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The formal representation of the quasi-periodic Helmholtz Green’s function obtained by
the method of images is only conditionally convergent and, thus, requires an appropriate
summation convention for its evaluation. Instead of using this formal sum, we derive a
candidate Green’s function as a sum of two rapidly convergent series, one to be applied in
the spatial domain and the other in the Fourier domain (as in Ewald’s method). We prove
that this representation of Green’s function satisfies the Helmholtz equation with the
quasi-periodic condition and, furthermore, leads to a fast algorithm for its application as
an operator.
We approximate the spatial series by a short sum of separable functions given by

Gaussians in each variable. For the series in the Fourier domain, we exploit the
exponential decay of its terms to truncate it. We use fast and accurate algorithms for
convolving functions with this approximation of the quasi-periodic Green’s function. The
resulting method yields a fast solver for the Helmholtz equation with the quasi-periodic
boundary condition. The algorithm is adaptive in the spatial domain and its performance
does not significantly deteriorate when Green’s function is applied to discontinuous
functions or potentials with singularities. We also construct Helmholtz Green’s functions
with Dirichlet, Neumann or mixed boundary conditions on simple domains and use a
modification of the fast algorithm for the quasi-periodic Green’s function to apply them.
The complexity, in dimension dR2, of these algorithms is O(kd log kCC(log eK1)d),

where e is the desired accuracy, k is proportional to the number of wavelengths contained in
the computational domain and C is a constant. We illustrate our approach with examples.
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1. Introduction

In this paper, we construct fast and accurate algorithms for applying Helmholtz
Green’s functions incorporating a variety of boundary conditions on simple
domains. We come to this problem from the perspective of developing fast
algorithms for applying operators of mathematical physics with finite but
arbitrary accuracy (in operator norm) as we discuss later. Instead of emphasizing
computing of values of Green’s functions, as is typical in the literature mentioned
below, we focus on the problem of applying such Green’s functions as operators
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G. Beylkin et al.3302
in a fast and accurate manner. We note that the accurate computation of the
values of a Green’s function does not by itself resolve the issue of its efficient
application and use as an operator. Towards this end, we develop approxi-
mations of Green’s functions that resolve the problem of algorithmic efficiency in
applying them to discontinuous functions or potentials with singularities.

The key element of our approach is a fast algorithm for computing
convolutions with the quasi-periodic Helmholtz Green’s function,

uðxÞZ
ð
D
GqðxKyÞf ðyÞ dy; ð1:1Þ

for functions f 2LpðDÞ, where D is the primitive cell of a Bravais lattice L. We
consider the case where the lattice is defined by d linearly independent vectors in
dimension dR2. Green’s function Gq satisfies

ðDCk2ÞGqðxÞZKdðxÞ; ð1:2Þ

GqðxC lÞZ eKik$lGqðxÞ; ð1:3Þ

where kO0, l2L, x2D and k2R
d. The quasi-periodicity vector k is sometimes

referred to as Bloch or crystal momentum vector. Consequently, the function u
in (1.1) satisfies

ðDCk2ÞuðxÞZKf ðxÞ; ð1:4Þ

uðxC lÞZ eKik$luðxÞ: ð1:5Þ

It is well known that the method of images (typically used in dimensions dZ2
or 3) gives rise to a natural, yet formal representation,

Gformal
q ðxÞZ

1

4p

X
l2L

eikjxClj

jxC lj e
ik$l ; for dimension d Z 3;

i

4

X
l2L

H
ð1Þ
0 ðkjxC ljÞeik$l; for dimension d Z 2;

8>>>><
>>>>:

ð1:6Þ

where j$j denotes the length of a vector and H
ð1Þ
0 is the zeroth-order Hankel

function of the first kind. These sums are only conditionally convergent; thus,
they require a summation convention to yield a classical solution of (1.4)
and (1.5).

The formal sum (1.6) appears in many areas of physics and engineering. For
example, one of the first applications (Ewald (1913), see Cruickshank et al.
(1992) for an English translation) describes X-ray diffraction by crystals using
(1.6) as the key mathematical object. In fact, by transforming (1.6) to the
Fourier domain, it is easy to obtain directions and X-ray frequencies by using
the so-called Ewald’s sphere. The sum (1.6) occurs in wave propagation in
periodic structures (e.g. Brillouin 1953), in the study of photonic crystals (e.g.
Soukoulis 1992; Joannopoulos et al. 1995), in band structure computations in
solid-state physics (e.g. Kohn & Rostoker 1954; Ham & Segall 1961), as well as
in the analysis of ergodic systems (Berry 1981).
Proc. R. Soc. A (2008)



3303Fast algorithms for Green’s functions
Besides Ewald’s (1921) method, there are other approaches for interpreting
and evaluating (1.6) (see Glasser & Zucker (1980) and Linton (1998) for a survey
and references therein). One approach is to use addition theorems for Bessel
functions, which separates the input variables x from the lattice vectors l. In such
cases, Green’s function is written as an expansion with respect to Bessel
functions with coefficients given by a lattice sum. We note that Yasumoto &
Yoshitomi (1999), McPhedran et al. (2000) and Dienstfrey et al. (2001) employ
this approach and develop different algorithms for evaluating the lattice sum.
Although these algorithms yield a method for the fast evaluation of Green’s
function, they do not provide an algorithm to perform fast convolutions.

In our approach, as in Ewald’s (1921) summation, we split Green’s function
into two absolutely convergent series, one in the spatial domain and the other in
the Fourier domain. We then verify directly that our representation of Green’s
function satisfies (1.2) and (1.3) in the usual sense and, thus, (1.1) yields the
classical solution of (1.4) and (1.5). We also provide an alternative derivation of
Ewald’s method using a limiting procedure based on analytic continuation, which
more naturally connects with our approach and goals.

Using the periodic Green’s function (kZ0 in (1.3)) and the method of images,
we construct other Helmholtz Green’s functions that incorporate either Dirichlet,
Neumann or mixed boundary conditions on simple domains. The resulting
integral operators are no longer convolutions, but the algorithm for applying
these Green’s functions is similar to that for the quasi-periodic Green’s function.
The application of Green’s functions satisfying boundary conditions is also split
between the spatial and the Fourier domains resulting in an algorithm with the
same computational complexity as that for the quasi-periodic Green’s function.

In the spatial domain, we approximate operators using separated representations
given by a sum of Gaussians and note that this type of approximation (e.g.
Beylkin & Mohlenkamp 2002, 2005; Beylkin & Monzón 2005) has been successfully
used by Harrison et al. (2004) and Beylkin et al. (2007, 2008) to construct fast and
accurate algorithms for applying non-oscillatory kernels. In this paper, we extend
the results in Beylkin et al. (submitted) to the quasi-periodic Helmholtz Green’s
functions as well as Green’s functions with boundary conditions on simple domains.
Thus, to apply Green’s function, in the spatial domain we compute convolutions
with Gaussians via an adaptive multiresolution algorithm (e.g. Harrison et al. 2004;
Beylkin et al. 2007, 2008), or the fast Gauss transform inGreengard & Strain (1991),
Strain (1991) and Greengard & Sun (1998).

