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On the Design of Highly Accurate and Efficient IIR
and FIR Filters

Gregory Beylkin*, Ryan D. Lewis, and Lucas Monzón

Abstract—We describe a systematic method for designing
highly accurate and efficient infinite impulse response (IIR) and
finite impulse response (FIR) filters given their specifications. In
our approach, we first meet the specifications by constructing
an IIR filter with, possibly, a large number of poles. We then
construct, for any given accuracy, an optimal IIR version of
such filter (with a minimal number of poles). Finally, also for
any given accuracy, we convert the IIR filter to an efficient
FIR filter cascade (either serial or parallel). Since in this
FIR approximation the non-causal part of the IIR filter only
introduces an additional delay (as a function of the desired
accuracy), our IIR construction does not have to enforce causality.
Thus, we obtain a simple method for constructing linear phase
filters if the specifications so require. All of these procedures
are accomplished via robust, fast algorithms. We provide several
illustrative examples of our method.

Index Terms—Approximation algorithms, digital filter design,
FIR filters, IIR filters, optimal rational approximations, quadra-
ture mirror filters.

I. INTRODUCTION

IN HIS 2006 paper “The Rise and Fall of Recursive Digital
Filters,” [1] Rader gives a brief history of filter design

methods. He describes how the perceived pros and cons of
recursive and non-recursive filters changed over time as new
design and implementation techniques were discovered. The
goal of our paper is to offer an addendum to this history by
providing a new systematic method of designing both types
of filters. Our approach is based on a combination of several
approximation algorithms and a few observations. We cite al-
gorithms for constructing near-optimal rational approximations
[2], [3], a new high accuracy reduction algorithm [4], and a
somewhat obscure short note [5]. Our key observation is that it
is relatively easy to construct an accurate but sub-optimal (with
a large number of poles) rational filter that satisfies the design
criteria. We describe an effective approach for the sub-optimal
construction well suited for the optimization algorithm. We
then rely on robust nonlinear algorithms for optimal rational
approximation to minimize the number of poles for a desired
accuracy.

We first construct an infinite impulse response (IIR) filter
that satisfies the design criteria without attempting to make
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the design optimal. We next find an equivalent (vis-à-vis the
specifications) IIR filter with a near-minimal number of poles.
We then convert, for any given accuracy, the IIR filter to an
efficient finite impulse response (FIR) filter. It is well known
that approximating a rational function with a polynomial for a
set accuracy may require a polynomial of high degree. Despite
the high degree of our FIR filter, its implementation cost is
low and requires only O

(
logε−1

)
operations, where ε is the

desired accuracy. This efficiency is achieved by expressing
the FIR filter as a cascade (either serial or parallel) where
each factor is computationally inexpensive. Importantly for the
many applications that require linear phase filters, we may
easily design IIR filters with exact linear phase. In our method,
the non-causal part of the IIR filter results in a finite delay in
the FIR approximation that does not disturb the phase of the
filter.

The combination of these design steps leads to a robust,
nearly automatic, method for filter design. We believe that
our approach contributes to the state-of-the-art of filter design
as summarized in the conclusion of Rader’s paper.

II. PRELIMINARIES

In this section, we introduce notation and present the
algorithms used in our filter design method. Given a filter,
we identify its impulse response h(n) with its z-transform,

H(z) =
∞

∑
n=−∞

h(n)z−n, (II.1)

where the sum in (II.1) converges on the unit circle. To recall,
if h(n) contains only a finite number of nonzero terms, then
H(z) is a FIR filter. Otherwise, H(z) is an IIR filter. If h(n) = 0
for all n < 0 then H(z) is causal (and non-causal otherwise).

We introduce two filter design algorithms whose origins
may be traced to the work of Adamjan, Arov, and Krein
(AAK theory) [6], [7], [8]. The algorithm in Section II-A is
often adequate but may require extended precision arithmetic
for intermediate computations. The reduction algorithm in
Section II-B (see [2], [9]) is significantly more efficient and
its new version in [4] achieves high accuracy using only the
standard double precision arithmetic. Finally, following [5],
we describe an algorithm to convert IIR filters to efficient FIR
filters while maintaining arbitrary finite accuracy.

A. Designing IIR Filters From a Desired Impulse Response

Our first algorithm constructs an IIR filter H(z) whose
impulse response h(n) agrees with some desired impulse
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response hd(n), up to some finite but arbitrary accuracy ε > 0
over a certain range of the index n ∈ Z.

Our solution makes use of an algorithm in [2], [9]. Given
a sequence

hd(n), 1≤ n≤ 2N +1

and a target accuracy ε > 0, we determine the optimal (mini-
mal) number of nodes γm and weights wm such that∣∣∣∣∣hd(n)−

M

∑
m=1

wmγ
n
m

∣∣∣∣∣ < ε, 1≤ n≤ 2N +1. (II.2)

We now describe the steps of the algorithm to obtain this
approximation.

Algorithm 1:
• Build the N +1×N +1 Hankel matrix

Hk` = hd(k + `+1), k, ` ∈ [0,N]. (II.3)

• Find a vector u = (u0, . . . ,uN)T satisfying

Hu = σu, (II.4)

with positive σ close to the target accuracy ε , where
u = (u0, . . . ,uN)T denotes the element-wise complex con-
jugate of the vector u. A problem of this form is known
as a con-eigenvalue problem (see, e.g., [10, §4.6]), u is a
con-eigenvector, and σ is a con-eigenvalue. In our case,
H is a Hankel matrix and hence symmetric; the existence
of a solution (σ ,u) follows from Takagi’s factorization
(see, e.g., [2, pp. 22]), as does the fact that we may take
σ to be a singular value of H and u to be a specific
singular vector.

