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Abstract. In this paper we demonstrate performance of several local and multi-resolution gravity
models derived from existing spherical harmonic models. A model of this type was provided to
USAFSC in 1997, and additional variants have been developed since then. We also begin to address
the problem of estimating multi-resolution models directly from gravity measurements. We hope to
demonstrate that it is reasonable to expect gravity models with greater accuracy and flexibility once
the spherical harmonic basis has been eliminated from the process.
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1. Introduction

For a variety of applications it is necessary to have an accurate model of the Earth’s
gravitational field. Up to now such models have been constructed using bases of
spherical harmonics. However, to meet future demands there is a need to improve
both accuracy and efficiency of Earth gravity models beyond what is achievable
with the spherical harmonic basis. The use of such basis functions imposes lim-
itations because they are globally supported, making it impossible to increase the
resolution of the model without increasing the order and degree globally. We de-
scribe below a new approach to the problems of evaluating and estimating the
Earth’s gravitational field. Namely, by using bases of functions which are locally
supported, such as wavelets, we are able to avoid the limitations imposed by the
spherical harmonic basis.

We note that our approach to estimating models of Earth’s gravitational field is
equally applicable to the general problem of estimating gravity fields in the vicinity
of other celestial bodies, for example, asteroids.

Let us recall the form of the spherical harmonic model of the gravitational
potential,

Celestial Mechanics and Dynamical Astronomy 84: 87–104, 2002.
c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.



88 GREGORY BEYLKIN AND ROBERT CRAMER
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where µ is Earth’s gravitational constant, r is the length of the radius vector from
Earth’s center of mass, R is the equatorial radius of the Earth, φ is the geocentric
longitude and θ is the geocentric latitude. The spherical harmonic Yn(φ, θ) is
defined as
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n are nor-
malized associated Legendre functions of degree n and order m. As it is well
known, V is a solution for the Laplace equation in spherical coordinates (r, φ, θ),
r > R.

The cost of evaluating V at a point (r, φ, θ) via (1) grows rapidly with the degree
and order. For a model with degree and order equal to N , the number of operations
to evaluate V is proportional to N2. Thus, evaluating a model of degree and order
180 compared to evaluating a model of degree and order 18 requires roughly 100
times more operations.

We describe below several approaches for restructuring the Earth’s gravitational
model to improve its performance. The basic idea in all of them is simple: we
localize the description of the gravitational field. A local description generally
requires more memory to store the model than a spherical harmonic representation.
In our approach, we achieve a good compromise by realizing a significant increase
in speed with acceptable memory requirements.

In what follows we refer to both ‘local’ and ‘multiresolution’ representations. In
a local representation, the elementary building blocks are basis functions with loc-
alized support (e.g. B-splines), but the resolution is uniform throughout the model
and such representations typically are not adaptive. Multiresolution representa-
tions, on the other hand, also use localized basis functions (e.g. wavelets), but are
adaptive, which means they can incorporate different resolutions to more efficiently
accommodate different variability of the geopotential in different locations.

The process of constructing gravitational models directly from measurements,
the estimation problem, is intimately connected with the way in which the model
is represented. Using spherical harmonics for the construction leads to a number of
serious problems, which we now discuss.

The only way to improve resolution within the spherical harmonic representa-
tion is to increase the number of terms in the expansion. The estimation procedure
which uses satellite measurements requires formation of correlation matrices, the
size of which is roughly N2 × N2, where N is the degree and order of the spher-
ical harmonic model. These matrices are dense (full), and therefore the number of
operations required to store and manipulate them grows rapidly as N is increased.
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Correlation matrices are dense because coefficients of the spherical harmonic
expansion are not associated with any particular spatial location. Indeed, each coef-
ficient in the expansion contributes to the field at every spatial location. Spherical
harmonics are globally supported, oscillatory functions, which depend on cancel-
lation (constructive interference) to achieve the approximation. Changing even a
single coefficient in the model has a global effect. It is difficult, if not impossible,
to adjust the spatial frequency content of a spherical harmonic expansion locally.
In particular, there is a difficulty in incorporating observations of the gravitational
potential near the surface with those obtained from satellites, which is due in part
to the different spectral contents of the data.