In the Fourier domain, we use the unequally spaced fast Fourier transform
(USFFT) (e.g. Dutt & Rokhlin 1993; Beylkin 1995; Lee & Greengard 2005). The
resulting algorithm computes (1.1) with controlled accuracy e, computational
cost proportional to (log eK1)d, and maintains its performance when applied to
functions with discontinuities or singularities (e.g. Coulomb or Lennard-Jones
potentials). The same approach yields algorithms for Green’s functions in simple
domains with either Dirichlet, Neumann or mixed boundary conditions. These
algorithms yield fast and adaptive solvers for the Helmholtz equation with the
aforementioned boundary conditions and have computational complexity
Oðkd log kCCðlog eK1ÞdÞ, where C is a constant.

We proceed by providing some preliminaries in §2 and, in §3, derive a
representation of the quasi-periodic Green’s function as a sum of two convergent
series solving (1.2) and (1.3). Using this representation, in §4 we develop a fast
Proc. R. Soc. A (2008)
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algorithm for computing convolutions with the quasi-periodic Green’s function and
illustrate our approach with examples. Then, in §5, we construct approximations to
Green’s functions satisfying boundary conditions on simple domains. Finally, we
discuss implications of our approach for developing a unified methodology for
applying oscillatory and non-oscillatory Green’s functions.
2. Preliminaries

(a ) Bravais lattice

A Bravais lattice in dimension dZ2 is defined as

LZ fn1l1 Cn2l 2gn1;n22Z;

where the lattice vectors l1; l 2 2R
2 are linearly independent. The reciprocal

lattice (in the Fourier domain) is then given by

L� Z fm1d1Cm 2d2gm1;m22Z;

where d1;d2 2R
2 are the reciprocal lattice vectors defined to satisfy

li$dj Z
1; i Z j;

0; isj:

(

Similarly, in dimension dZ3 we have

LZ fn1l1 Cn2l2Cn3l3gn1;n2;n32Z

and

L� Z fm1d1 Cm 2d2 Cm 3d3gm1;m2;m32Z;

where l1; l2; l3 2R
3 and d1;d2;d3 2R

3. An obvious generalization yields Bravais
lattices in any dimension d.

In dimension d, we consider the primitive cell to be the d-dimensional
parallelepiped associated with the vectors l1; l2;.; ld. We denote the primitive
cell as D and its volume as V. We refer to, for example, Kittel (1986) for a
detailed description of Bravais lattices.
(b ) Fourier transform and Poisson summation formula

We use the Fourier transform in dimension d

f̂ ðpÞZ
ð
Rd
f ðxÞeKip$x dx

and its inverse

f ðxÞZ 1

ð2pÞd
ð
Rd
f̂ ðpÞeix$p dp:

For our purposes, it is sufficient to consider the Schwartz class of functions S(Rd)
containing infinitely differentiable functions with derivatives decaying faster
than any inverse polynomial (e.g. Grafakos 2004, §2b). We have
Proc. R. Soc. A (2008)



3305Fast algorithms for Green’s functions
Proposition 2.1. (Poisson summation formula) Let f2S(Rd), L be a Bravais
lattice, L� the reciprocal lattice and V the volume of the primitive cell. Then

X
l2L

f ðxC lÞeik$l Z 1

V

X
d2L�

f̂ ð2pdKkÞeix$ð2pdKkÞ;

for x; k 2R
d.

This result follows from observing that the set of functions fe2pix$dgd2L� forms

an orthonormal basis for S(D) since the linear change of variables xZ
Pd

iZ1 yili,

where yZðy1;.; ydÞ2 ½0; 1�d, reduces the problem to that of the standard

Fourier series fe2piy$ngn2Zd .
(c ) Free-space Green’s function

The outgoing free-space Helmholtz Green’s function in dimension d (where

H
ð1Þ
ðdK2Þ=2 is the Hankel function of the first kind),

GfreeðxÞZ
i

4

k

2pjxj

� �ðdK2Þ=2
H

ð1Þ
ðdK2Þ=2ðkjxjÞ;

satisfies the Helmholtz equation

ðDCk2ÞGfreeðxÞZKdðxÞ ð2:1Þ

and the Sommerfeld radiation condition

lim
jxj/N

jxjðdK1Þ=2 vGfree

vjxj K ikGfree

� �
Z 0:

In particular, we have

GfreeðxÞZ

1

4p

eikjxj

jxj ; for dimension dZ3;

i

4
H

ð1Þ
0 ðkjxjÞ; for dimension dZ2:

8>>>><
>>>>:

On taking the Fourier transform of (2.1), we obtain

ĜfreeðpÞZ
1

jpj2Kk2
:

The inverse Fourier transform of Ĝfree is a singular integral and we use the
limiting procedure in Beylkin et al. (submitted) to define Green’s function as

GfreeðxÞZ lim
l/0C

1

ð2pÞd
ð
Rd

eix$p

jpj2KðkC ilÞ2
dp: ð2:2Þ
Proc. R. Soc. A (2008)
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3. Quasi-periodic Green’s function via absolutely convergent series

The quasi-periodic Green’s function formally described by (1.6) requires a
summation convention for its evaluation. Instead, we construct the quasi-periodic
Green’s function via a sum of two convergent series that yield an explicit (classical)
solution of (1.2) and (1.3) and, in §4, describe a fast algorithm for its application.

As a motivation, let us consider

1

V

X
d2L�

eix$ð2pdKkÞ

j2pdKkj2Kk2

and note that this sum formally satisfies (1.2) and (1.3) provided ks 2pdKkj j,
where d 2L�. Following the approach in Beylkin et al. (submitted), we choose
hO0 and split the above expression as

1

V

X
d2L�

eix$ð2pdKkÞ

j2pdKkj2Kk2
exp

Kj2pdKkj2 Ck2

4h2

� �

C
1

V

X
d2L�

eix$ð2pdKkÞ

j2pdKkj2Kk2
1Kexp

Kj2pdKkj2Ck2

4h2

� �� �
:

We show below that the splitting parameter h is the same as in Ewald’s method
and we discuss practical considerations for its selection in §4.

Observing that the first term is an absolutely convergent series, we define

GFourierðxÞZ
1

V

X
d2L�

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

eix$ð2pdKkÞ; ð3:1Þ

for kO0, ks 2pdKkj j, where d 2L�. Note that the sum in (3.1) is independent
of the dimension d.

