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We consider issues of stability of time-discretization schemes withexacttreatment
of thelinear part(ELP schemes) for solving nonlinear PDEs. A distinctive feature of
ELP schemes is the exact evaluation of the contribution of the linear term, that is if the
nonlinear term of the equation is zero, then the scheme reduces to the evaluation of
the exponential function of the operator representing the linear term. Computing and
applying the exponential or other functions of operators with variable coefficients in
the usual manner requires evaluating dense matrices and is highly inefficient. It turns
out that computing the exponential of strictly elliptic operators in the wavelet system
of coordinates yields sparse matrices (for a finite but arbitrary accuracy). This obser-
vation makes our approach practical in a number of applications. In particular, we
consider applications of ELP schemes to advection–diffusion equations. We study
the stability of these schemes and show that both explicit and implicit ELP schemes
have distinctly different stability properties if compared with known implicit–explicit
schemes. For example, we describe explicit schemes with stability regions simi-
lar to those of typical implicit schemes used for solving advection–diffusion equa-
tions. c© 1998 Academic Press

1. INTRODUCTION

In this paper we consider a new class of time-discretization schemes for solving nonlinear
evolution equations,

ut = Lu+N (u), (1.1)

whereL represents the linear andN (·) represents the nonlinear terms of the equation,
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respectively. A distinctive feature of these new schemes is the exact evaluation of the
contribution of the linear part. That is, if the nonlinear part is zero, then the scheme reduces
to the evaluation of the exponential function of the operator (or matrix)L representing the
linear part. We show that such schemes have very good stability properties and, in fact,
describe explicit schemes with stability regions similar to those of typical implicit schemes
used in, for example, fluid dynamics applications.

Computing and applying the exponential or other functions of operators in the usual
manner typically requires evaluating dense matrices and, for that reason, is highly inefficient.
An exception is the case where there is a (fast) transform that diagonalizes the operator.
For example, ifL is a convolution (or a circulant) matrix which is diagonalized by the
Fourier transform (FT), then computing functions of operators can be accomplished by a
fast algorithm, e.g. the FFT. It is clear that in this case the need for FT for the diagonalization
prevents one from extending this approach to the case of variable coefficients.

We note that the problem of computing the exponential of large matrices has been of
interest in numerical analysis (see, e.g. [11] and references therein) due to the ubiquitous
nature of this operator in physics and mathematics. It turns out [5] that the wavelet transform
produces sparse representations (up to a finite but arbitrary accuracy) for a wide class of op-
erators. This fact may be used for computing functions of operators (see [5, 6]), in particular,
of elliptic operators with variable coefficients. In the wavelet system of coordinates com-
puting the exponential of such operators always results in sparse matrices and, therefore,
using the exponential of operators for numerical purposes is an efficient option [7].

In this paper we further develop the approach of [7], concentrating on issues of stability
of time-discretization schemes withexacttreatment of thelinear part (ELP) schemes. We
study the stability of these schemes using an approach developed in [14] and show that ELP
schemes have distinctly different stability properties as compared with known implicit–
explicit schemes.

In particular, we are interested in applications of ELP schemes to advection–diffusion
equations. Among equations for which ELP schemes appear to be very natural are, for
example, the Navier–Stokes equations which may be written in the form (1.1) (see
Appendix A). The stability properties of time-discretization schemes for advection–dif-
fusion equations are controlled by the linear term and, therefore, these equations require an
implicit treatment to avoid choosing an unreasonably small time step. As we show in this
paper, using an explicit ELP scheme, it is possible to achieve stability usually associated
with implicit predictor–corrector schemes. Even if an implicit ELP scheme is used, as is
done in [7], an approximation is used only for the nonlinear term, giving one a chance
to clearly distinguish numerical errors due to that term. Moreover, in the usual implicit
schemes for advection–diffusion equations the corrector part of the scheme requires iter-
ations that involve either both linear and nonlinear terms or only the linear term (see [14,
3]). It is well known that, due to the high condition number of the matrix representing the
linear (diffusion) term, the fixed-point iteration is not a good option. More sophisticated and
computationally more expensive choices are required, since otherwise the size of the time
step is greatly reduced. Implicit ELP schemes do not involve the linear term and typically
the fixed-point iteration is sufficient [7].

As we already pointed out, implementation of the new schemes requires applying func-
tions of operators (e.g. the exponential). For a wide class of operators with nonconstant
coefficients these functions are sparse in the wavelet system of coordinates (up to finite
but arbitrary accuracy) and, for that reason, are best computed and applied in that domain.
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A consistent adaptive approach may be used to perform all computations in the wavelet
domain [7]. We note, however, that applying the exponential function of operators in the
wavelet domain may also be combined with the evaluation of the nonlinear part in the
physical domain. This may be the simplest way to implement ELP schemes, short of im-
plementing adaptive schemes of [7]. ELP schemes may also be used in combination with
pseudo-spectral methods in space. For example, using the pseudo-spectral Fourier method
for solving equations with constant coefficients, differential operators can be applied in the
Fourier domain and the nonlinear part in the physical domain.

In Section 2 we introduce new multistep methods where the linear part is treated exactly
and the nonlinear part is evaluated either implicitly or explicitly. We introduce an integral
representation for the time evolution problem and then discretize the integral equation
in time. Finally, we derive expressions for the operator-valued coefficients representing
contributions from different time levels. Then, in Section 3, we describe algorithms for the
evaluation of the operator-valued coefficients and in Section 4 we study stability regions
of new schemes. We describe a method for linear stability analysis following [14] and
construct stability regions for the new class of schemes in order to analyze their properties.