• Given singular values σ0 ≥ σ1 ≥ . . . ≥ σN , we select a
sufficiently small σM , which determines the accuracy of
approximation, and the corresponding singular vector u =
(u0, . . . ,uN)T .

• Compute the roots γm of the con-eigenpolynomial u(z) =
∑

N
n=0 unzn whose coefficients are the entries of the vector

u from the previous step.
• Obtain the weights wm by solving the least-squares Van-

dermonde system

N

∑
m=1

wmγ
n
m = hd(n), 1≤ n≤ 2N +1. (II.5)

Typically, only M weights wm have absolute value larger
than the target accuracy ε . We then retain only those
nodes γm that correspond to the significant weights
and solve the corresponding Vandermonde system (II.5)
again. For cases of practical interest in digital filtering,
the sequence hd(n) exhibits decay as n becomes large.
As a result, the nodes of interest lie inside the unit disk,
|γm|< 1.

Remark 1.

• Typically, singular values decay rapidly so the number
of terms M in the approximation (II.2) satisfies M =
O(logε−1).

• To approximate a sequence

hd(n), −2N−1≤ n≤−1,

by a sum

hd(n)≈
M

∑
m=1

wmγ
n
m, −2N−1≤ n≤−1,

we simply reindex n 7−→ −n and use Algorithm 1. In
this case the nodes γm lie outside the unit disk, |γm|> 1,
provided hd(n) decays as n becomes large and negative.

• We note that we may formulate this algorithm in terms of
the singular value decomposition (SVD) without invok-
ing the con-eigenvalue problem. However, Algorithm 3,
which may be derived from Algorithm 1, requires this
formulation. For a detailed analysis we refer to [2], [9].

• The nodes γm turn out to be the poles of the transfer
function H(z) that we construct via the next algorithm.

Let us now describe how to use Algorithm 1 to solve a filter
design problem. Given a desired impulse response hd(n) for
n∈ [−N2,N1] and target accuracy ε > 0, construct an IIR filter
H(z) with a (nearly) minimal number of poles whose impulse
response h(n) satisfies

|hd(n)−h(n)|< ε, n ∈ [−N2,N1]. (II.6)

In the special case that N2 = 0, H(z) is a causal filter.
Algorithm 2:
• Determine poles γ in

m and weights win
m such that∣∣∣∣∣hd(n)−

Min

∑
m=1

win
m

(
γ

in
m

)n

∣∣∣∣∣ < ε, 1≤ n≤ N1,

where
∣∣γ in

m
∣∣ < 1 using Algorithm 1.

• Determine poles γout
m and weights wout

m such that∣∣∣∣∣hd(n)−
Mout

∑
m=1

wout
m

(
γ

out
m

)n

∣∣∣∣∣ < ε, −N2 ≤ n≤−1,

where |γout
m |> 1 again using Algorithm 1.

• Compute the constant w0 as

w0 = hd(0)−
Min

∑
m=1

win
m −

Mout

∑
m=1

wout
m .

• The resulting IIR filter H(z), with impulse response h(n),
has Min +Mout poles and is given by

H(z) = w0 +
Min

∑
m=1

win
m

1− γ in
m /z

+
Mout

∑
m=1

wout
m

1− z/γout
m

. (II.7)

It may not be immediately obvious why this algorithm should
work. Indeed, it is rather surprising that the poles of an optimal
IIR filter are related to the roots of a con-eigenpolynomial
of a Hankel matrix constructed from the filter’s impulse
response. The theory underlying our method may be found
in [3] and traced back to the work of Adamjan, Arov, and
Krein (AAK theory) [6], [7], [8]. In this sense, our algorithm
is related to algorithms in [11] and [12]. But while those
algorithms suggest that the input sequence hd(n) be windowed
in some fashion—thereby modifying (perhaps substantially)
the desired frequency response Hd(e jω)—ours does not. Also,
our algorithm leads to a way to reduce the number of poles
in a sub-optimal IIR filter, which we describe below. First, let
us make a few remarks about typical filter design problems.
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Remark 2. In many cases of practical interest, some type of
symmetry exists between hd(n) and hd(−n). In such cases
a corresponding symmetry is induced between poles inside
and outside the unit disk and their corresponding weights. For
example, it is quite common for the impulse response to be
real and symmetric,

hd(n) ∈ R and hd(−n) = hd(n),

in which case it is not difficult to show that poles appear at
conjugate-reciprocal locations and the corresponding weights
are complex conjugates, so that with a suitable reordering

Min = Mout, win
m = wout

m , and γ
in
m = 1/γ

out
m .

Additionally, poles inside the unit disk appear in conjugate
pairs, so that for each m ∈ [1,Min], either both win

m and γ in
m are

real, or there exists a m′ ∈ [1,Min] such that

win
m = win

m′ and γ
in
m = γ

in
m′ .

If such symmetries are present, then it is not necessary to
approximate the negative half of the sequence hd(n). Instead,
we approximate only the positive half, which gives us the poles
and corresponding weights inside the unit disk, and then use
the appropriate symmetry relations to obtain the poles and
weights outside the unit disk.

Remark 3. If we are given a frequency response Hd(e jω), we
may use or design an appropriate quadrature rule to compute
the impulse response hd(n). We need to compute a sufficient
number of terms so that hd has decayed to a level substantially
smaller than ε for both negative and positive indices. This may
lead to a rather large matrix H; the algorithm we describe next
in combination with the construction in Section III allows us
to avoid computing with large matrices.