For the second term, we use the Poisson summation and (still formally) obtain

GspatialðxÞZ
X
l2L

eik$lFsingðxC lÞ; ð3:2Þ

where

FsingðxÞZ
1

2dK1pd=2

ðN
logð2hÞ

exp Kjxj2 e
2s

4
Ck2eK2s CðdK2Þs

� �
ds: ð3:3Þ

We note that by replacing eK2s by its maximum on [log (2h), N) and changing

variables tZe2s/4Kh2, we obtain the estimate FsingðxC lÞ%CeKh2jxClj2 with

some constant C and any ls0.
This estimate shows that (3.2) is an absolutely convergent series which we use

as a definition for Gspatial. We define

GqðxÞZGspatialðxÞCGFourierðxÞ ð3:4Þ
as a sumof two absolutely convergent serieswithGspatial in (3.2) andGFourier in (3.1).

Next, we show that Gq in (3.4) satisfies (1.2) and (1.3) in the usual sense and,
therefore, we no longer depend on an interpretation of (1.6) as an operator. As a
Proc. R. Soc. A (2008)
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result, we may consider convolving Gq with functions from various classes, e.g.
Lp(D), and the convolution (1.1) gives us a classical solution of (1.4) and (1.5).
We prove that

Proposition 3.1. The function Gq in (3.4) is the quasi-periodic Green’s
function satisfying (1.2) and (1.3) for kO0, ks 2pdKkj j, where d 2L� and
k 2R

d. This result holds in any dimension dR2.

Proof. The quasi-periodic condition for GFourier in (3.1) follows from

GFourierðxC lÞZ 1

V

X
d2L�

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

eix$ð2pdKkÞeKik$l Z eKik$lGFourierðxÞ;

since e2pil$dZ1 for any l2L and d 2L�. For Gspatial in (3.2), a shift in summation
yields a factor eKik$l and, thus, it also satisfies the quasi-periodic condition.

We apply DCk2 to (3.1) and (3.2). Using proposition 2.1, we have

ðDCk2ÞGFourierðxÞZK
1

V

X
d2L�

exp
Kj2pdKkj2 Ck2

4h2

� �
eix$ð2pdKkÞ

ZK
hd

pd=2

X
l2L

exp Kh2jxC lj2 C k2

4h2

� �
eik$l: ð3:5Þ

For Gspatial in (3.2), we change the variables in the integral, sZ log(2t), and obtain

ðDCk2ÞGspatialðxÞZ
X
l2L

eik$l

2pd=2

ðN
h

exp KjxC lj2t2C k2

4t2

� �

!ð4t4jxC lj2K2t2dCk2ÞtdK3 dt: ð3:6Þ

In the previous sum, we separate the lZ0 term and note that for jxC ljO0
we have

1

2pd=2

ðN
h

exp KjxC lj2t2 C k2

4t2

� �
ð4jxC lj2t4K2t2dCk2ÞtdK3 dt

Z
hd

pd=2
exp Kh2jxC lj2 C k2

4h2

� �
: ð3:7Þ

This identity follows by observing that

v

vt
exp KjxC lj2t2C k2

4t2

� �
ZK

1

2t3
ð4jxC lj2t4 Ck2Þexp KjxC lj2t2 C k2

4t2

� �

and using integration by parts. Thus, for x2D and ls0, we have a term-by-term
cancellation between (3.6) and (3.5), which yields

ðDCk2ÞGqðxÞZFðxÞ;
Proc. R. Soc. A (2008)



G. Beylkin et al.3308
where

FðxÞZ 1

2pd=2

ðN
h

exp Kjxj2t2 C k2

4t2

� �
ð4jxj2t4K2t2dCk2ÞtdK3 dt

K
hd

pd=2
exp Kh2jxj2 C k2

4h2

� �
: ð3:8Þ

The function F corresponds to the difference of lZ0 terms in (3.6) and (3.5).
Note that due to (3.7), F(x) vanishes for xs0. In order to show that Gq

satisfies (1.2), we show that the Fourier transform of (3.8) is F̂ðpÞZK1. We have

hd

pd=2

ð
Rd
exp Kh2jxj2 C k2

4h2

� �
eKix$p dx Z exp

Kjpj2Ck2

4h2

� �

and

tdK3

2pd=2

ð
Rd
exp Kjxj2t2C k2

4t2

� �
ð4jxj2t4K2t2dCk2ÞeKix$p dx

Z
Kjpj2Ck2

2t3
exp

Kjpj2Ck2

4t2

� �
:

Thus, we obtain

F̂ðpÞZ
ðN
h

Kjpj2Ck2

2t3
exp

Kjpj2 Ck2

4t2

� �
dtKexp

Kjpj2Ck2

4h2

� �
ZK1:

&

Remark 3.2. In the special case where kZ j2pdKkj for some d 2L�and fixed
k 2R

d, where L� is the reciprocal lattice, each of the functions eið2pdKkÞ$x satisfies
the quasi-periodic condition (1.5) and is a eigenfunction of D with eigenvalue
Kj2pdKkj2. Thus, such functions are in the null space of DCk2 and we require
the function f in (1.1) to satisfyð

D
f ðyÞeKið2pdKkÞ$y dy Z 0; ð3:9Þ

for all such vectors d. Therefore, the solution to (1.4) and (1.5) is given by

uðxÞZ
ð
D
GqðxKyÞf ðyÞdyC

X
d2L�

j2pdKkjZk

cd$e
ix$ð2pdKkÞ; ð3:10Þ

where cd are arbitrary constants and

GqðxÞZGspatialðxÞC
1

V

X
d2L�

j2pdKkjsk

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

eix$ð2pdKkÞ:
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Remark 3.3. We note that to derive Gq, it is sufficient to consider the real part
of the free-space Green’s function Gfree since the imaginary part of Gfree leads to a
vanishing sum. Indeed, using the Poisson summation for generalized functions,
for kO0, ksj2pdKkj, k 2R

d and x2D, we haveX
l2L

ImðGfreeðxC lÞÞeik$l Z p

2Vk

X
d2L�

eix$ð2pdKkÞdðj2pdKkjKkÞZ 0;

where L is a Bravais lattice, L� its reciprocal lattice and V the volume of the
primitive cell. This property may also be seen by replacing the outgoing free-
space Green’s function by the incoming one (i.e. its complex conjugate) to obtain
(3.2), (3.1) and (3.4). Also, the limiting procedure described in §3a (as an
alternative to Ewald’s summation) leads to the same conclusion. We were not
able to find this fact in the literature except for a particular case in McPhedran
et al. (2005).
(a ) A connection with Ewald’s method

Ewald (1921) used an integral representation of the free-space Green’s
function in dimension dZ3,

1

4p

eikr

r
Z

1

2p3=2

ð
G

exp Kr2t2 C
k2

4t2

� �
dt;

where G is a suitably chosen contour in the complex plane so that the integral is
well defined. Let us consider a different limiting procedure, similar to that in
(2.2), to obtain Ewald’s result. Instead of integrating along a contour, we add an
imaginary part to k, kCil with lOk and consider