Another important consideration is that the linear system for the L2-minimiza-
tion problem for model estimation has a very large condition number. Coupled
with the global nature of spherical harmonic basis functions, this severely limits
the overall resolution attainable in the model. We are unable to take advantage of
the fact that measurements in some regions are better than in others, and the most
poorly sampled region dictates the limit on the degree of resolution that can be
attained globally.

Finally, computation of some satellite orbits appears to be very sensitive to the
number of spherical harmonic terms retained in the model, and does not follow
the common sense rule ‘more terms are better.’ It is indicative of an analogue of
Gibbs’ phenomenon since the magnitude of the normalized spherical harmonic
model coefficients does not decrease significantly before the model is truncated.
(Gibbs’ phenomenon is a type of oscillatory error caused by abrupt truncation of
a Fourier series with slowly decaying coefficients. A more detailed description is
contained in Appendix B.)

Our goal is to develop multiresolution models of the Earth’s gravity that do
not suffer from the difficulties of estimation and evaluation outlined above. Mul-
tiresolution models use basis functions with localized support in both space and
spectral domains. This allows us to generate models where changes in most of the
parameters (coefficients) will produce only local changes in the model (up to any
finite but arbitrary accuracy).

This statement may at first appear unreasonable since gravitational fields always
give rise to long-range interactions. To illustrate this point, we consider the analogy
with electrostatic fields, which are mathematically equivalent since both satisfy the
Laplace equation. The difference is, of course, that electrostatic charges can be both
positive and negative, whereas gravitational charges (masses) are always positive.
Electrostatic potentials consisting mainly of high-order multipoles are possible,
and the effects of such fields can be ignored beyond a relatively short distance.

To form electrostatic multipoles, it is necessary to make use of cancellation
between the positive and negative charges, a mechanism which does not exist in
a gravitational field. However, we can produce the same effect by using a basis
of wavelets with vanishing moments. Most of the functions in such a basis act
as multipoles, and the use of such bases results in sparse correlation matrices



90 GREGORY BEYLKIN AND ROBERT CRAMER

for estimation of the model parameters. Such bases also allow us to address the
problem of ill-conditioning in an adaptive manner.

The particular choice of basis is a crucial issue since it will be necessary to use
several different algorithms in conjunction with the representation. A number of
authors (e.g. [1]) have constructed wavelet-type bases that respect the topology of
the sphere. Although there certainly is merit to such constructions, we find them
to be somewhat cumbersome for our purposes. Our preference is to use a more
direct approach, where we employ ‘general purpose’ functions such as splines,
polynomials or multiwavelets, making certain that algorithms we use can handle
redundancies or slight inefficiencies that the use of such functions may entail.

2. Local and Multiresolution Gravitational Models

We describe several examples of local models. Each model comprises a set of
concentric ‘shells.’ Each shell represents the field at a fixed distance from the center
of the Earth, and consists of a set of coefficients that represent the geopotential (or
one of its derivatives) as a two-dimensional expansion of local basis functions. To
compute values of the gravity field at points between the fixed shells we use a local
polynomial interpolation.

Each shell represents a scalar function. Hence, to represent the gravitational
force field, it is necessary to store three sets of shells. In what follows, for simpli-
city, we describe representations of the Earth’s geopotential only.

We note that in our models we retain spherical harmonic terms up to degree
and order 2 to represent the low-frequency part of the field (more terms could be
retained if desired). We made this choice because there is a significant reduction
in magnitude of the spherical harmonic coefficients in going from degree 2 to
degree 3, but the magnitude decreases only slowly thereafter. The coefficient C̄0

2
is of magnitude 10−3, whereas for degrees greater than 2, all coefficients are of
magnitude 10−5 or less.