B. Reduction of the Number of Poles

The filter design algorithm in Section II-A is simple to
implement and produces excellent filters. As input, it requires
a portion of the desired impulse response, hd(n). For the output
filter H(z) to be satisfactory—i.e., for

∣∣Hd(e jω)−H(e jω)
∣∣

to be less than the target accuracy ε—the portion of hd(n)
provided as input should have decayed to a level smaller than
ε . If Hd(e jω) contains sharp transitions or is highly peaked,
then the sequence hd(n) decays slowly, resulting in a large
Hankel matrix H in (II.3). Computing the SVD of this matrix
can be time consuming and may require extended precision
arithmetic. In this section we present an alternative approach:
by reducing the number of poles in a sub-optimal (but easy to
obtain) IIR filter, we bypass a costly SVD.

In Section III we demonstrate how to obtain a sub-optimal
(with a large number of poles) IIR filter satisfying a particular
set of filter design requirements. We now describe an algorithm
that takes such a sub-optimal filter as input and produces a
near-optimal filter as output. We write the sub-optimal filter
as

T0(z)+H0(z) = T0(z)+
Min

0

∑
m=1

sin
m

1− pin
m/z

+
Mout

0

∑
m=1

sout
m

1− z/pout
m

,

where |pin
m | < 1 and |pout

m | > 1. We separate the Laurent
polynomial T0(z) in the filter description to make H0(z) a
proper rational function. A Laurent polynomial T0(z) is a finite
linear combination of positive and negative integer powers of
z. The important property is that the poles of T0(z) (if any) be
located at the origin. In many cases T0(z) is simply a constant;
for example, in (II.7) T0(z) = w0. We also assume that the poles
of H0(z) are simple.

Given a target accuracy ε , we find a filter H(z) of the form

H(z) =
Min

∑
m=1

win
m

1− γ in
m /z

+
Mout

∑
m=1

wout
m

1− z/γout
m

,

such that ∣∣H0(e jω)−H(e jω)
∣∣ < ε,

with Min < Min
0 and Mout < Mout

0 . This process, which we
call reduction, is performed separately on the poles inside
and outside the unit disk. Let us describe the procedure for
reducing the interior poles; the procedure for reducing exterior
poles is completely analogous. For simplicity of notation, we
drop superscripts and let sm = sin

m , pm = pin
m , and M0 = Min

0 .
Algorithm 3:
• Write each weight sm in polar form, sm = ρme jθm , and

compute the square roots cm = ρ
1
2

m e j θm
2 .

• Construct the M0×M0 positive definite matrix A, where

Amn =
cmcn

1− pm pn
.

• Find a vector u = (u1, . . . ,uM0)
T satisfying the con-

eigenproblem
Au = σu, (II.8)

with positive σ = σM close to the target accuracy ε ,
where the con-eigenvalues are ordered, σ0 ≥ σ1 ≥ . . . ≥
σM0−1.The matrix A is not necessarily symmetric, so the
con-eigenvalue σ need not be a singular value of A, but it
may be shown that σ2 is an eigenvalue of AA [10, §4.6].

• Use the elements of the con-eigenvector u = uM from the
previous step to build the con-eigenfunction u(z),

u(z) =
1
σ

M0

∑
m=1

smum

1− pmz
.

AAK theory guarantees that u(z) has exactly M roots
γ1,γ2, . . . ,γM inside the unit disk.

• Obtain the weights w1,w2, . . . ,wM as the unique solution
of the M×M linear system

M

∑
m=1

1
1− γmγn

wm =
M0

∑
m=1

1
1− pmγn

sm.

The resulting IIR filter

H(z) =
M

∑
m=1

wm

1− γm/z

is near-optimal and satisfies∣∣∣∣∣ M0

∑
m=1

sm

1− pm/z
−

M

∑
m=1

wm

1− γm/z

∣∣∣∣∣ < kε, |z|= 1,
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for k ≈ 1.
We do not derive this algorithm here (see [4] for details)

and note that it can be obtained from the discussion in [2, §6]
or justified using results from AAK theory [6], [7], [8]. We
note that several significant improvements to this algorithm
which use the Cauchy structure of A appear in [4]. The key
improvements in [4] are the speed of the algorithm and a
relative accuracy of computed con-eigenvalues resulting in
accurate computations using the standard double precision
arithmetic.

C. Efficient FIR Approximation of IIR Filters

In many situations the straightforward recursive realization
of an IIR filter may be inconvenient. For example, an IIR
filter with linear phase requires poles both inside and outside
the unit disk. The data must then be accessed in reverse-time
order to obtain a stable recursive realization. Also, recursive
realizations implemented using fixed-point arithmetic may
allow errors to accumulate, potentially reducing the filter
accuracy to an unacceptable level. For these reasons, it is
desirable to find FIR approximations of IIR filters.

The traditional approach to this problem uses some opti-
mization criterion to find a fixed-length FIR filter (see, e.g.,
[13]); efficiency is obtained by requesting a short filter. Instead,
we use the approach in [5]: we specify the target accuracy
ε , but do not fix the order of the FIR filter. We obtain a
factored FIR filter where each factor is particularly simple,
resulting in an efficient cascade realization. We briefly present
this approximation method and refer to [5] for the details.