Gfreeðr ; lÞZ
1

4p

eiðkCilÞr

r
Z

1

2p3=2

ðN
0
exp Kr2t2 C

ðkC ilÞ2

4t2

� �
dt ð3:11Þ

with integration over the positive real axis. The expression on the left-hand side
of the formula yields the free-space Green’s function as l/0, whereas the
integral on the right-hand side is well defined only for lOk. However, owing to
analytic dependence on l, it is possible to use the integral in (3.11) to obtain an
expression for the quasi-periodic Green’s function. We proceed with the
derivation for dimension dZ3 and note that in dimension dZ2 we may follow
the same steps but starting (for lOk) with

i

4
H

ð1Þ
0 ððkK ilÞrÞZ 1

2p

ðN
0
exp Kr2t2C

ðkC ilÞ2

4t2

� �
dt

t
;

instead of (3.11). Similar integrals are available in any dimension d.
The fact that the integral in (3.11) is well defined for lOk may be seen using

the primitive

1

2p3=2

ð
exp Kr2t2C

ðkC ilÞ2

4t2

� �
dt ZK

eðKikClÞr

8pr
erfc

KikCl

2t
Crt

� �

C
eðikKlÞr

8pr
erfc

KikCl

2t
Krt

� �
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and, using (Abramowitz & Stegun 1970, eqn (7.1.16)) to evaluate the limits
for lOk,

lim
t/0C

K
eðKikClÞr

8pr
erfc

KikCl

2t
Crt

� �
C

eðikKlÞr

8pr
erfc

KikCl

2t
Krt

� �
Z 0

and

lim
t/N

K
eðKikClÞr

8pr
erfc

KikCl

2t
Crt

� �
C

eðikKlÞr

8pr
erfc

KikCl

2t
Krt

� �
Z

1

4p

eðikKlÞr

r
:

As a starting point to construct the quasi-periodic Green’s function, we use
(3.11) and for lOk consider

Gqðx; lÞZ
1

2p3=2

X
l2L

eik$l
ðh
0
exp KjxC lj2t2 C ðkC ilÞ2

4t2

� �
dt

C
1

2p3=2

X
l2L

eik$l
ðN
h
exp KjxC lj2t2 C ðkC ilÞ2

4t2

� �
dt: ð3:12Þ

As in Ewald (1921), we introduced a real parameter hO0 to split the region of
integration into two intervals t2(0, h) and t2(h,N).

In the second term in (3.12), we set lZ0 since the integral is convergent for all
lR0. Thus, we obtain

GspatialðxÞZ
1

2p3=2

X
l2L

eik$l
ðN
h

exp KjxC lj2t2 C k2

4t2

� �
dt: ð3:13Þ

We note that explicit integration yields

1

2p3=2

ðN
h
exp KjxC lj2t2 C k2

4t2

� �
dt Z

1

4p

cosðkjxC ljÞ
jxC lj

�

K
eKikjxClj

2jxC lj erf
Kik

2h
C jxC ljh

� �
C

eikjxClj

2jxC lj erf
Kik

2h
KjxC ljh

� ��
;

an expression that may be found in some numerical procedures for Ewald’s
method. We note that this formula requires appropriate modifications in
computing contributions of the error function to avoid loss of accuracy. We
instead write

GspatialðxÞZ
1

4p3=2

X
l2L

eik$l
ðN
logð2hÞ

exp KjxC lj2 e
2s

4
Ck2eK2s Cs

� �
ds; ð3:14Þ

where we changed the integration variable from t to s, tZes/2. This expression
coincides with (3.2) for dZ3.
Proc. R. Soc. A (2008)
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In the first term in (3.12), we exchange the order of summation and integration
since lOk. We then use the Poisson summation formula in proposition 2.1
to obtain

1

2p3=2

ðh
0
exp

ðkC ilÞ2

4t2

� �X
l2L

eik$leKjxClj2t 2 dt

Z
1

2V

ðh
0
exp

ðkC ilÞ2

4t2

� � X
d2L�

eix$ð2pdKkÞexp K
j2pdKkj2

4t2

� �
dt

t3
;

where L� is the reciprocal lattice. By again switching the order of summation and
integration, we arrive at

1

2V

X
d2L�

eix$ð2pdKkÞ
ðh
0
exp

Kj2pdKkj2 CðkC ilÞ2

4t2

� �
dt

t3

Z
1

V

X
d2L�

eix$ð2pdKkÞexp Kj2pdKkj2CðkCilÞ2
4h2

� �
j2pdKkj2KðkC ilÞ2

:

Denoting the right-hand side as

GFourierðx; lÞZ
1

V

X
d2L�

eix$ð2pdKkÞexp Kj2pdKkj2CðkCilÞ2
4h2

� �
j2pdKkj2KðkC ilÞ2

;

we observe that GFourier(x, l) is an analytic function in l and, thus, may be
extended to the region lO0. This leads us to consider the quasi-periodic Green’s
function defined by the limiting procedure

GqðxÞZGspatialðxÞC lim
l/0C

GFourierðx; lÞ; ð3:15Þ

valid for any real parameter hO0. To evaluate the limit, we have (e.g. Gel’fand &
Shilov 1964, ch. III, §1.3)

lim
l/0C

1

j2pdKkj2KðkC ilÞ2
Z

1

j2pdKkj2Kk2
C

ip

2j2pdKkj ðdðj2pdKkjKkÞ

Kdðj2pdKkjCkÞÞ:

For kO0, we arrive at

GFourierðxÞZ lim
l/0C

GFourierðx; lÞ

Z
1

V

X
d2L�

eix$ð2pdKkÞexp
Kj2pdKkj2Ck2

4h2

� �

!
1

j2pdKkj2Kk2
C

ip

2k
dðj2pdKkjKkÞ

� �
: ð3:16Þ

The sum involving the delta function vanishes provided ks 2pdKkj j, where
d 2L� and, under this assumption, we obtain (3.1).
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4. Fast convolutions with Green’s function

Representation of the quasi-periodic Green’s function as a sum of two rapidly
convergent series (3.1) and (3.2) yields a fast and accurate algorithm for its
application as a convolution. We truncate these series and obtain a separated
representation by approximating the integral in (3.2) via a sum of Gaussians.
Using the resulting approximation of Green’s function, we prove an accuracy
estimate (in operator norm) for its application. We then present the algorithm to
apply the operator, and estimate its computational complexity. We illustrate the
algorithm by presenting several examples.
(a ) Approximation of Green’s function

Let us outline how we obtain an approximation of the quasi-periodic Green’s
function (3.4).

Owing to the exponential decay of the terms in GFourier, we truncate the
Fourier sum

~GFourierðxÞZ
1

V

X
d2L�

j2pdKkj%kb

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

eix$ð2pdKkÞ; ð4:1Þ

where we select parameters hO0 and bO0 so that the contribution of the
discarded terms is less than the desired accuracy e.