2. SCHEMES WITH EXACT TREATMENT OF THE LINEAR TERM

2.1. Integral Formulation

We are interested in the solution of nonlinear evolution equations of the form

ut = Lu+N (u) in Ä∈Rd, (2.1)

whereu= u(x, t), x ∈Rd, d= 1, 2, 3, andt ∈ [0, T ]. We also supply the initial conditions,

u(x, 0) = u0(x) in Ä, (2.2)

and the linear boundary conditions

Bu(x, t) = 0 on∂Ä∈Rd−1, t ∈ [0, T ]. (2.3)

An important example that we have in mind is advection–diffusion equations and, in
particular, the Navier–Stokes equations which we rewrite in the form (2.1) in Appendix A.
An adaptive scheme of ELP type has been used in [7] and in this paper we develop the
formalism and study stability properties of such schemes in a more general setting.

We split the operator on the right-hand side of (2.1) into the linear part,Lu, and the
nonlinear part,N (u). Following [7], we use the standard semigroup approach in order to
convert the initial value problem (2.1), (2.2) to the nonlinear integral equation of the form

u(x, t) = etLu(x, 0)+
∫ t

0
e(t−τ)LN (u(x, τ ))dτ. (2.4)

We note that the termetLu(x, 0) in (2.4) can always be replaced bye(t−η)Lu(x, η), 0≤ η≤ t ,
providedu(x, η) is known. Such a form of the integral operator is slightly more general
than that used in [7] (whereη= 0). Choosingη 6= 0 allows us to study a wider class of
ELP schemes and has a significant effect on their stability properties. A still more general



               

NEW TIME DISCRETIZATION SCHEMES FOR PDES 365

form of (2.4),

u(x, t) =
n∑

i=1

ci e
(t−ηi )Lu(x, ηi )+

∫ t

0
e(t−τ)LN (u(x, τ ))dτ,

n∑
i=1

ci = 1, (2.5)

can be considered, whereu(x, ηi ), i, 1 . . . ,n, are assumed to be known (we use (2.5) with
n= 1).

The operatorL and the exponential operator eLt in (2.4) incorporate the boundary con-
ditions. For example, writingu(x, t)= eLt u0(x) implies that the functionu(x, t) solves
ut =Lu with the initial conditionu(x, 0)= u0(x) and the boundary conditionBu(x, t)= 0
for x ∈ ∂Ä.

The integral equation (2.4) is easy to use for numerical purposes if, for example,L is
an operator with constant coefficients andu is a periodic function. In this caseL can be
represented by a diagonal matrix in the Fourier basis. For instance, ifL is the Laplacian and
u(x)= eikx, then1u=−k2u and, in such a case, the exponential operatore(t−τ)L simply
reduces to multiplication bye−k2(t−τ). However, for a general linear operatorLwith variable
coefficients, the exponential operators appearing in this equation are represented by dense
matrices. As far as we know, this is the main reason for the limited use of (2.4) as a starting
point of numerical discretization.

We observe that the situation is different for the exponential operators on a wide class of
linear operators in a wavelet system of coordinates. The sparsity of the exponential operators
was utilized in [7] for constructing a numerical algorithm for the solution of PDEs of the
form (2.1). In this paper we develop this approach further in order to construct a collection
of high order discretizations of (2.4) with good stability properties.

2.2. A Procedure for Time Discretization

In order to simplify the notation in our derivation, we replace a linear operatorL by a
scalarq since the coefficients of the scheme are analytic (operator) functions ofL. Since
all such functions commute with each other, it is sufficient to consider a scalar in deriving
the coefficients of the numerical scheme.

Thus, instead of (2.1) and (2.4), it is sufficient to examine

ut = qu+N (u) (2.6)

and

u(x, t) = eq(t−η)u(x, η)+
∫ t

0
eq(t−τ)N (u(x, τ ))dτ, (2.7)

where 0≤ η≤ t andu(x, η) is given.
Let us consider the functionu(x, t) at the discrete moments of timetn= t0+ n1t , where

1t is the time step so thatun≡ u(x, tn) andNn≡ N (u(x, tn)). Discretizing (2.7) yields

un+1 = eql1t un+1−l +1t

(
γ Nn+1+

M−1∑
m=0

βmNn−m

)
, (2.8)

whereM + 1 is the number of time levels involved in the discretization andl ≤M . The
expression in parenthesis in (2.8) may be viewed as the numerical quadrature for the integral
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in (2.7). The coefficientsγ andβm are the functions ofq1t (to simplify the notation, we
suppress the dependence ofγ andβm on l ).

We observe that the algorithm is explicit ifγ = 0 and it is implicit otherwise. Typically,
for a givenM , the order of accuracy isM for an explicit scheme andM + 1 for an implicit
scheme, due to one more degree of freedom,γ (see later for a more detailed discussion).
We refer to this family of schemes as exact linear part (ELP) schemes.

Remark 1. Using (2.8) to discretize partial differential equations (or, in general, using
semigroup approach as in (2.4)) may be viewed as a way to “reduce” partial differential to
ordinary differential equations. For example, one can apply the first Dahlquist criterion for
(2.8) (see, e.g. [12]) to determine the maximal order for the implicit schemes. The reason
this can be done is that the operator coefficients in (2.8) commute with each other and, thus,
polynomials with such coefficients can be manipulated in the usual manner.

Remark 2. In the particular case wherel = 2, γ = 0, andM = 1, Eq. (2.8) turns into the
explicit scheme known as the “slave-frog” scheme,

un+1 = e2q1t un−1+1tβ0Nn, β0 = e2q1t − 1

q1t
. (2.9)

This scheme has been used in computational fluid dynamics (see, e.g. [9]). We do not know
other examples of temporal schemes related to the family (2.8). As we will see below, the
scheme in (2.9) does not have good stability properties (see Section 4.2).