In our method, the problem of finding a FIR filter amounts
to approximating a rational function with a polynomial for
some prescribed accuracy ε. The construction is based on the
simple identity

1
1− z

=
∞

∏
n=0

(
1+ z2n

)
, |z|< 1. (II.9)

We adapt the approach in [5] to IIR filters expressed as partial
fractions as constructed by Algorithms 2 and 3. The following
Lemma shows how to approximate a single term in the partial
fraction expansion (II.7) by a FIR filter.

Lemma 4. Let γ,w be complex-valued with |γ| < 1, and let
N be a positive integer. Then, for both causal and anti-causal
partial fractions, we have the bound∣∣∣∣∣ w

1− γ/z
−w

N

∏
n=0

[
1+

(
γ

z

)2n]∣∣∣∣∣≤ |w| |γ|2
N+1

1−|γ|
(II.10)

and ∣∣∣∣∣ w
1− γz

−w
N

∏
n=0

[
1+(γz)2n

]∣∣∣∣∣≤ |w| |γ|2
N+1

1−|γ|
(II.11)

for all |z|= 1.

Proof: From (II.9) it follows that

N

∏
n=0

[
1+(γz)2n

]
=

1− (γz)2N+1

1− γz
=

2N+1−1

∑
k=0

(γz)k , (II.12)

for |z|= 1. Apply (II.12) to the identity

w
1− γz

= w
∞

∑
k=0

(γz)k

to obtain (II.11). The proof of (II.10) is identical.
Even though the sum on the right hand side of (II.12)

contains 2N+1 terms, the sum is represented by only N + 1
factors in the product on the left. Given the desired accuracy
ε , inequalities (II.10) and (II.11) show that the number of
factors N + 1 depends only sub-logarithmically on ε−1. The
next proposition shows how to approximate the entire IIR filter
(II.7) by a FIR filter with a bounded absolute error. We omit
the proof since it is an immediate consequence of Lemma 4.

Proposition 5. Given an IIR filter in the form (II.7), define
the FIR filter

H̃(z) = w0 +
Min

∑
m=1

win
m

Nin
m

∏
n=0

[
1+

(
γ in

m

z

)2n]

+
Mout

∑
m=1

wout
m

Nout
m

∏
n=0

[
1+

(
z

γout
m

)2n]
, (II.13)

where Nin
m , m = 1,2, . . . ,Min and Nout

m , m = 1,2, . . . ,Mout satisfy

Min

∑
m=1

∣∣win
m
∣∣ ∣∣γ in

m
∣∣2Nin

m +1

1−|γ in
m |

+
Mout

∑
m=1

∣∣wout
m

∣∣ |γout
m |−2Nout

m +1

1−|γout
m |−1 < ε. (II.14)

Then the FIR approximation H̃(z) in (II.13) satisfies∣∣∣H(z)− H̃(z)
∣∣∣ < ε, |z|= 1.

Remark 6. If the IIR filter H(z) is non-causal, then the
FIR filter (II.13) is also non-causal (viz., H̃(z) contains
positive powers of z). The highest positive power of z that
appears in H̃(z) depends on the desired accuracy and de-
termines the non-causal delay associated with the FIR fil-
ter. By introducing a pure delay, z−2Nmax+1+1H̃(z), where
Nmax = max

{
Nout

1 ,Nout
2 , . . . ,Nout

Mout

}
, we obtain a causal FIR

filter. Hence, both causal and non-causal IIR filters yield
efficient causal FIR approximations.

III. FILLING THE GAPS

We now combine the algorithms of Section II to produce
a systematic method for designing near-optimal filters with
which we create remarkable filters not obtainable (as far as
we know) by other techniques. We describe lowpass filter
design as a model problem. Although in this case it may
be possible to obtain an equivalent design by other means,
this example allows us to compare with filters designed using
alternative methods. However, for the more complicated filter
design problems addressed in Section V, we are not aware of
alternative constructions with comparable efficiency.

Our method comprises three steps. We first create a sub-
optimal IIR filter to satisfy the design criteria. Next, we use the
reduction algorithm of Section II-B to find an equivalent (vis-
à-vis the filter specifications) near-optimal IIR approximation
of this filter. Finally, we use the FIR approximation algorithm
of Section II-C to obtain an efficient FIR filter. Each step in
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this process introduces some approximation error, so we will
allocate a portion of the total allowable error, as given in the
filter specifications, to each of the three steps.

Consider the following lowpass filter specification:∣∣H(e jω)−1
∣∣ < 10−4, |ω|< 80

140∣∣H(e jω)
∣∣ < 10−4, |ω|> 81

140
,

(III.1)

where ω ∈ (−π,π). The combination of a relatively wide pass-
band and a narrow transition region make this a challenging
problem. For example, a multirate approach utilizing decimate-
by-two stages would offer only marginal improvement over
a single stage approach since decimation could only be per-
formed twice. Furthermore, the passband error specification
requires the phase argH(e jω) to be nearly zero throughout
the passband. Such a requirement, equivalent to requesting
approximately linear phase, is challenging for many IIR filter
design techniques.

A straightforward method of using the algorithms of Sec-
tion II to obtain an IIR filter is to begin with the piecewise
linear function Hp(e jω), where

Hp(e jω) =


1, if |ω|< 80

140
81−140 |ω| , if |ω| ∈ [ 80

140 , 81
140 ]

0, if |ω|> 81
140 .

However, approximating this function allocates too many poles
to the sharp corners of the transition region. Instead, we
will follow an approach inspired by Butterworth digital filter
design (see, e.g., [14, §7.2]) and begin with an an infinitely
differentiable rational function that is optimally flat in the
passband and the stopband. We define the function F(w) by

F(w) = F(w;δ ,N) =
1

1+
(w

δ

)4N , (III.2)

where δ > 0 and N is a positive integer parameter to be
specified later. F(w) is infinitely differentiable on the real axis
of the w-plane, and we associate the real axis with analog
frequency.