2.1. DOUBLY-PERIODIC SPLINE MODEL

We begin by describing the simplest of the local models. This model was designed
solely for evaluation of the gravitational field, and is not suitable for estimation
due to the pole problem, that is over-sampling in the polar regions relative to the
sampling rate in equatorial regions.

In this model, the surface of the sphere is mapped to a unit square in the plane.
Thus, each concentric shell takes the form of a square. Variables (x, y) on the
unit square are related to the spherical coordinates (φ, θ) on the surface of the
sphere by

φ = 2πx, θ = 2πy where 0 � x, y � 1. (2)

Note that the square covers the sphere twice—we discuss this more fully below.
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We introduce a grid on each square which is equispaced in the variables x and
y. However, the projection of this grid back onto the spherical surface suffers a
severe distortion due to stretching near the poles, since adjacent grid points become
closer together the nearer they are to the poles. This gives rise to the pole problem
mentioned above.

Using locally supported B-splines, we construct a representation of the geo-
potential on each shell, which interpolates the geopotential at each point of the
grid.

Let ri be a fixed distance from the center of the Earth which corresponds to
the location of one of the concentric shells. The function Si that describes the
geopotential on the shell is defined by

Si(x, y) = V (ri, φ, θ). (3)

The left-hand side has the form

Si(x, y) =
N−1∑
j=0

N−1∑
k=0

si,j,k β(Nx − j)β(Ny − k), (4)

where β denotes the central B-spline of sufficiently high order. Grid spacing on
the square is N−1, which is also the length of the largest subinterval on which
the spline is a polynomial. Function Si is an approximation of the geopotential V ,
hence the two sides of Equation (3) agree to within prescribed accuracy. Choice of
the integer N and the order of the B-splines depends upon accuracy and memory
requirements. Both are adjustable parameters in the model.

The cost of evaluating the B-spline series (4) is roughly equal to the square
of the order of the B-spline. If the order of B-splines is M, then roughly M2

multiplications are required to evaluate the right-hand side of (4). Note that this
cost is independent of the parameter N , which instead governs memory storage
requirements. It is obvious from (4) that N2 coefficients must be stored in computer
memory for each shell. To achieve the prescribed accuracy, the choice of the values
of N and M are inversely proportional. The larger N is, the smaller M is, and vice
versa. Thus, the choice of parameters is a trade-off between computational speed
and memory storage requirements.

2.1.1. Spacing between the concentric shells
Examination of Equation (1) reveals that, as r increases, the higher-order terms
in the series become insignificant. This means that, for large r, the field can be
approximated by low order polynomials and, thus, shells that represent the geopo-
tential far above the Earth need not be so closely spaced as shells near the surface.
Consequently, in our models, we increase the distance between consecutive shells
as r is increased.

We introduce the dimensionless variable z, defined by

z = 1 − R

r
. (5)
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Thus, z = 0 corresponds to r = R, the surface of Earth, and z = 1 corresponds
to r → ∞. The locations of the shells are thus determined by a partition 0 � z0 <

z1 < · · · < zK � 1 of the interval [0, 1]. A typical choice is zk = (k/K)2, for
k = 0, 1, . . . , K.

More generally, we may choose any monotone-increasing function f , such that
f (0) = 0, f (1) = 1, and f (z) < z for 0 < z < 1, then define zk = f (k/K). Here
we do not address the question of the optimal choice for f .

2.1.2. Interpolating between the concentric shells
Let us describe how we use (4) to obtain the values of the geopotential and its
derivatives at locations between the tabulated shells. Suppose we want to evalu-
ate at a point (r ′, φ′, θ ′) above the Earth’s surface, such that ri < r ′ <ri+1, where
ri and ri+1 correspond to tabulated shells. If we were to use a linear interpolation,
we compute the value of the potential on the shells at ri and ri+1 at the appropriate
locations (φ′, θ ′), then construct the linear interpolating polynomial that joins these
two points. This polynomial in r is then evaluated at r = r ′.