Let us first consider the casel = 1 (so thatη= tn in Eq. (2.7) is the nearest time level
tn+1),

un+1 = eq1t un +1t

(
γ Nn+1+

M−1∑
m=0

βmNn−m

)
. (2.10)

Our task now is to find the coefficientsγ andβm of scheme (2.10) in terms ofq1t . In [7]
these coefficients are derived so that (i) the expression in parentheses is anM + 1 order
quadrature approximation to the integral in (2.7) and (ii) the quadrature uses the fewest
number of nonzero coefficients,βm. In this paper we adopt a different approach and obtain
expressions for the coefficientsγ andβm in (2.10) by using the differential equation (2.6)
and by expanding the termsun+1 andeq1t un into the Taylor series. The resulting expressions
differ from those in [7] by higher order terms inq1t which are beyond the order of the
approximation (see discussion below).

We start by expandingun+1 in the Taylor series at the time leveltn,

un+1 =
∞∑

k=0

u(k)n

(1t)k

k!
, (2.11)

where

u(k)n =
∂k

∂tk
u(t)

∣∣∣∣
t=tn

.

The differential equation (2.6) yields relations between the derivatives ofu and those of
the nonlinear term, namely,

u(1) = qu+ N,

u(2) = qu(1) + N(1) = q2u+ q N+ N(1),

u(3) = q3u+ q2N + q N(1) + N(2),

(2.12)
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etc., and, in general,

u(k) = qku+
k−1∑
j=0

N( j )qk−1− j . (2.13)

Substituting (2.12) into (2.11), we have

un+1 =
∞∑

k=0

qk (1t)k

k!
un +

∞∑
k=1

k∑
j=0

N( j )qk−1− j (1t)k

k!

= eq1t un +
∞∑

k=0

k∑
j=0

N( j )qk− j (1t)k+1

(k+ 1)!
. (2.14)

Changing the order of summation, we obtain

∞∑
k=0

k∑
j=0

N( j )qk− j (1t)k+1

(k+ 1)!
=
∞∑
j=0

N( j )
∞∑

k= j

qk− j (1t)k+1

(k+ 1)!

=
∞∑
j=0

N( j )(1t) j+1

(
1

(q1t) j+1

∞∑
k= j+1

(q1t)k

k!

)

=
∞∑
j=0

N( j )(1t) j+1Q j+1(q1t), (2.15)

where we denote

Q j (x) = ex − E j (x)

x j
(2.16)

and where

E j (x) =
j−1∑
k=0

xk

k!
(2.17)

is a truncated expansion of the exponential ex. Thus, we obtain from (2.14) and (2.15),

un+1 = eq1t un +1t
∞∑
j=0

N( j )(1t) j Q j+1(q1t). (2.18)

Also, for the nonlinear part of (2.10), we have

γ Nn+1+
M−1∑
m=0

βmNn−m =
∞∑
j=0

N( j ) (1t) j

j !

(
γ + (−1) j

M−1∑
m=0

βmmj

)
, (2.19)

where we expandNn+1 andNn−m around the time leveltn. Substituting (2.18) and (2.19)
into (2.10), we obtain equations for the coefficientsγ andβm. In the implicit caseγ 6= 0
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TABLE I

Coefficients of Implicit ELP Schemes forl = 1, where Qk = Qk(q∆t)

M γ β0 β1 β2 Order

1 Q2 Q1 −Q2 0 0 2
2 Q2/2+Q3 Q1 − 2Q3 Q3 −Q2/2 0 3
3 Q2/3+Q3 +Q4 Q1 +Q2/2− 2Q3 − 3Q4 −Q2 +Q3 + 3Q4 Q2/6−Q4 4

and we have

γ +
M−1∑
m=0

βm = Q1

1

k!

(
γ + (−1)k

M−1∑
m=1

mkβm

)
= Qk+1, k = 1, . . . ,M.

(2.20)

In the explicit caseγ = 0 and we obtain

M−1∑
m=0

βm = Q1,

(−1)k

k!

M−1∑
m=1

mkβm = Qk+1, k= 1, . . . ,M − 1.

(2.21)

For l = 1 we provide Tables I and II forM = 1, 2, 3 with expressions for the coefficients
of the implicit (γ 6= 0) and the explicit(γ = 0) schemes in terms of Qk=Qk(q1t).

For anyl , 1< l ≤M , in (2.8), we can repeat the above considerations and obtain coef-
ficients of the corresponding scheme. In Tables III and IV we provide the coefficients of
implicit and explicit schemes in the casel = 2 in terms of Q2

k=Qk(2q1t) for M = 1, 2, 3.
The prescribed number of time levelsM in the discretization scheme (2.8) determines

the order of the scheme. Usually, implicit schemes(γ 6= 0) are of order(q1t)M+1, whereas
explicit schemes(γ = 0) are of order(q1t)M . However, there might be exceptions due to a
symmetry. For example, the explicit scheme (2.9) withγ = 0, l = 2, andM = 1 is of second
order, since the first-order terms cancel when we expandun+1 andun−1 at the time leveltn.

Remark 3. Although for a givenM , systems (2.20) and (2.21) have unique solutions,
the terms on the right-hand side, Qk, can be modified by adding terms of higher orders (the
order depends onk). These additional terms appear as contributions of higher order terms
in the discretized integral equation (2.8). For example, in (2.20) we can perturb QM+1 by a
term ofO(q1t),QM by a term ofO((q1t)2), . . . ,Q1 by a term ofO((q1t)M+1), without

TABLE II

Coefficients of Explicit ELP Schemes forl = 1, where Qk = Qk(q∆t)

M β0 β1 β2 Order

1 Q1 0 0 1
2 Q1 +Q2 −Q2 0 2
3 Q1 + 3Q2/2+Q3 −2(Q2 +Q3) Q2/2+Q3 3
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TABLE III

Coefficients of Implicit ELP Schemes forl = 2, where Q2
k = Qk(2q∆t)