For real w, the function F(w) has the partial fraction
expansion

F(w) = 2Re
2N−1

∑
n=0

r
1− γnw

,

where r = (4N)−1 and

γn = δ
−1e jπ 2n+1

4N , n = 0,1, . . . ,2N−1.

Applying the Möbius transform

w = α(z) = j
1− z
1+ z

, (III.3)

we map the unit disk |z|< 1 onto the upper half plane Imw > 0,
and obtain the IIR filter

Hd(z) = F (α(z)) = c+2Re
2N−1

∑
n=0

sn

1− pnz
,

where

pn =
(

γn− j
γn + j

)
and sn =

(
2 jrγn

γ2
n +1

)

for n = 0,1, . . . ,2N−1, and

c = 2Re
2N−1

∑
n=0

jr
j− γn

.

For |z|= 1 on the unit circle, we write Hd(z) as

Hd(z) = c+
2N−1

∑
n=0

sn

1− pn/z
+

sn

1− pnz
(III.4)

describing a lowpass non-causal IIR filter with linear phase (in
fact, Hd(e jω) is real and nonnegative). The filter consists of 4N
poles appearing as points with conjugate-reciprocal symmetry.
The factor of 4 in the denominator of (III.2) was chosen to
produce this 4-fold symmetry. Observe that (III.4) is in the
proper form for the reduction algorithm of Section II-B, a fact
we will use momentarily.

We now choose δ and N to obtain our preliminary sub-
optimal IIR filter Hd(z). In choosing these parameters we only
concern ourselves with the accuracy of the approximation.
Setting δ = 0.295686 and N = 393 produces a filter with
a maximum error of 3.3× 10−5 in both the passband and
stopband. This filter—which has 1572 poles—is obviously far
from optimal. We now apply to Hd(z) the reduction algorithm
from Section II-B to obtain a near-optimal IIR filter H(z).
For the con-eigenvalue controlling the approximation error in
(II.8), we select σ ≈ 3.7×10−5. After applying the algorithm,
the resulting IIR filter has only 30 poles, 15 inside the unit disk
and 15 (conjugate-reciprocal poles) outside the unit disk. Like
Hd(z), the frequency response of H(z) is real-valued. It has a
maximum error of 8.5×10−5 in the passband and stopband.

As a final step, we use the approach in Section II-C to obtain
a FIR approximation H̃(z) of H(z). We construct the filter H̃(z)
in the form (II.13), where we expand each pole so that the error
of approximation in (II.14) does not exceed 1.5× 10−5. The
resulting FIR filter satisfies the filter specifications (III.1), has
linear phase, and its implementation requires 312 real additions
and 161 real multiplications per output sample (we discuss the
operation count in Section IV). For comparison, the FIR filter
that satisfies (III.1) designed by the Parks-McClellan-Rabiner
(PMR) algorithm [15, §5.1] requires 4057 taps and needs 4056
real additions and 2029 real multiplications per output sample.
Alternatively, if we were to use the PMR algorithm to produce
a filter with the same passband and stopband requiring 161
multiplications per sample, the resulting filter would achieve
a stopband attenuation of only 0.21, compared with 10−4 for
our filter.

The frequency responses of Hd(z), H(z), and H̃(z) are
shown in Fig. III.1. The poles of the sub-optimal filter Hd(z)
and the poles of the near-optimal filter H(z) are displayed in
Fig. III.2, where only poles inside the unit disk are shown.
The poles of H(z) inside the upper half of the unit disk are
listed in Table I. The table also lists how many factors each
pole requires in its FIR approximation H̃(z).

A different approach to efficient FIR filter design is to de-
compose the frequency range ω ∈ (−π,π) into subbands and
design an efficient FIR filter for each subband [16]. Efficiency
is generally obtained by designing sparse FIR filters. Although
our method is entirely different, the structure of the resulting
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Figure III.1. Frequency response of the lowpass filters Hd (dash-dot line),
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(bottom). H̃ is an excellent approximation of H, making their graphs almost
indistinguishable.
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Figure III.2. Poles of the sub-optimal lowpass filter Hd (small dots) and the
equivalent near-optimal filter H (open circles). The poles of Hd are so closely
spaced that they appear to form a solid arc.

Table I
POLES AND WEIGHTS OF THE LOWPASS FILTER H IN SECTION III, AND

THE NUMBER OF FACTORS REQUIRED FOR EACH POLE IN H̃ . THE
CONSTANT TERM IS w0 =−0.18305.

Pole zm Weight wm Factors
0.83828+0.54323 j 6.1855e-7−3.5136e-4 j 14
0.83610+0.54180 j 3.6497e-6−5.5533e-4 j 12
0.83131+0.53862 j 2.5683e-5−1.4427e-3 j 11
0.81892+0.53003 j 1.7411e-4−3.8056e-3 j 9
0.78836+0.50650 j 1.2072e-3−9.9390e-3 j 8
0.72188+0.44108 j 7.9194e-3−2.4407e-2 j 7
0.62320+0.27635 j 4.0707e-2−4.1560e-2 j 5

0.57310 8.2954e-2 5

FIR filters in (II.13) also has a subband interpretation. Each
pole γm within the unit disk represents a subband: the subband
is centered at the pole’s argument argγm, and its bandwidth
depends on the pole’s proximity to the unit circle. The formula
(II.9) yields an efficient FIR filter for each subband. Thus, one
may view our near-optimal IIR filters as near-optimal subband
decompositions of desired frequency responses.