For Gspatial we perform a similar truncation again using the exponential decay
of its terms and, in addition, construct an approximation of Fsing in (3.3) as a
sum of Gaussians. For a fixed parameter h and given accuracy e, we select aO0
to truncate the sum (3.2) as X

l2L

jlj%a

eik$lFsingðxC lÞ;

so that the contribution of the discarded terms is less than e. Then, for fixed k, we
approximate Fsing as in Beylkin et al. (submitted) using a discretization of the
integral. Thus, we obtain an approximation of Fsing as a sum of Gaussians,

SsingðxÞZ
XN
jZ1

qje
Ksj jxj2 ; ð4:2Þ

where sjO0 and qjO0. The weights qj depend on the dimension d and the
parameter k (see Beylkin et al. (submitted) for details). Using (4.2), we
approximate Gspatial as

~GspatialðxÞZ
X
l2L

jlj%a

eik$lSsingðxC lÞ: ð4:3Þ
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Combining (4.1) and (4.3), the quasi-periodic Green’s function is approximated as

~GqðxÞZ ~GspatialðxÞC ~GFourierðxÞ: ð4:4Þ

We note that there are two sources of error in this approximation: (i) a truncation
error due to replacing infinite series by finite sums and (ii) an approximation
error introduced by (4.2). Owing to the exponential decay of the terms in
both series, the number of significant terms depends only logarithmically on the
desired accuracy.

We compute convolutions with ~GFourier in the Fourier domain as

ð~GFourier*f ÞðxÞZ
1

V

X
d2L�

j2pdKkj%kb

exp Kj2pdKkj2Ck2

4h2

� �
eix$ð2pdKkÞ

j2pdKkj2Kk2
f̂ Dð2pdKkÞ; ð4:5Þ

where

f̂ DðpÞZ
ð
D
f ðxÞeKip$x dx ð4:6Þ

and convolutions with ~Gspatial in the spatial domain as

~Gspatial � f
� �

ðxÞZ
X
l2L

jlj%a

eik$l
XN
jZ1

qj

ð
D
eKsj jxKyClj2 f ðyÞ dy: ð4:7Þ

We show in dimension dZ2,3 that this approximation of (3.4) by (4.4) yields
accurate convolutions in the operator norm.

Proposition 4.1. For any eO0, we may choose the splitting parameter h, the
Fourier truncation parameter b in (4.1) and the spatial truncation parameter a in
(4.3) so that

kðGqK~GqÞ � f kLpðDÞ%ekf kLpðDÞ;

for f 2LpðDÞ, 1%p%N.

We note that the parameters h, b and a are interdependent and their selection
is discussed in §4b.

Proof. Using Minkowski’s inequality for convolutions (e.g. Grafakos 2004,
p. 20), we have

kðGqK~GqÞ � f kLpðDÞ%k GqK~Gq

� �
kL1ðDÞkf kLpðDÞ

% kGspatialK~GspatialkL1ðDÞCkGFourierK~GFourierkL1ðDÞ

� �
kf kLpðDÞ:
Proc. R. Soc. A (2008)



G. Beylkin et al.3314
We may choose hO0 and bO1 so that

1

V

X
d2L�

j2pdKkjOkb

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

%
e

3V

and, thus, ���GFourierK~GFourier

���
L1ðDÞ

%
e

3
: ð4:8Þ

We now estimate the spatial error by

kGspatialK~GspatialkL1ðDÞ

%

�����
X
l2L

jlj%a

eik$l FsingðxC lÞKSsingðxC lÞ
� �

C
X
l2L

jljOa

eik$lFsingðxC lÞ�����
L1ðDÞ

%
X
l2L

jlj%a

ð
D
jFsingðxC lÞKSsingðxC lÞj dxC

ð
D

X
l2L

jljOa

FsingðxC lÞdx: ð4:9Þ

Next, we may choose aO0 so that the integrand in the second term satisfiesX
l2L

jljOa

FsingðxC lÞ% e

3V
;

for x2D and, thus, ð
D

X
l2L

jljOa

FsingðxC l Þdx% e

3
: ð4:10Þ

In what follows, let us first consider dimension dZ3. To estimate the first term
in (4.9), as in Beylkin et al. (submitted), we construct the spatial approximation
Ssing for accuracy e1O0 and range parameter 0!d%diam(D)/2,

jFsingðrÞKSsingðrÞj%

1

r
; for 0%r!d;

e1

r
; for rRd:

8>>><
>>>:

ð4:11Þ

We use (3.2) and (4.3), where we split the lZ0 term to estimateð
D
jFsingðxÞK SsingðxÞj dxC

X
l2L

0!jlj%a

ð
D
jFsingðxC lÞKSsingðxC lÞj dx: ð4:12Þ
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We estimate the first term in (4.12) by considering a ball of radius RZdiam(D)/2
circumscribing the primitive cell and using (4.11),ð

D
jFsingðxÞKSsingðxÞj dx%4p

ðd
0
r dr Ce1

ðR
d
r dr

� �
%2pðd2 CR2e1Þ: ð4:13Þ

The second term in (4.12) is estimated as

X
l2L

0!jlj%a

ð
D
jFsingðxC lÞK SsingðxC lÞj dx%

X
l2L

0!jlj%a

e1

ð
D

1

jxC lj dx:

Setting LZminx2D;0!jlj%a jxC lj, the minimum diagonal distance in the
parallelepiped defined by the lattice vectors, we have

X
l2L

0!jlj%a

e1

ð
D

1

jxC lj dx%
X
l2L

0!jlj%a

e1LV%e1LVNa; ð4:14Þ

where Na is the number of lattice points within the ball jlj%a. Combining (4.10),
(4.13) and (4.14) we have

kGspatialK ~GspatialkL1ðDÞ%
e

3
C2p d2CR2e1

� �
Ce1LVNa: ð4:15Þ

For a given e, we select dZR
ffiffiffiffi
e1

p
and choose e1 in (4.11) so that eZ3e1ð4pR2

CLVNaÞ. Together with (4.8), we obtain the result for dimension dZ3.
For dimension dZ2, the proof is similar except that we use the spatial

approximation (see Beylkin et al. submitted)

jFsingðrÞKSsingðrÞj%
log 1C

1

r2

 !
; for 0%r!d;

e1 log 1C
1

r2

 !
; for rRd;

8>>>>><
>>>>>:

instead of (4.11). &
(b ) Choice of the splitting and truncation parameters

The splitting parameter, h, controls the rate of decay of the terms in (3.1) and
(3.2) and thus, for a given accuracy, determines the number of terms to be
retained in each sum. Instead of choosing h directly, we choose the Fourier
truncation parameter bO1 in our approximation (4.1), so that for a given
accuracy e and k, we set

h2 Z
k2ðb2K1Þ
4 log eK1

: ð4:16Þ
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With this selection of h, note that in (3.1) the discarded terms jpjRkb satisfy

exp Kðjpj2Kk2Þ
4h2

� �
jpj2Kk2

%
e

k2ðb2K1Þ :

With h given by (4.16), we now select the spatial truncation parameter a so that
the contribution of the discarded terms in (3.2) is below the desired accuracy.