M γ β0 β1 β2 Order

1 Q2
2 −Q2

1 2Q2
1 −Q2

2 0 0 2
2 Q2

3 −Q2
2/2 2(Q2

2 −Q2
3) Q2

1 − 3Q2
2/2+Q2

3 0 3
3 −Q2

2/6+Q2
4 Q2

2 +Q2
3 − 3Q2

4 Q2
1 −Q2

2/2− 2Q2
3 + 3Q2

4 −Q2
2/3+Q2

3 −Q2
4 4

changing the order of the resulting scheme. Adopting terminology used in perturbation
theory, we refer to the coefficients of the schemes obtained as solutions of (2.20) and (2.21)
as “bare,” and the coefficients obtained as solutions of the perturbed equations as “modified.”
Such modified coefficients were used in [7]. Although the order of the scheme does not
change if one uses modified coefficients instead of bare coefficients, it turns out that the
stability properties are rather sensitive to such perturbations. Let us also mention here that
some schemes in [7] use modified coefficients (in our sense) in combination with mixing
time levels within the nonlinear part. We note that such schemes cannot be obtained with the
formalism presented here since they depend on the particular form of the nonlinear term.

Remark 4. The nonlinear term in Eq. (2.6) may consist of several parts that can be
treated differently. Suppose that the nonlinear term is split into two parts,

ut = qu+N (I )(u)+N (II )(u),

and, therefore, the discretized equation (e.g., in the casel = 1) has the form

un+1 = eq1t un+1t

(
γ (I )N(I )

n+1+
MI−1∑
m=0

β(I )m N(I )
n−m

)
+1t

(
γ (II )N(II )

n+1+
MI I −1∑
m=0

β(II )m N(II )
n−m

)
.

Using previous considerations, we can show that each group of coefficients{γ (I ), β(I )} and
{γ (II ), β(II )} independently satisfy (2.20). For example, we can use an explicit scheme for
the first part withγ (I )= 0 and an implicit scheme for the second one withγ (II ) 6= 0.

3. EVALUATION OF THE OPERATOR-VALUED QUADRATURE COEFFICIENTS

The key point in our approach is an observation that operator-valued quadrature coeffi-
cients can be represented by sparse matrices (for a finite but arbitrary accuracy). Thus, in
order to make ELP schemes practical we have to provide an algorithm for their evaluation.

TABLE IV

Coefficients of Explicit ELP Schemes forl = 2, where Q2
k = Qk(2q∆t)

M β0 β1 β2 Order

1 Q2
1 0 0 2

2 Q2
2 Q2

1 −Q2
2 0 2

3 Q2
2/2+Q2

3 Q2
1 − 2Q2

3 −Q2
2/2+Q2

3 3
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As we have shown in Section 2, the coefficients of ELP schemes are written in terms of
operators Qk=Qk(L1t), where

Q j (L1t) = eL1t − E j (L1t)

(L1t) j
, (3.1)

and

E j (L1t) =
j−1∑
k=0

(L1t)k

k!
, (3.2)

for j = 0, 1, . . .. We have

Q0(L1t) = eL1t ,

Q1(L1t) = (eL1t − I )(L1t)−1,

Q2(L1t) = (eL1t − I − L1t)(L1t)−2,

· · ·
(3.3)

We will now describe a method that permits us to compute operators Q0,Q1,Q2, . . .

without computing(L1t)−1. The problem in using the Taylor expansion directly is that it
will result in a loss of accuracy due to possibly large singular values ofL1t . To avoid this
problem in computing the exponential Q0, we use the scaling and squaring method. This
method results in a fast algorithm if the evaluation is performed in a wavelet basis with a
sufficient number of vanishing moments (for a chosen accuracy) [6].

The scaling and squaring method for the exponential is based on the identity

Q0(2x) = Q2
0(x). (3.4)

First we compute Q0(L1t2−l ) for somel chosen so that the largest singular value ofL1t2−l

is less than one. This computation is performed using the Taylor expansion. Using (3.4),
the resulting matrix is then squaredl times to obtain the final answer.

A similar algorithm may be used for computing Qj (L1t), j = 1, 2, . . . , for any finite j .
Let us illustrate this approach by consideringj = 1, 2, . . . ,6.

It is not difficult to verify that

Q1(2x) = 1

2
(Q0(x)Q1(x)+Q1(x)),

Q2(2x) = 1

4
(Q1(x)Q1(x)+ 2Q2(x)),

Q3(2x) = 1

8
(Q1(x)Q2(x)+ 2Q3(x)+Q2(x)),

Q4(2x) = 1

16
(Q2(x)Q2(x)+ 2Q4(x)+ 2Q3(x)),

Q5(2x) = 1

32

(
Q2(x)Q3(x)+ 2Q5(x)+ 2Q4(x)+ 1

2
Q3(x)

)
,

Q6(2x) = 1

64
(Q3(x)Q3(x)+ 2Q6(x)+ 2Q5(x)+Q4(x)),

· · ·

(3.5)



             

NEW TIME DISCRETIZATION SCHEMES FOR PDES 371

The identities in (3.5) are obtained by considering the difference between 2j Q j (2x) and
Q j/2(x)Q j/2(x) if j is even, and Q( j−1)/2(x)Q( j+1)/2(x) if j is odd. This difference is then
expressed using a linear combination of Qj (x),Q j−1(x), . . . .

Thus, a modified scaling and squaring method for computing operator-valued quadra-
ture coefficients for ELP schemes starts by the computation of Q0(L1t2−l ),Q1(L1t2−l ),

Q2(L1t2−l ), . . . for somel selected so that the largest singular value of all three operators
is less than one. For this evaluation we use the Taylor series. We then proceed by using the
identities in (3.4) and (3.5)l times to compute the operators for the required value of the
argument.

The speed of the evaluation and application of operator-valued coefficients in spatial
dimensions two and three is one of the important factors in the practicality of ELP schemes.
Although the algorithms described above scale properly with size in all dimensions, es-
tablishing ways of reducing constants in operation counts remains an important task in
dimensions two and three. We will address these issues in a separate paper.