A few remarks are in order.

Remark 7. Many existing IIR design algorithms (see [17] for
an early example or [18] for a more recent one) contain a
computationally expensive step to ensure that the IIR filter is
causal (i.e., all poles lie within the unit disk), which obviously
precludes a filter with linear phase. Our FIR approximation
algorithm shows that such restrictions are not necessary, since
a non-causal IIR filter may be efficiently approximated by a
FIR filter to any desired accuracy. The emphasis, then, should
be on minimizing the number of poles rather than ensuring
that all poles lie within the unit disk.

Remark 8. Approximation by splines is another excellent
method of producing sub-optimal IIR filters. They are es-
pecially useful for producing more complicated frequency
responses. Splines have accurate and efficient rational approx-
imations, so it is easy to obtain a sub-optimal IIR filter Hd(z)
given a sequence of spline coefficients. We ensure our reduced
filters H(z) are efficient by choosing splines of sufficiently
high degree, so they have many continuous derivatives. Finally,
we note that the spline expansion coefficients may be obtained
rapidly using the algorithm in [19] and [20, Appx.], which
makes use of the Fast Fourier Transform.

Remark 9. By combining the “building block” function
F(w;δ ,N) with the standard frequency transformations used to
construct IIR filters from the classical analog filters (see, e.g.,
[14]), our method generates the common frequency selective
filters (viz., lowpass, bandpass, highpass, and bandstop). We
demonstrate further uses of F(w;δ ,N) in Section V.

Remark 10. Many desired impulse responses, such as those
requiring linear phase, are two-sided; they decay to the left
and right of a central maximum. Conceptually (and some-
times numerically) a causal IIR approximation is obtained
by windowing, truncating, and shifting the desired two-sided
impulse response to the right, which (in most cases) puts
the maximum amplitude significantly to the right of the
origin. Directly applying this approach, as in [11], [12],
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produces serious numerical difficulties effectively precluding
the optimality implied by the underlying AAK theory. For
example, to obtain the same quality approximation as in our
approach, a causal IIR filter must have a similar number
of accurate impulse response coefficients as in the causal
FIR filter z−2Nmax+1+1H̃(z) (see Remark 6). Thus, for high
accuracy, the central peak of the impulse response would be
located far away from the origin. This would cause serious
numerical difficulties in approximating such sequence by an
efficient causal IIR filter. This may explain why examples
in the literature for such approximations only deal with low
accuracy filters.

IV. FILTER IMPLEMENTATIONS

There are several possible implementations of our FIR
approximations of IIR filters. The choice depends on the im-
plementation medium (hardware vs. software), on the purpose
of the filter, and on the filter itself. For example, if we have
an IIR filter of the form

H(z) =
P(z)
Q(z)

, (IV.1)

then [5] shows how to replace 1/Q(z) by a cascade of FIR
factors, where the application of each factor requires only a
single multiplication and addition. Alternatively, we may begin
with an IIR filter expressed in partial fractions,

H(z) = w0 +
Min

∑
m=1

win
m

1− γ in
m /z

+
Mout

∑
m=1

wout
m

1− z/γout
m

,

which is the form produced by the algorithms in Sections II-A
and II-B. One implementation path is to rewrite this filter
in the form (IV.1), then realize the FIR approximation as a
single cascade. An alternative is to approximate each term
in the partial fraction expansion separately, obtaining a FIR
approximation of the form (II.13). In this way, each pole may
be applied in parallel. Such an implementation is especially
advantageous for software-based realizations given the current
prevalence of multiprocessors. We will discuss this type of
parallel realization in some detail, then conclude with several
remarks about other implementation considerations.

As mentioned in Section II-C and demonstrated by the
lowpass filter H(z) constructed in Section III, the poles of
IIR filters with real valued, even- or odd-symmetric impulse
responses either have non-zero imaginary part and appear with
4-fold symmetry (conjugate-reciprocal pairs inside and outside
the unit disk) or are purely real and have 2-fold reciprocal
symmetry. A similar symmetry exists for the weights. With
this in mind, we pick representative poles inside the upper
half of the unit disk or on the real axis, and write our IIR
filter as

H(z) = w0 +
Mreal

∑
m=1

am

1− pm/z
+

am

1− pmz

+
Mcpx

∑
m=1

αm

1−ρm/z
+

αm

1−ρm/z
+

αm

1−ρmz
+

αm

1−ρmz
, (IV.2)

where w0, am, pm are real and |pm|< 1; αm, ρm are complex,
|ρm| < 1 and Imρm > 0. For the real terms in the first sum,
we use (II.9) to write

a
1− p/z

+
a

1− pz
=

[
2a−ap(z+ z−1)

] ∞

∏
n=0

[
1+ p2n+1

+ p2n
(

z2n
+ z−2n

)]
.

The infinite product may be truncated with bounded error
using Proposition 5. For the complex terms in the second sum,
we write

α

1−ρ/z
+

α

1−ρ/z
+

α

1−ρz
+

α

1−ρz
=[

b0 +b1(z+ z−1)+b2(z2 + z−2)
]

×
∞

∏
n=0

[
c0,n + c1,n

(
z2n

+ z−2n
)

+ c2,n

(
z2n+1

+ z−2n+1
)]

,

where the real coefficients are given by

b0 = 4
(

Reα + |ρ|2 Reα +Re
(
ρ

2
α

))
b1 =−2

(
Re(ρα)+2Re(ρα)+ |ρ|2 Re(ρα)

)
b2 = 2 |ρ|2 Reα

c0,n = 1+
(

2Re
(

ρ
2n

))2
+ |ρ|2

n+2

c1,n = 2Re
(

ρ
2n

)(
1+ |ρ|2

n+1
)

c2,n = |ρ|2
n+1

.