Although we only require bO1, in practice the choice of this parameter does
depend on k and e. For moderate size k we select bw3, for large k we may select a
smaller b and for small k we need to choose b larger.

Remark 4.2. Different choices of h have been made in several papers considering
Ewald’s summation (e.g. Catti (1978) or Jordan et al. (1986) for kZ0). We would
like to point out (see also Moroz 2006; Oroskar et al. 2006 or Beylkin et al.
submitted) that some choices of h may induce numerical cancellation resulting in a
loss of accuracy. For example, choosing h too small leads to (3.1) and (3.2) to be
large simultaneously and to have opposite signs for jxjw0.
(c ) Algorithm for convolution with the quasi-periodic Green’s function

We describe an algorithm and estimate its complexity for computing
volumetric convolutions with the quasi-periodic Green’s function approximation
(4.4). We assume that the input function and its Fourier transform (4.6) are
given, and we are free to discretize them as needed. In the description of the
algorithm to compute

gðxÞZ
ð
D

~GqðxKyÞf ðyÞ dy;

we refer to f and g as the input and the output function, respectively. We want to
compute this convolution for any given accuracy e.

Initialization:

(i) Truncation of the Fourier sum. For a fixed k and a given accuracy e, we
select b that determines h in (4.16).

(ii) Truncation and approximation of the spatial sum. For a fixed k and a
given accuracy e, we construct Ssing as an N-term Gaussian approximation
(4.2). We denote by Na the total number of lattice points that satisfy
jlj%a. We note that Nwðlog eK1Þ2 (see Beylkin et al. submitted) and
Nawðlog eK1Þd due to the exponential decay of (3.3).

(iii) Discretization of the input function. We use the multiresolution algorithm
in Beylkin et al. (2008) to adaptively discretize the input function using a
tensor product basis with p scaling functions per dimension. If Nbox is the
total number of boxes used to represent the input function with accuracy
e, then the total number of input points is NinZNboxp

d. In practical
applications, we choose pwlog eK1 since it improves the overall
performance. Thus, we have NinwNboxðlog eK1Þd. We note that it is not
hard to construct examples of functions for which an adaptive
representation offers no advantage; in such cases, the number of points
is Ninwkd due to the required Nyquist sampling rate. Thus, in the worst

case, we have NinwkdCC1ðlog eK1Þd.
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(iv) Initialization of the output function. The output function, a sum of spatial
and Fourier contributions, is evaluated on a user chosen set of Nout points.
While the spatial contribution may retain an adaptive structure if we use
the algorithm from Beylkin et al. (2008), the Fourier contribution results
in O(kd) points due to the required Nyquist sampling rate. Thus, unless
there are special circumstances, Noutwkd. Again, in the worst case we
have NoutwkdCC2ðlog eK1Þd.

Applying the operator:

(i) Convolution with ~Gspatial. Using the algorithm in Beylkin et al. (2008), the

complexity of applying ~Gspatial in (4.7) is OðNa$p$N$NinÞ. Alternatively, the
fast Gauss transform (see Greengard & Strain 1991; Strain 1991;
Greengard & Sun 1998) may be used, which results in a similar computa-
tional complexity. Although p$N is formally estimated as p$Nwðlog eK1Þ3,
we note that within the range of parameters we experimented with, this
product behaves effectively as a constant (the overestimation is, in part,
due to the fact that the algorithm in Beylkin et al. (2008) does not use all
Gaussian terms on all scales). Note that in (4.7) the term lZ0 dominates
the computational cost since this is the only term contributing to fine scales
in a multiresolution representation of the operator. With these caveats, the

computational complexity of computing (4.7) is O kdCC3ðlog eK1Þd
� �

,
where C3 is a constant.

(ii) Convolution with ~GFourier. We evaluate the Fourier transform of the input
function at the reciprocal lattice points within the sphere j2pdKkj%kb
and denote by NF their total number. We note that NF wðlog eK1Þd due to
the exponential decay of the terms in (3.1). Given a set of locations x to
evaluate (4.5), we use the USFFT (Dutt & Rokhlin 1993; Beylkin 1995;
Lee & Greengard 2005) to evaluate the trigonometric sum. Thus, the
computational complexity is OðNoutCNFÞCOðkd log kÞ, or O kd log kC

�
C4ðlog eK1ÞdÞ, where C4 is a constant.

We note that the performance of both, the spatial and Fourier, components of
our method has been tested and timed independently in the references mentioned
above. We would like to add that, in some applications, the semi-analytic nature
of our approximation may allow for additional savings.
(d ) Examples

We start by comparing values of the quasi-periodic Green’s function computed
using ~Gq in (4.4) and those of its alternative representation in McPhedran et al.
(2000). The two-dimensional quasi-periodic Green’s function is written in
McPhedran et al. (2000) as

GLðxÞZ
i

4
H

ð1Þ
0 ðkrÞC

X
l2Z

SA
l JlðkrÞeKilq

 !
; ð4:17Þ

where xZðr cos q; r sin qÞ and the coefficients SA
l are computed as lattice sums.
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Figure 1. Error plots for a two-dimensional quasi-periodic Green’s function with kZð2; 7=10Þ and
kZ10 for a hexagonal lattice with lattice vectors l1Zð1; 0Þ and l2Zð1=2;

ffiffiffi
3

p
=2Þ. (a) The absolute

error jReð~Gqðx1; 0ÞÞKReðGLðx1; 0ÞÞj for x1 2 ð10K10; 1=2Þ using a log–log scale. (b) The absolute
error jImð~Gqðx1; 0ÞÞKImðGLðx1; 0ÞÞj for x1 2 ð0; 1=2Þ using a log scale on the vertical axis.
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We note that the representation in (4.17) allows us only to evaluate Green’s
function and does not provide an algorithm for its application as an operator. By
contrast, our approach treats Green’s function as an operator and constructs an
approximation that yields a fast and accurate algorithm for its application. For
the purpose of comparison, we implemented the evaluation of Green’s function in
(4.17) by computing the coefficients SA

l in (4.17) as lattice sums, writing
SA
l ZDSlCSG

l . We use (McPhedran et al. 2000, eqn (17)) to compute DSl and
(Linton 1998, eqns (2.49), (2.53) and (2.54)) to compute SG

l .
In figure 1, we display the error between (4.17) and our approximation ~Gq in

(4.4) constructed for accuracy ez10K9. We note that the discrepancy near rZ0
is due to our method of approximating Gq and does not affect its application as
an operator (beyond accuracy ez10K9) as is demonstrated in proposition 4.1.