4. STABILITY ANALYSIS

4.1. Preliminary Considerations

The standard linear stability analysis of discrete schemes (see, e.g. [8]) deals with a test
problem,

ut = µu, (4.1)

whereµ=µr + iµi is a complex number. Applying a discretization method to Eq. (4.1),
we obtain a homogeneous linear difference equation,

M∑
k=0

(αkun−k − µ1tβkun−k) = 0 (4.2)

which is solved explicitly. We then consider a region in the complexµ-plane where the
solution of the discretized equation (4.2) is bounded asn→∞ (n is the number of time
steps). This region of (absolute) stability may be compared to the actual region of decay and
growth of solutions of (4.1) in order to ascertain the properties of the numerical scheme.

In the stability analysis of the ELP method we adopt an extension of the approach
suggested in [14]. The proposal of [14] is to compute a family of curves (boundaries of
stability regions) for a more general test problem,

ut = −qu+ µu, (4.3)

where different curves correspond to different values ofq. The point is that the first and
second terms on the right-hand side of (4.3) may be discretized using different schemes.
For example, these two terms may represent linear and nonlinear parts of the differential
equation. For a fixedq the analysis proceeds as in the standard method.

If we discretize the test problem (4.3), then parametersq andµwill appear in combination
with the time step1t . Let us fix the parameterq1t and plot the family of boundaries of
stability regions in the complex plane(µr1t, µi1t), whereµ=µr + iµi . A technique of
computing the boundaries of stability regions is described in Appendix B.
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We start by providing several examples of stability diagrams for discretization methods
discussed in [14] in order to establish a baseline for comparison with the stability properties
of ELP schemes.

Let us first provide an interpretation for parametersq andµ for a model advection–
diffusion equation,

ut = αuxx +Uux, (4.4)

whereU is a constant convective velocity andα >0 is a damping constant. Considering
periodic boundary conditions, we obtain for the Fourier transformû of the functionu,

ût = −αk2û+ ikUû. (4.5)

The equation (4.5) has the same structure as Eq. (4.3) withq=αk2> 0 andµ= ikU . For
nonlinear equations under consideration the splitting of the right-hand side of (4.5) into two
terms corresponds to the splitting into linear (diffusion) and nonlinear (advection) parts,
respectively.

We now turn to an example from [14] which deals with a mixed implicit–explicit method,
where the linear term is approximated using the implicit third-order Adams–Moulton
scheme and the nonlinear term is approximated using the explicit third-order Adams–
Bashforth scheme as

un = un−1− q1t
2∑

k=0

αkun−k + µ1t
3∑

k=1

βkun−k, (4.6)

whereα0= 5/12, α1= 8/12, α2=−1/12, andβ1= 23/12, β2=−16/12, β3= 5/12. The
corresponding stability diagram is plotted in Fig. 1. We observe that this method is con-
ditionally stable with a region of stability that separates from the imaginary (vertical) axis
for q1t ≥ 6 (that is, for high wavenumbers, sinceq∝ k2). In this figure, as well as other
stability diagrams below, the label of the curve (the boundary of the stability region),q1t ,
can be identified by finding the point of intersection of the corresponding curve with the
horizontal axis in the right half-plane.

In our second example, borrowed from the same paper [14], we reproduce the stability
diagram for a third-order stiffly stable scheme. According to [10], a method is stiffly stable if
it is consistent in a neighborhood of the origin and absolutely stable away from the origin in
the left imaginary plane. Stiffly stable multistep methods are implicit and their coefficients
are available up to eleventh order (see [13]).

In [14] a mixed explicit–implicit stiffly stable scheme has been introduced,

3∑
k=0

αkun−k = −q1tun + µ1t
3∑

k=1

βkun−k, (4.7)

with α-coefficients being those of the standard third-order stiffly stable scheme from [10],
α0= 11/6, α1=−3, α2= 3/2, andα3= 1/3. The coefficients for the explicit part areβ1=
3, β2=−3, andβ3= 1. The corresponding stability diagram is shown in Fig. 2. The sta-
bility region of this scheme is significantly broader than that of the third-order Adams–
Moulton/Adams–Bashforth family in Fig. 1. We note that a larger amount of dissipation,
q, stabilizes the convection term, i.e., the region of stability increases along the vertical
(imaginary) axis asq becomes larger.
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FIG. 1. Stability diagram of the third-order Adams–Moulton/Adams–Bashforth scheme. The curves corre-
spond to different values of the parameterq1t (q1t = 0 corresponds to the explicit scheme). This plot reproduces
Fig. 6 in [14].

FIG. 2. Stability diagram of the mixed implicit–explicit stiffly stable scheme of third order (q1t = 0 corre-
sponds to the explicit scheme). This plot reproduces Fig. 7 in [14].
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FIG. 3. Stability diagram for the scheme (2.9) withl = 2,M = 1 (slave-frog). The region of (absolute) stability
collapses to the vertical line asq1t→ 0.

4.2. Stability Analysis of ELP Schemes

We start our analysis with the “slave-frog” type schemes, which we obtain by setting
l = 2 in (2.8). It turns out that the weak instability with respect to long waves known for the
classical slave-frog scheme (2.9) withM = 1, also appears to be typical for other schemes
of this family (at least for the most practical, withM = 2 and 3). We then consider a class
of ELP schemes wherel = 1 with significantly better stability properties.

Family of ELP schemes with l= 2. We display the regions of (absolute) stability for the
second-order explicit scheme (2.9) in Fig. 3. As the parameterq→ 0, the stability region
shrinks to the line on the imaginary axis. This is expected since in the limitq→ 0, Eq. (2.9)
turns into the explicit midpoint scheme, which is known to be stable only on an interval of the
imaginary axis (see, e.g. [8]). Therefore, this scheme does not provide enough dissipation
for smallq (or for the long waves if we have in mind the model problem (4.4)). Nevertheless,
(2.9) has been used for numerical solution of some CFD problems. In order to overcome a
weak instability with respect to the long waves, some additional ad-hoc “tricks” have been
invented, such as “mixing” (from time to time) the contribution from several previous time
levels. However, the problem with such ad-hoc approaches is that they severely decrease
the accuracy of the method.