Just as for the real poles, Proposition 5 may be used to truncate
the infinite product.

In this way, each real pole is approximated as a cascade
where each factor requires 2 additions and 1 multiplication
(we factor out the terms 1 + p2n+1

), followed by a factor
requiring 2 additions and 2 multiplications. Each complex pole
is approximated as a cascade with factors requiring 4 real
additions and 2 real multiplications (where we factor out the
terms c0,n) followed by a factor requiring 4 real additions and
3 real multiplications. Let Nreal

m denote the number of factors
needed to approximate the real pole pm, and Ncpx

m denote the
number of factors needed for the complex pole ρm (see (II.13)).
Then the total computational cost of a parallel implementation
is

#Adds = 4Ncpx +5Mcpx +2Nreal +3Mreal

#Mults. = 2Ncpx +3Mcpx +Nreal +2Mreal +1,

where

Ncpx =
Mcpx

∑
m=1

Ncpx
m and Nreal =

Mreal

∑
m=1

Nreal
m ,

which includes the costs of the constant term w0 and combin-
ing the output of each parallel component. We emphasize that
these are real additions and multiplications, even though the
poles and weights are generally complex.

We conclude this section with a series of remarks.
Remark 11. For software-based realizations, the parallel struc-
ture of our FIR approximations is simple to implement and
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yields fast codes. For hardware-based realizations, the serial
cascade structure in [5] may also be considered.

Remark 12. A non-causal filter lacking a symmetric impulse
response does not possess symmetry of poles inside and
outside the unit disk. In this situation, the poles inside the
unit disk may be applied using the standard recursive equations
and the poles outside the unit disk using an appropriate FIR
approximation.

Remark 13. Lowpass filters used in downsampling applica-
tions, such as digital tuning or sigma/delta A/D conversion,
are an important special case. These filters are characterized
by a narrow passband, narrow transition band, and tight error
tolerances. Lowpass FIR filters designed by our method are
especially convenient in these situations. Since factors in the
cascade have terms z2n

, we can apply a factor then decimate by
two prior to applying the next factor. This approach dramati-
cally reduces the memory and number of arithmetic operations
required to implement the filter. We note that strategically
interlacing decimation and filtering stages has been used with
great success in the field of multirate signal processing (see
[21] and references therein).

V. DESIGN EXAMPLES

A. Frequency Selective Filters

We now turn to a more complicated sub-optimal filter,
and thereby obtain a near-optimal filter that could not easily
be obtained by other means. Let us consider a “staircase”
filter Hd(z) constructed by using the Möbius transform (III.3)
together with the function

1
2

F
(

w;
3
8
,25

)
+

1
2

F
(

w;
5
8
,25

)
,

where F(w;δ ,N) is defined in (III.2) (see Fig. V.1). The sub-
optimal filter Hd(z) is a real-valued IIR filter with 200 poles.
We reduce their number by choosing a con-eigenvalue of σ ≈
4.6×10−4 in Algorithm 3 to obtain a new filter H(z) with 26
poles, of which 13 are inside the unit disk and 13 are outside.
The approximation error

∣∣Hd(e jω)−H(e jω)
∣∣ is shown in Fig.

V.1. The error displays almost exact equioscillation, consistent
with our claim that IIR filters produced by our method are
near-optimal. The pre- and post-reduction pole locations are
shown in Fig. V.2, where only poles inside the unit disk are
displayed. The pole pattern is complicated enough that it is
not clear how one would produce these poles by other means.
The poles, weights, and number of factors required in an FIR
approximation with error less than 10−3 are shown in Table II
(only poles inside the upper part of the unit disk are listed).

B. Quadrature Mirror Filters

Our approach allows us to widen the range of useful
properties in the design of FIR Quadrature Mirror Filters
(QMFs). The perfect reconstruction condition requires the low-
pass filter of the QMF pair to satisfy

H(z)H(z−1)+H(−z)H(−z−1) = 1. (V.1)
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Figure V.1. The “staircase” filter Hd (solid line) and the approximation H
(dashed line) (top). The equioscillation approximation error (bottom) shows
that H is near-optimal.
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Table II
POLES AND WEIGHTS OF THE “STAIRCASE” FILTER H IN SECTION V-A,
AND THE NUMBER OF FACTORS REQUIRED FOR EACH POLE IN H̃ . THE

CONSTANT TERM IS w0 = 0.60057.

Pole zm Weight wm Factors
0.73729+0.64330 j 2.6451e-5−3.7663e-3 j 9
−0.21254+0.94461 j 7.2305e-6−5.5944e-3 j 8
0.67809+0.59327 j −4.3178e-4−1.1810e-2 j 7
−0.18571+0.83540 j 6.8318e-4−1.7861e-2 j 6
0.44780+0.42670 j −1.3985e-2−7.0914e-2 j 4

−8.7442e-2+0.42165 j −2.9205e-2−0.16703 j 4
−0.50671 −1.4759e-2 3

Such filters give rise to filter banks, and, with simple additional
constraints, to orthonormal wavelet bases. Filter banks provide
methods for efficiently applying operators to signals, in par-
ticular, operators that in the standard representation result in
very long filters, such as fractional derivatives or the Hilbert
transform (see, e.g., [22]). Filter banks have proven useful for
applications in signal processing, numerical analysis, and data
compression (see, e.g., [23]).