Next we verify accuracy of our algorithm by considering the quasi-periodic
function

uðxÞZ
ffiffiffiffiffiffi
2a

p

r
eKik$x

X
l2L

X3
nZ1

eKajxKrnClj2 ð4:18Þ

with parameters aZ300, kZ(1/3, 4/7), r1Z(0, 0), r2Z(1/10, 1/10) and r3Z(K3/
20, 1/10), where the sum is over the square lattice generated by the lattice vectors
l1Zð1; 0Þ and l2Zð0; 1Þ. We treat u as a solution of (1.4) and (1.5) and analytically
compute the corresponding right-hand side in (1.4),

f ðxÞZ
ffiffiffiffiffiffi
2a

p

r
eKik$x

X
l2L

X3
nZ1

eKajxKrnClj2

! 4aC jkj2K4a2jxKrn C lj2K4iak$ðxKrn C lÞKk2
� �

: ð4:19Þ
We construct an approximate two-dimensional quasi-periodic Green’s function with
kZ30, and apply it to f so that we can compare the result with the exact solution u.
The parameter a was chosen so that the Fourier transform of the function in (4.19)
remains significant well beyond the disc of radius k. Such choice allows us to test
Proc. R. Soc. A (2008)
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Figure 3. A quasi-periodic Green’s function with kZ(3, 5) and kZ100 for a two-dimensional
hexagonal lattice with lattice vectors l1Zð1; 0Þ and l2Zð1=2;

ffiffiffi
3

p
=2Þ plotted in the region

½K1=2; 1=2�!½K1=2; 1=2�: (a) a real part and (b) an imaginary part.
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Figure 2. Absolute error of the difference between the exact and the computed solutions of (1.4)
and (1.5) with f in (4.19). The error is plotted along the diagonal of the primitive cell using a log
scale on the vertical axis.

3319Fast algorithms for Green’s functions
both the spatial and Fourier parts of the algorithm. In figure 2, we display the
absolute error plotted along the diagonal of the primitive cell. Green’s function was
approximated with eZ10K11, whereas the L2-norm of the solution is kuk2z1:76
and that of the right-hand side is kf k2z1:31$103. This result agrees with the
estimate in proposition 4.1.

Next, we illustrate the results of convolving with several quasi-periodic Green’s
functions. In figure 3, we illustrate the application of a two-dimensional quasi-
periodic Green’s function to a delta function. The motivation for presenting this
example is twofold: (i) to demonstrate that our approach is applicable to functions
whose Fourier transforms have slow decay and (ii) to illustrate Green’s function
itself. In figure 4, we display the result of convolving a periodic Green’s functionwith
a fairly complicated function with jump discontinuities. We also display cross
sections of the (periodic) output function.
Proc. R. Soc. A (2008)
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(e) ( f )

–0.50 –0.25 0 0.25 0.50 –0.50 –0.25 0 0.25 0.50

Figure 4. An application of a two-dimensional periodic Green’s function with kZ(0, 0), kZ50p and
cZ0 in (3.10) for a cubic lattice with lattice vectors l1Zð1; 0Þ and l2Zð0; 1Þ. (a,b) Different views
of the discontinuous input function. (c) Green’s function within the primitive cell and (d ) the
result of its convolution with the input function. A cross section of the result depicted in (d ) is
displayed for (e) x1Z1 and x2 2 ðK1=2; 1=2Þ and ( f ) x2Z1/5 and x1 2 ðK1=2; 1=2Þ.
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5. Green’s functions with boundary conditions on simple domains

We now have the necessary tools to construct Green’s functions that incorporate
boundary conditions on simple domains by extending our results for the quasi-
periodic Green’s function (3.4). We note that although the resulting integral
operators are no longer convolutions, the algorithm for applying these Green’s
functions is similar to that for the quasi-periodic Green’s function. The
application of Green’s functions satisfying Dirichlet, Neumann or mixed
Proc. R. Soc. A (2008)
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boundary conditions is again split between the spatial and the Fourier domains.
In the spatial domain, we use separated representations involving Gaussians and
in the Fourier domain apply a simple combination of multiplication operators.

For ease of notation, we consider the two-dimensional case with Dirichlet
boundary conditions on the primitive cell DZ ½K1=2; 1=2�!½K1=2; 1=2�. We
construct these Green’s functions using the periodic Green’s function (with 2k
instead of k), satisfying

ðDC4k2ÞGpðxÞZKdðxÞ
and (1.3) with kZ0. We note that the formal description of the periodic Green’s
function in this case is of the form

G formal
p ðx 1; x2ÞZK

1

4

XN
n1ZKN

XN
n2ZKN

Y0 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 1Cn1Þ2Cðx 2Cn2Þ2

q� �
;

since, in (1.6), the sum associated with the imaginary part of the free-space
Green’s function is zero, l1Zð1; 0Þ and l2Zð0; 1Þ.

We write Gp via the sum of two rapidly convergent series in (3.4),

Gpðx 1; x 2ÞZ
1

2p

X
n2Z2

ðN
logð2hÞ

exp KjxCnj2 e
2s

4
C4k2eK2s

� �
ds

C
X
m2Z2

exp Kp2jmj2Ck2

h2

� �
4 p2jmj2Kk2
� � e2pix$m:

We obtain Green’s function with Dirichlet boundary conditions on D as

GDðx1;x2;y1;y2ÞZGp

x1Ky1
2

;
x2Ky2

2

� �
KGp

x 1Cy1C1

2
;
x 2Ky2

2

� �

KGp

x1Ky1
2

;
x 2Cy2C1

2

� �
CGp

x1Cy1C1

2
;
x2Cy2C1

2

� �
:

ð5:1Þ
For xsy, we have DxCk2

� �
GDðx; yÞZ0 since each of the four summands in (5.1)

is a Helmholtz Green’s function with parameter 2k. The only singularity is at
xZy, in which case the first term in (5.1) yields

Dx Ck2
� �

GDðx;yÞZKdðxKyÞ:
Since Gp is periodic with period one and is even, the terms in (5.1) cancel each
other on the boundary so that GD satisfies the Dirichlet boundary conditions,
GDðG1=2; x 2; y1; y2ÞZ0 and GDðx1;G1=2; y1; y2ÞZ0.

Following the approach in §3, we split (5.1) between the spatial and the

Fourier domains GDZGD
spatialCGD

Fourier and then approximate these components.
As in §4a, we approximate the spatial part GD

spatial by a sum of Gaussians. For a

desired accuracy e and fixed h, we select aO0 to satisfy (4.10) and construct qj
and sj for jZ1,., N in (4.11) to obtain the separated representation

~G
D
spatialðx1; x2; y1; y2ÞZ

X
ffiffiffiffiffiffiffiffiffiffiffi
n2
1
Cn2

2

p
%a

XN
jZ1

qjSj;n1
ðx1; y1ÞSj;n2

ðx2; y2Þ; ð5:2Þ
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where

Sj;nðx; yÞZ exp K
sj

4
ðxKyC2nÞ2

� �
Kexp K

sj

4
ðxCyC1C2nÞ2

� �
: ð5:3Þ

Thus, the application of the operator (5.2) separates along each direction and we
compute ð

D

~G
D
spatialðx; yÞf ðyÞ dy Z

XN
jZ1

qj
X
ffiffiffiffiffiffiffiffiffiffiffi
n2
1
Cn2

2

p
%a

ð1=2
K1=2

Sj;n2
ðx2; y2Þ

!