In practice we use polynomials of higher degree, which requires evaluation on
several shells. For example, to use a cubic interpolating polynomial, we evalu-
ate on shells at ri−1, ri , ri+1, ri+2 at the location (φ′, θ ′), and construct the cubic
polynomial that passes through these points.

The total cost of evaluation per point for the geopotential spline model is thus
C · P · M2, where C is a constant, M is the order of the B-spline and P is the
order of the polynomial used to interpolate between shells. Note that P is also an
adjustable parameter in the model, and its value can be made smaller to increase
the computational speed, if we are willing to increase the number of shells which
are tabulated and stored in the computer memory.

Current implementations typically use M = 12 and P = 6, which corresponds
to B-splines of degree 11 and interpolating polynomial of degree 5.

2.1.3. Computing the B-spline expansion coefficients
Let us outline the steps in computing the coefficients for the B-spline expansion
(4). For fast and accurate computation of the coefficients it is convenient to extend
the potential function V so that it is 2π -periodic in both φ and θ . Since V is already
periodic in the geocentric longitude φ, we only need to extend the geocentric
latitude θ from [0, π ] to [0, 2π ] in a consistent manner. We define the periodic
extension Vp by

Vp(r, φ, θ) =
{

V (r, φ, θ), if 0 � θ < π,

V (r, φ + π, 2π − θ), if π � θ < 2π.

Next we form the expansion

Si(x, y) =
N−1∑
j=0

N−1∑
k=0

Ai,j,k L(Nx − j)L(Ny − k), (6)
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with coefficients defined by

Ai,j,k = Vp

(
ri, φj , θk

)
, where φj = 2πj

N
and θk = 2πk

N
.

The function L(x) is the interpolating spline, which satisfies L(n) = 1 if n = 0
and L(n) = 0 if n = 0 for integer n. This property implies that the expansion (6)
interpolates Vp at the points (ri, φj , θk).

Changing the basis from interpolating splines in (6) to B-splines in (4) is fairly
straightforward since the interpolating spline is itself a linear combination of B-
splines so that the left-hand sides of (4) and (6) are identical. Note that, since the
function Si(x, y) in (4) and (6) is 1-periodic in both x and y, the change of basis
can be carried out in the Fourier domain. We apply an FFT to the N ×N matrix of
coefficients {Ai,j,k}, multiply each element of the result by a factor, then apply the
inverse FFT to obtain the B-spline coefficients {si,j,k} in (4).

Once the coefficients {si,j,k} have been obtained, it is not necessary to store all
of them, since the doubly-periodic representation covers the sphere twice. Instead
of N2, we store only (N2/2) + N(M − 1) coefficients per shell, where M is the
order of the B-spline.

2.1.4. Multiresolution decomposition
Once the representation (4) for the geopotential has been obtained, it is easy to
build its multiresolution version. Using the multiresolution decomposition, we are
able to remove the high frequency content from our B-spline representation of the
geopotential (or its derivatives), and obtain a smoothed, or averaged, version which
is supported on a coarser grid.

In order to describe this process, we assume that N = 2n for some positive
integer n, and denote the coefficients in (4) by {sni,j,k}. From the coefficients {sni,j,k},
by applying one step of multiresolution decomposition, we compute the coeffi-
cients {sn−1

i,j,k} on the next coarser scale (n − 1), that is, the scale corresponding to
twice the step-size of the scale n. From N2 coefficients per shell on the scale n we
obtain (N/2)2 coefficients per shell on the scale (n − 1). The procedure is carried
out in the Fourier domain, and consists of the following steps:

• Apply a two-dimensional FFT to the coefficient matrix {s n
i,j,k} to obtain the

matrix {ŝni,j,k}.• Apply a one-dimensional decomposition in each index (first on rows, then on
columns) of the matrix {ŝ n

i,j,k}. The one-dimensional transform is defined by

ŝn−1
m = 1

2

[
m̃0

(
2πm

N

)
ŝnm + m̃0

(
2πm

N
+ π

)
ŝnm+N/2

]
for m = 0, . . . , N/2 − 1. The function m̃0 is defined by

m̃0(ξ) =
(

cos
ξ

2

)M
a(ξ)

a(2ξ)
,
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where M is the order of the B-spline β(x), and where a(ξ) is defined by

a(ξ) =
M/2−1∑
1−M/2

β(k) eikξ .