From our analysis it is clear that the weak instability atq¿ 1 is a common problem for
all schemes wherel = 2. In Fig. 4 we show the stability region for the third-order implicit
scheme (l = 2,M = 2; see Table 3). Again, asq→ 0 the region of stability collapses to the
vertical line.
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FIG. 4. Stability diagram for the implicit third-order scheme withl = 2,M = 2 (see Table III).

We provide in Appendix C an explanation for such behavior of the stability region of the
l = 2 schemes in the limitq→ 0. We now turn to a class of schemes with better stability
properties.

Implicit ELP schemes(l = 1). We start by showing in Fig. 5 the stability diagram for the
second-order scheme (l = 1,M = 1; see Table I). The region of absolute stability includes
the entire left half-plane and also a part of the right half-plane. In the limitq→ 0 the stability
region coincides with the left half-plane.

This stability diagram is obtained using the bare coefficients (see Remark 3 in Section 2.2),
namely,γ = Q2 and β0= Q1− Q2 in (2.10). If, instead, we use modified coefficients,
choosing them as ˜γ = 1/2 andβ̃0= Q1/2, then the stability boundaries become the vertical
straight lines, intersecting the horizontal axis at the distanceq1t to the right of the origin as
shown in Fig. 6. The coefficients ˜γ = 1/2 andβ̃0= Q1/2 satisfy the first equation in (2.20)
and the second equation in (2.20) withk= 1, whereQ2 is perturbed by anO(q1t) term.
This scheme was used in [7] and its stability diagram corresponds to anA-stable scheme
(see e.g. [8]). Such schemes have the same stability regions as the differential equation (4.3)
of the test problem, namely, the solution decays forµr −q< 0 and it grows otherwise. The
A-stability of this scheme is shown analytically in Appendix D.

The stability diagram for the third-order implicit scheme with the exact coefficients from
Table I is plotted in Fig. 7. The stability region is much larger than that of the third-order
stiffly stable scheme in Fig. 2. Moreover, atq1t = 2 the stability boundary turns into a
straight (vertical) line, and forq1t > 2 all the left half-plane and a part of the right half-
plane become stable (the scheme is super-stable with respect to high wave numbers). The
“islands” of instability in the right half-plane contract asq1t increases. The stability region
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FIG. 5. Stability diagram for the second-order implicit scheme (M = 1, l = 1) using bare coefficientsγ = Q2

andβ0= Q1 − Q2 from Table I. (Here the interior of the curves are the regions ofinstability.)

FIG. 6. Stability diagram for the second-order ELP implicit scheme (M = 1, l = 1) with modified coefficients
γ̃ = β̃0= Q1/2 (A-stable scheme).
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FIG. 7. Stability diagram for the third-order implicit scheme withl = 1,M = 2 and coefficients from Table I.

of the fourth-order implicit scheme is shown in Fig. 8. It is still larger than that of the
third-order stiffly stable scheme. This scheme becomes super-stable forq1t > 4.26 (not
shown in Fig. 8).

Explicit ELP schemes(l = 1). Finally, we consider the stability of explicit ELP schemes.
Let us illustrate the stability regions of the secondM = 2 and thirdM = 3 order schemes
in Figs. 9 and 10. We note that the stability regions of these schemes forq1t > 0 are more
reminiscent of those for implicit schemes (compare, for example, Fig. 10 with Fig. 2). In
the limit q1t→ 0 the stability regions tend to those of the second- and third-order Adams–
Bashforth schemes. This is expected since in (2.8) the exponential functioneq1t→ 1 as
q1t→ 0, and the bare coefficientsβk in (2.10) coincide with those of the corresponding
order Adams–Bashforth scheme.

For useful schemes it is important that the stability regions obtained via the stability
analysis of [14] grow asq1t becomes larger as, for example, in Fig. 2. In explicit ELP
schemes the region of stability grows for largeq1t (although for the third-order scheme this
growth is not monotonic; asq1t varies from 0 to 1, the stability region shrinks somewhat
and then starts to increase).

Let us compare the stability diagrams of the third-order explicit scheme withM = 3, l = 1,
and coefficients from Table II in Fig. 10 with that of the mixed implicit–explicit stiffly stable
scheme of third order from [14] in Fig. 2. This comparison shows that the explicit scheme
will require a time step only about one-half of that of the implicit scheme in order to stay
within the stability region. This is where ELP schemes may have an advantage since they
do not require potentially expensive solves at each time step (especially in dimensions two
and three).
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FIG. 8. Stability diagram for the fourth-order implicit scheme withl = 1,M = 3 and coefficients from Table I.

FIG. 9. Stability diagram for the second-order explicit scheme withM = 2, l = 1 and coefficients from Table II.
The curve atq1t = 0 corresponds to the boundary of the stability region of the second-order Adams–Bashforth
method.
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FIG. 10. Stability diagram for the third-order explicit scheme withM = 3, l = 1 and coefficients from Table II.
The curve atq1t = 0 corresponds to the boundary of the stability region of the third-order Adams–Bashforth
method.

In the ordinary explicit methods, due to stability restrictions, the time step1t is propor-
tional to(1/N)2, whereN is the number of degrees of freedom in the spatial discretization
(e.g. the number of grid points or the number of terms in spectral expansions,N∝ k). In the
explicit ELP schemes the time step may be chosen to be proportional to 1/N, as indicated
by the stability diagrams and the above comparison with an implicit scheme.