ð1=2
K1=2

Sj;n1
ðx1; y1Þf ðy1; y2Þdy1 dy2;

which may be accelerated further using fast algorithms described in §4.
In the Fourier domain, for a desired accuracy e and fixed h, we select bO1 to

satisfy (4.8) and obtain

~G
D
Fourierðx1; x2; y1; y2ÞZ

X
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
m2

1
Cm2

2

p
%kb

exp
Kp2 m2

1Cm2
2ð ÞCk2

h2

� �
4 p2 m2

1 Cm2
2ð ÞKk2ð Þ e

ipðm1x 1Cm2x 2Þ

! eKipm1y1Keipm1ðy1C1Þ
� �

eKipm2y2Keipm2ðy2C1Þ
� �

: ð5:4Þ

We apply this operator as

ð
D

~G
D
Fourierðx;yÞf ðyÞ dy Z

X
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
m2

1
Cm2

2

p
%kb

exp
Kp2 m2

1Cm2
2ð ÞCk2

h2

� �
4 p2 m2

1 Cm2
2ð ÞKk2ð Þ e

ipðm1x 1Cm2x 2Þ

!ðf̂ Dðpm1;pm 2ÞKeipm1f̂ DðKpm1;pm 2Þ

Keipm 2f̂ Dðpm1;Kpm 2ÞCeipðm1Cm 2Þf̂ DðKpm1;Kpm 2ÞÞ;
ð5:5Þ

where f̂ D is given in (4.6). We use USFFT to evaluate (5.5) as in §4c.

Remark 5.1. As described by Keller (1953), the method of images in dimension
dZ2 yields Green’s function with prescribed boundary conditions for four
bounded regions: (i) rectangle, (ii) equilateral triangle, (iii) isosceles triangles
with angles p=2;p=4;p=4, and (iv) right triangle with angles p=2;p=3;p=6. As an
example of incorporating the Neumann boundary conditions on D, we have

GNðx1;x2;y1;y2ÞZGp

x1Ky1
2

;
x2Ky2

2

� �
CGp

x1Cy1C1

2
;
x2Ky2

2

� �

CGp

x1Ky1
2

;
x2Cy2C1

2

� �
CGp

x1Cy1C1

2
;
x2Cy2C1

2

� �
;

where GN
x 2
ðG1=2; x2; y1; y2ÞZ0 and GN

x 1
ðx1;G1=2; y1; y2ÞZ0, where GN

xi ZvGN=vxi,
iZ1, 2.

We note that we can mix Dirichlet and Neumann boundary conditions since it
requires only appropriate sign changes in the previous construction.
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Remark 5.2. The construction of Green’s functions with Dirichlet or Neumann
boundary conditions on D in dimension dZ3 is completely analogous to the two-
dimensional case and is composed of a combination of eight terms. Importantly,
their approximations have the same form in all dimensions. For example, in the
spatial domain the approximation of Green’s function with Dirichlet boundary
conditions is given by

~G
D
spatialðx1; x2; x3; y1; y2; y3Þ

Z
1

2

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1
Cn2

2
Cn2

3

p
%a

XN
jZ1

qjSj;n1
ðx1; y1ÞSj;n2

ðx2; y2ÞSj;n3
ðx3; y3Þ;

where qj are described in (4.2) and Sj,n in (5.3). Similarly, we have an analogue
of (5.4),

~G
D
Fourierðx1; x2; x3; y1; y2; y3ÞZ

1

2

X
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1
Cm2

2
Cm2

3

p
%kb

exp
Kp2 m2

1Cm2
2Cm2

3ð ÞCk2

h2

� �
4 p2 m2

1 Cm2
2 Cm2

3

� �
Kk2

� �
!eipðm1x 1Cm2x 2Cm3x 3Þ eKipm1y1Keipm1ðy1C1Þ

� �
! eKipm2y2Keipm2ðy2C1Þ
� �

eKipm3y3Keipm3ðy3C1Þ
� �

;

which we apply as a multiplication operator in the Fourier domain. In arbitrary
dimension d, we have

~G
D
spatialðx; yÞZ

1

2dK2

X
jnj%a

XN
jZ1

qj
Yd
aZ1

Sj;naðxa; yaÞ;

where Sj;na are given in (5.3) and

~G
D
Fourierðx;yÞZ

1

2dK2

X
2pjmj%kb

exp Kp2jmj2Ck2

h2

� �
4 p2jmj2Kk2
� � eipm$x

Yd
aZ1

eKipmayaKeipmaðyaC1Þ
� �

:

We note that in order to apply Green’s function in higher dimensions, we also
need to use a separated representation for the input functions (see Beylkin &
Mohlenkamp 2005). Green’s function with Neumann boundary conditions on
D has the same form and differs only by changing the sign of appropriate terms.
As a result, we may use essentially the same algorithm to apply these operators.
To summarize, the results of this section yield fast adaptive solvers for the
Helmholtz equation for a variety of boundary conditions.
6. Conclusion and remarks

In this paper, we extend the approach in Beylkin et al. (submitted) for the free-
space Helmholtz Green’s function to approximate and apply Green’s functions,
which incorporate quasi-periodic Dirichlet or Neumann boundary conditions.
The key features of these fast algorithms are: (i) the splitting of application of
operators between the spatial and the Fourier domains, (ii) the use of separated
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representations, and (iii) the ability to achieve a finite, arbitrary accuracy.
Algorithms with the last two features have been developed for non-oscillatory
kernels and have been used to solve problems in quantum chemistry (see
Harrison et al. 2003, 2004; Yanai et al. 2004a,b). Since these algorithms for
oscillatory and non-oscillatory kernels may be considered within the same
framework, we intend to build a unified software framework for their application.
We expect further development in this direction. In all cases, we obtain
representations of Green’s functions that lead to fast adaptive solvers for
corresponding problems.

Our approach (with minor modifications) is also applicable to the case kZ0.
However, using multiresolution, both the interpretation and the application of
the operator may be kept entirely in the spatial domain and we plan to consider
this case separately.

A natural application of the quasi-periodic Green’s function is in the
computation of band gaps in crystal structures. We plan to investigate these
applications with particular attention to potentials (indices of refraction) with
singularities (discontinuities) since, in such cases, the efficiency of our algorithms
does not degrade significantly.

We note that our method extends to problems where the lattice dimension is
less than the dimension of the embedding space (sometimes referred to as
gratings), which will be described elsewhere.

Finally, we note that our results shed new light on Ewald’s approach of
splitting between spatial and Fourier domains, which we use as a tool to obtain
semi-analytic, separated representations for Green’s functions.

This research was partially supported by NSF grant DMS-0612358, DOE/ORNL grant
4000038129, DOE grant DE-FG02-03ER25583 and AFOSR grant FA9550-07-1-0135.
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