier transform of the functibnLet us consider the projection
operator on the divergence-free functions,

Il 00 RZ RiR RiRs
P={0o1 o|]-[RR R RRs]|. (A.6)
00 I RsRi RsR: RZ
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In order to show tha®(u) satisfies (A.2), let us compose the divergence operator and (A.
so that we need to verify

alR% 4+ 0, RoR; + 93R3 Ry = 03
01 RiR + 82R§ + 03R3R, = 0> (A?)
01R1R3 + Ry R3 + 33R§ = 01.

It is easy to check relations (A.7) by examining symbols of these operators in the Fol
domain; for example, the first equation in (A.7) reduces to

L8 Bh &R
1E1——= 4+ 1622 +iE3— = i&. A.8
§1|é|2 532'&'2 §3|5|2 €1 (A.8)
Applying the divergence operator to (A.1), we obtain
3
—Ap = Z Ok 0 Uk Uy (A.9)

k,l=1
and an expression for pressure in terms of the Riesz transforms,

3

p=->_ RRuw). (A.10)

k=1

Substituting (A.10) into (A.1) and taking into consideration that the Riesz transforms cc
mute with derivatives and, moreover,

Red = Rk, (A.11)

we obtain

3
Ui = vAU — P<Z umamu>, (A.12)
m=1

instead of (A.1) and (A.2). Equations (A.12) are now in the form (2.1), widetev A and
NU) =—P(2 . Undmu).

The transformation from (A.1) and (A.2) to (A.12) is well known and appears in a vari
of forms in the literature (here we follow a derivation by Yves Meyer at the summer sch
at Luminy in 1997). The apparent problem with (A.12) for use in numerical computatic
is that the Riesz transforms are integral operators (which makes (A.12) into an inte
differential equation).

Letus point outthatthe presence of the Riesz transforms does not create serious diffic
if we represent operatoR;, j =1, 2, 3, in a wavelet basis with a sufficient number o
vanishing moments (for a given accuracy). The reason is that these operators are r
local on wavelets (see, e.g. [5]) and, thus, have a sparse representation. This appro»
locality follows directly from the vanishing moments property. Vanishing moments imy
that the Fourier transform of the wavelet and its several first derivatives vanish at zero
therefore, the discontinuity of the symbol of the Riesz transform at zero has almos
effect. The precise statements about such operators can be found in [5, 4].
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Finally, in rewriting (A.12) as
U = Lu+ N(u), (A.13)

we incorporate the boundary conditions into the operétdfor exampley = £~1v means
thatu solvesLu = v with the boundary conditionu = 0. Similarly, u(x, t) = €“tug(x)
means thati solvesu; = Lu, u(x, 0) = ug(x), andBu(x, t) =0.

APPENDIX B

For the convenience of the reader, we describe a technique for the computation
marginal stability curve (or the boundary of a stability region). We start with the te
problem

Us = uu, (B.1)

wherepu is a complex parameter. Applying a time-discretization method to this equati
we obtain a homogeneous linear difference equation,

M

Z(akun_k — wAtBun_x) = 0. (B.2)
k=0

Setting = nAt, we look for a region of (absolute) stability, which is the region in th
complexi-plane, where the solutiam, remains bounded as— oo. The solution to (B.2)
can be sought in the formy, = 2, wherez = |z|€?. Evidently, the solution grows with if

|z| > 1 and it decays ifz| < 1. Hence, the boundary of the stability region is determined
the condition|z| = 1. Thus, to find the boundary we set

z=¢". (B.3)

By settingh = A, + iA; and substituting (B.3) into (B.2), we arrive at a linear system

Cix — DA = A,
CXix + DA = B,
where
M . M '
A(Q) = Rez akel(n—k)e, B(Q) =Im Zaké(n—k)e’
k=0 k=0
M ‘ M |
C(0) =Re)_ A D@) =1Im_ pd "’
k=0 k=0
Its solution,
AC+BD BC — AD
MO = Grrpr MO =G

is nothing else but the parametric form of the boundary of the stability region. It descri
a closed curve in the plang,, A;), whered sweeps the interval 8 6 < 2rx.
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APPENDIX C

In this section we show that the family of schemes with2 has a weak instability in the
limit g — 0. As an example let us analyze the third-order implicit scheme with the stabi
region illustrated in Fig. 4. The coefficients of this scheme are given in Table llIM/ith2.

In the limit g — 0, the values 0f)? = Qx(2gAt) are

4 2
Q=2 Qi=2 ngé, Q§:§. (C.1)
For the corresponding values of the coefficients we haxel/3, 8o =4/3, f1=1/3.
The linear homogeneous difference equation in this case is

A
Unt1 = Up—1 + §(Un+1 + 4u, + up_1), (CZ)

where A = uAt. We seek the solution of (C.2) in the form, =2z". This gives us the
characteristic equation,

A
Z-1= §(zz+4z+ 1). (C.3)

Solving this equation with respect 10 we obtain

A 2Z-1 z—z71
3 Z2+4z+1 z+4+4z771
Since on the boundary of the stability regioe= €?, we have
_ 3sin®)
AO) = —i——— C.5
©) 2+cog6)’ (C.5)

and we note that() is pure imaginary for all & 6 < 2x. Thus, the boundary of the stability
regioninthe limity — O is an interval of the imaginary axis. Itis easy to see that the functi
in (C.5) has the extreme valugs,/3~ +1.73. Thus, we have-v/3 < iu At < +/3 (compare
with the diagram in Fig. 4 aj = 0).

The same consideration is applicable to the first-order explicit scheme (2.9). Using
expressions for the coefficients in Tables Il and 1V and the valug3,dh (C.1), one can
show that for the second-order implidt =1 and second-order explicl =2 schemes
the stability region also degenerates to a line in the lgmit 0. For the third-order explicit
scheme the stability diagram qut= 0 is more complicated but still the stability region ha:
zero thickness near the origih=0.

Thus, practical second- and third-order schemes of the classlwith have weak
instability.

APPENDIX D

Let us prove theA-stability of the implicit second-order ELP scheme with=1 and
| =1 usedin [7],

Uni1 = € 90U, 4 wAt(yUnia + Bolo), (D.1)
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with coefficientsy = Bo = Q1/2, where

1-E
== —, E=e9 D.2
Q1 qAt (D.2)
Since we are interested in the boundary of the stability region, we seek the solutio
(D.1) in the formu, = €. Substitutingu,, = €" into Eq. (D.1) and denoting= pAt, we
obtain

Q1

cosh +isind = E + 7(1+ cosH +i sind)(Ay +iAj). (D.3)

By considering real and imaginary parts separately, we arrive at the system of two li
equations

2 .
E(cos@ — E) = (14 cosh)Ar — Sinb A;,

) (D.4)
—sin@ = sinf A, + (1 + cosH)A;,
Q1
with the solution
1+ E sing
Ar =QAL, A =Atl———————. D.5
r=4 =AM T T E T cow (©:5)

The equation in (D.5) describes the vertical line on the complgkane parallel to the
imaginary axis and located at the distaget from the origin (see Fig. 6).
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