EXAMPLE 1. Let us first consider a nonlinear diffusion equation with a forcing term,

ut = αuxx − uux + f (x, t), x ∈ [0, 1]. (4.8)

For tests we select

u(ref) = cos(t) sin(2πωx), (4.9)

as a solution and generate the corresponding forcing termf (x, t). We then solve (4.8) with
this forcing term. For the space discretization we write the solution in multiwavelet bases
[1] using representations of differential operators and of the exponential of differential
operators constructed in [2].

We use explicit ELP schemes of the first, second, and third orders and plot in Fig. 11
the numerical error as a function of time forα= 1, ω= 3. The time step is1t = 10−3. By
choosing the number of subintervalsn= 16 and the order of multiwaveletsk= 6, we make
the temporal errors dominant in this example.
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FIG. 11. Error as a function of time for Example 1 for first-, second-, and third-order explicit ELP schemes.

EXAMPLE 2. Again using explicit ELP schemes in time and multiwavelets in space, we
consider Burgers’ equation

ut = νuxx − uux, x ∈ [0, 1]. (4.10)

A reference solution with periodic boundary conditions may be written as

u(ref) = −2ν
φx(x − ct, t + τ)
φ(x − ct, t + τ) , τ >0 (4.11)

where

φ(x, t) =
∞∑

n=−∞
e−(x−n)2/4νt . (4.12)

In Fig. 12 we display the numerical solution forc= 4, ν= 0.1/π , andτ = 1/(2π) (these
are parameters of the standard test case) so that the profile moves at speedc= 4. The
pointwise numerical error for the solution att = 1/16 is plotted in Fig. 13. The maximum
numerical error is given in Table V for the explicit first-, second-, and third-order ELP

TABLE V

Maximum Error of the Solution of the Periodic Burgers’

Equation at the Time t = 1/16, v= 0.1/π, and c= 0, 4

c\order First Second Third

0 9.6× 10−4 3.6× 10−7 5.9× 10−10

4 3.0× 10−2 4.2× 10−4 6.5× 10−6
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FIG. 12. Solution of the periodic Burgers’ equation att = 0 andt = 1/16;ν= 0.1/π, c= 4.

FIG. 13. The pointwise error for the solution of periodic Burgers’ equation att = 1/16.
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schemes for1t = 10−4, t = 1/16 andc= 0, c= 4. Again, the spatial resolution was chosen
to make temporal errors dominant.

5. CONCLUSIONS

We have demonstrated excellent stability properties of both explicit and implicit ELP
schemes. The efficiency of using ELP schemes for nonlinear partial differential equations
depends on the sparsity of the exponential of the linear part of the operator (obtained by
setting the nonlinear part to zero). We have analyzed stability properties of ELP schemes
for a class of advection–diffusion equations which includes the incompressible Navier–
Stokes equations. Although the derivation remains valid for more general nonlinear partial
differential equations, the exponential operator may no longer be sparse in wavelet bases. It
remains an interesting problem to find sparse representations for the exponential operator
of the linear part for other classes of nonlinear partial differential equations.

APPENDIX A: THE NAVIER–STOKES EQUATIONS

Let us show that the incompressible Navier–Stokes equations in three spatial dimensions
can be written in the form to which considerations of this paper are applicable.

We start with the usual form of the Navier–Stokes equations forx ∈Ä∈R3,

ut = ν1u− (u1∂1+ u2∂2+ u3∂3)u−∇ p, (A.1)

∂1u1+ ∂2u2+ ∂3u3 = 0, (A.2)

u(x, 0) = u0, (A.3)

(wherep denotes the pressure) and the boundary condition

u(x, t) = 0 on∂Ä, t ∈ [0, T ]. (A.4)

Here we use the notation

u =
u1

u2

u3

 , x =
 x1

x2

x3

 ,
and∂k= ∂/∂xk. Let us introduce the Riesz transforms which are defined in the Fourier
domain as

(R̂j f )(ξ) = ξ j

|ξ | f̂ (ξ), j = 1, 2, 3, (A.5)

where f̂ denotes the Fourier transform of the functionf . Let us consider the projection
operator on the divergence-free functions,

P=
 I 0 0

0 I 0
0 0 I

−
 R2

1 R1R2 R1R3

R2R1 R2
2 R2R3

R3R1 R3R2 R2
3

 . (A.6)
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In order to show thatP(u) satisfies (A.2), let us compose the divergence operator and (A.6),
so that we need to verify

∂1R2
1 + ∂2R2R1+ ∂3R3R1 = ∂1

∂1R1R2+ ∂2R2
2 + ∂3R3R2 = ∂2

∂1R1R3+ ∂2R2R3+ ∂3R2
3 = ∂1.

(A.7)

It is easy to check relations (A.7) by examining symbols of these operators in the Fourier
domain; for example, the first equation in (A.7) reduces to

iξ1
ξ2

1

|ξ |2 + iξ2
ξ2ξ1

|ξ |2 + iξ3
ξ3ξ1

|ξ |2 = iξ1. (A.8)

Applying the divergence operator to (A.1), we obtain

−1p =
3∑

k,l=1

∂k∂l ukul (A.9)

and an expression for pressure in terms of the Riesz transforms,

p = −
3∑

k,l=1

Rk Rl (ukul ). (A.10)

Substituting (A.10) into (A.1) and taking into consideration that the Riesz transforms com-
mute with derivatives and, moreover,

Rk∂l = Rl ∂k, (A.11)

we obtain

ut = ν1u− P

(
3∑

m=1

um∂mu

)
, (A.12)

instead of (A.1) and (A.2). Equations (A.12) are now in the form (2.1), whereL= ν1 and
N (u)=−P(

∑3
m=1 um∂mu).

The transformation from (A.1) and (A.2) to (A.12) is well known and appears in a variety
of forms in the literature (here we follow a derivation by Yves Meyer at the summer school
at Luminy in 1997). The apparent problem with (A.12) for use in numerical computations
is that the Riesz transforms are integral operators (which makes (A.12) into an integro-
differential equation).