Depending on the application, we may request different
properties of the filter (V.1). Algebraically, many of these
properties are interrelated and several are mutually exclusive.
For example, no FIR QMF can be symmetric but nothing
prevents the design of symmetric IIR QMFs. We note that
many such restrictions on properties of QMFs are fragile; i.e.,
for any finite accuracy these restrictions disappear, and we
use this fact as a tool for the design of approximate QMFs
with the desired properties. Some examples may be found in
[5] and here we construct approximate IIR and FIR QMFs
that are symmetric (i.e., have linear phase), efficient, and have
attractive flatness and subband isolation properties.

In [24] a particularly interesting family of symmetric IIR
QMFs is introduced,

E4N(z) =

(1+ z)2N
(
(1+ z)2N +(−1)N

√
2(1− z)2N

)
(1+ z)4N +(1− z)4N +(−1)N

√
2(1− z2)2N

, (V.2)

where the positive integer parameter N simultaneously controls
the flatness of the passband and stopband and the width of
the transition region. It may be that the value N required to
achieve a sufficiently narrow transition band results in a filter
that is excessively flat. We show how to use our method to
obtain an efficient FIR approximation of the original QMF that
retains the desired sharpness but gains efficiency by reducing
the excessive flatness. An example of such a QMF frequency
response is illustrated in Fig. V.3.

The filter flatness is controlled by the root of order 2N at
z =−1 of E4N(z). To obtain a more efficient, but less flat, IIR
filter, we factor our a portion of this high-order root and apply
the reduction algorithm from Section II-B to the remaining
terms. Observing that E4N(z) is real-valued on the unit circle,
we select some integer S < N (which controls the flatness of
the new filter) and rewrite E4N(z) as

E4N(z) =
(

1+ z
2

)S (
1+ z−1

2

)S

×

[
c+

2N

∑
n=1

sn

1− pn/z
+

sn

1− pnz

]
. (V.3)

We may now reduce the expression in brackets and construct
a FIR approximation of the result. For example, we choose
N = 20, yielding an IIR filter with 40 poles inside the unit
disk and 40 poles outside. This filter has an appealingly
narrow transition band, but the passband is flatter than may
be required for many filter bank applications. We select S = 3
in (V.3) and apply the reduction algorithm of Section II-B
to obtain a new IIR filter with only 17 poles inside the unit
disk and 17 outside. Finally, we use the FIR approximation
algorithm of Section II-C to obtain a FIR filter Ẽ80(z) that
approximates E80(z) on the unit circle with an error bounded
by 10−8. Because Ẽ80(z) approximates E80(z) so closely, it
(approximately) inherits the same properties as E80(z). In
particular, Ẽ80(z) is symmetric and approximately satisfies the
perfect reconstruction condition (V.1) with an error that does
not exceed 10−8 on the unit circle. It is also very flat because
of the root of order 6 at z =−1. The approximate QMF Ẽ80(z)
and the perfect reconstruction error

Ẽ80(z)Ẽ80(z−1)+ Ẽ80(−z)Ẽ80(−z−1)−1

are shown in Fig. V.3. The poles, weights, and number of
factors in the FIR approximation are shown in Table III (only
the poles in the upper half of the unit disk are listed).
Remark 14. We note that the order of the zero, 2S, yields
an approximate interpolating property for the filter bank [25],
[26]. Directly constructing FIR QMFs with this property
leads to the so-called Coiflets (design of which which is
difficult, see, e.g., [25], [26]) and the resulting filters cannot
be symmetric. In comparison, our construction is simple and
provides additional properties.

VI. CONCLUSION

We have described a new method of designing accurate
and efficient IIR and FIR filters. Our method has several
advantages. First, the FIR filters it produces are more efficient
than FIR filters constructed by other methods, when such
constructions are even possible. Second, many properties (such
as symmetric filters satisfying the perfect reconstruction condi-
tion) can only be obtained by IIR filters. Our method produces
FIR filters that, with any finite accuracy, approximately possess
these properties. Third, our filters have a straightforward
parallel implementation. Finally, by approximating IIR filters
with FIR filters, we can consider IIR filters with properties,
such as linear phase, not obtainable by causal IIR filters.
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IS w0 =−1.24533870508.

Pole zm Weight wm Factors
1.614962028091702e-8+0.9427643190768825 j 0.1156203491819011−8.058245848823418e-2 j 9
1.523267607493497e-8+0.9063478708933764 j −6.602258562520147e-2−0.1235199582810649 j 8
9.452755533145547e-4+0.8038059179307812 j 0.1435760298523706−5.972837054722412e-3 j 7
2.385100189342754e-3+0.7758181038788966 j −8.466685108153214e-3−0.1405348047690257 j 7
−4.287984710863575e-3+0.6711924419976365 j 0.1673367117011427−4.488479171905594e-2 j 6
1.654221356678399e-2+0.5487007195130383 j 0.1691065050219905+4.884707929391815e-2 j 5
3.826740048904385e-2+0.4009109376978119 j 9.267944965286919e-2+0.1068308245943145 j 5
4.944326086546647e-2+0.2253118851038638 j 8.840369128305046e-3+6.662132497247104e-2 j 4

0.5130884721438124 −1.582530456670174e-6 4

0

0.2

0.4

0.6

0.8

1

−π − π

2 0 π

2 π

H
( ejω

)

ω

−14

−12

−10

−8

−6

−4

−2

0

−π − π

2 0 π

2 π

lo
g 1

0
|Ẽ
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