Let us point out that the presence of the Riesz transforms does not create serious difficulties
if we represent operatorsRj , j = 1, 2, 3, in a wavelet basis with a sufficient number of
vanishing moments (for a given accuracy). The reason is that these operators are nearly
local on wavelets (see, e.g. [5]) and, thus, have a sparse representation. This approximate
locality follows directly from the vanishing moments property. Vanishing moments imply
that the Fourier transform of the wavelet and its several first derivatives vanish at zero and,
therefore, the discontinuity of the symbol of the Riesz transform at zero has almost no
effect. The precise statements about such operators can be found in [5, 4].
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Finally, in rewriting (A.12) as

ut = Lu+N (u), (A.13)

we incorporate the boundary conditions into the operatorL. For example,u=L−1v means
that u solvesLu= v with the boundary conditionsBu= 0. Similarly, u(x, t)= eLt u0(x)
means thatu solvesut =Lu, u(x, 0)= u0(x), andBu(x, t)= 0.

APPENDIX B

For the convenience of the reader, we describe a technique for the computation of a
marginal stability curve (or the boundary of a stability region). We start with the test
problem

ut = µu, (B.1)

whereµ is a complex parameter. Applying a time-discretization method to this equation,
we obtain a homogeneous linear difference equation,

M∑
k=0

(αkun−k − µ1tβkun−k) = 0. (B.2)

Settingλ=µ1t , we look for a region of (absolute) stability, which is the region in the
complexλ-plane, where the solutionun remains bounded asn→∞. The solution to (B.2)
can be sought in the formun= zn, wherez= |z|ei θ . Evidently, the solution grows withn if
|z|> 1 and it decays if|z|< 1. Hence, the boundary of the stability region is determined by
the condition|z| =1. Thus, to find the boundary we set

z= eiθ . (B.3)

By settingλ= λr + iλi and substituting (B.3) into (B.2), we arrive at a linear system

Cλr − Dλi = A,

Cλr + Dλi = B,

where

A(θ) = Re
M∑

k=0

αkei (n−k)θ , B(θ) = Im
M∑

k=0

αkei (n−k)θ ,

C(θ) = Re
M∑

k=0

βkei (n−k)θ , D(θ) = Im
M∑

k=0

βkei (n−k)θ .

Its solution,

λr (θ) = AC+ B D

C2+ D2
, λi (θ) = BC− AD

C2+ D2
,

is nothing else but the parametric form of the boundary of the stability region. It describes
a closed curve in the plane(λr , λi ), whereθ sweeps the interval 0≤ θ ≤ 2π .
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APPENDIX C

In this section we show that the family of schemes withl = 2 has a weak instability in the
limit q→ 0. As an example let us analyze the third-order implicit scheme with the stability
region illustrated in Fig. 4. The coefficients of this scheme are given in Table III withM = 2.
In the limit q→ 0, the values ofQ2

k= Qk(2q1t) are

Q2
1 = 2, Q2

2 = 2, Q2
3 =

4

3
, Q2

4 =
2

3
. (C.1)

For the corresponding values of the coefficients we haveγ = 1/3, β0= 4/3, β1= 1/3.
The linear homogeneous difference equation in this case is

un+1 = un−1+ λ
3
(un+1+ 4un + un−1), (C.2)

whereλ=µ1t . We seek the solution of (C.2) in the formun= zn. This gives us the
characteristic equation,

z2− 1= λ

3
(z2+ 4z+ 1). (C.3)

Solving this equation with respect toλ, we obtain

λ

3
= z2− 1

z2+ 4z+ 1
= z− z−1

z+ 4+ z−1
. (C.4)

Since on the boundary of the stability regionz= eiθ , we have

λ(θ) = −i
3 sin(θ)

2+ cos(θ)
, (C.5)

and we note thatλ(θ) is pure imaginary for all 0≤ θ ≤ 2π . Thus, the boundary of the stability
region in the limitq→ 0 is an interval of the imaginary axis. It is easy to see that the function
in (C.5) has the extreme values±√3≈±1.73. Thus, we have−√3≤ iµ1t ≤√3 (compare
with the diagram in Fig. 4 atq= 0).

The same consideration is applicable to the first-order explicit scheme (2.9). Using the
expressions for the coefficients in Tables III and IV and the values ofQk in (C.1), one can
show that for the second-order implicitM = 1 and second-order explicitM = 2 schemes
the stability region also degenerates to a line in the limitq→ 0. For the third-order explicit
scheme the stability diagram atq= 0 is more complicated but still the stability region has
zero thickness near the origin,λ= 0.

Thus, practical second- and third-order schemes of the class withl = 2 have weak
instability.

APPENDIX D

Let us prove theA-stability of the implicit second-order ELP scheme withM = 1 and
l = 1 used in [7],

un+1 = e−q1t un + µ1t (γun+1+ β0u0), (D.1)
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with coefficientsγ =β0= Q1/2, where

Q1 = 1− E

q1t
, E = e−q1t . (D.2)

Since we are interested in the boundary of the stability region, we seek the solution of
(D.1) in the formun= einθ . Substitutingun= einθ into Eq. (D.1) and denotingλ=µ1t , we
obtain

cosθ + i sinθ = E + Q1

2
(1+ cosθ + i sinθ)(λr + iλi ). (D.3)

By considering real and imaginary parts separately, we arrive at the system of two linear
equations

2

Q1
(cosθ − E) = (1+ cosθ)λr − sinθ λi ,

2

Q1
sinθ = sinθ λr + (1+ cosθ)λi ,

(D.4)

with the solution

λr = q1t, λi = q1t
1+ E

1− E

sinθ

1+ cosθ
. (D.5)

The equation in (D.5) describes the vertical line on the complexλ-plane parallel to the
imaginary axis and located at the distanceq1t from the origin (see Fig. 6).
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