• Apply the inverse two-dimensional FFT to the matrix {ŝn−1
i,j,k} to obtain the

coefficient matrix {sn−1
i,j,k} on the coarser scale.

We note that multiresolution decomposition can be used in conjunction with any
of the models described here, not just the doubly-periodic model.

The decomposition algorithm provides a simple and robust method for filtering
the high frequency content of the model – high and low frequency can be extracted
and represented separately. For example, Figure 1 in Appendix A illustrates how
multiresolution decomposition is used to represent the low frequency portion of the
field.

Such decomposition can be useful for the purpose of localizing the high fre-
quency contribution of the gravity field. The need for such decomposition is appar-
ent, see for example [2] or [3]. In [3] a deterministic modification of Stokes kernel
is constructed for this purpose, with the goal of applying the results to computation
of a gravimetric geoid. We feel that the models presented here, especially when
coupled with the decomposition algorithm, might be useful in addressing such
problems.

2.2. MULTIWAVELET CUBE MODEL

In this model, the surface of the sphere is mapped to the surface of a cube. Thus,
the concentric shells form a sequence of nested cubes. A point on the surface of a
sphere is mapped to a point on the reference cube (which has faces perpendicular
to the coordinate axes and at a distance of one unit from the origin) using the
following simple algorithm:

• Input coordinates (r, φ, θ) on the spherical surface of radius r.
• Compute (x = r sin θ cos φ, y = r sin θ sinφ, z = r cos θ).
• Find d = max{|x|, |y|, |z|}.
• Coordinates on the reference cube are (ξ, η, ζ ) = (x/d, y/d, z/d).

Geometrically, we can think of a ray that emanates from the origin and intersects
the sphere and the reference cube each in a single point. These two points are then
mapped one to the other. (Mappings between cubic and spherical surfaces have
been considered by other authors as well, see e.g. [4].)

We next place an equispaced rectangular grid on each face of the cube, which
can then be mapped backwards onto the sphere. We note that distortion of the grid
on the spherical surface caused by the curvature of the sphere is limited, and does
not cause any problem near the poles.
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The rectangular grid partitions each face of the cube into a number of square
subdivisions, and we build a wavelet representation of the geopotential on each
subdivision. Currently, the basis functions we use are the multiwavelets (see [5]
and [6]), chosen because they form an orthonormal basis on a square subdivision
without overlapping into adjacent subdivisions.

The scaling functions in a multiwavelet basis are orthogonal polynomials, for
example, Legendre polynomials. Formulas for interpolating the geopotential at
the Gaussian nodes within the subinterval are easily obtained using the Gaussian
integration rules.

To interpolate the field between shells, we can use the polynomial interpolation
scheme as described in Section 2.1.2. Alternatively, we can expand in terms of
multiwavelets in height as well.

This model seems best suited for the estimation problem, because the expan-
sions on individual subdivisions of space are independent of the expansions in
other regions. This independence provides greater flexibility for using different
resolutions in different regions.

2.3. SPLINE CUBE MODEL

Concerning performance of the two models described thus far, two observations
have been made. Namely, (1) the multiwavelet cube model has a more efficient
memory access than the doubly-periodic spline model, resulting in better speed for
evaluation, and (2) the doubly-periodic spline model requires substantially fewer
coefficients to achieve the same accuracy as the multiwavelet cube model. The
model described in this section has been successful in combining the best features
of both.

The importance of efficient memory organization is the following. To evaluate
our models it is necessary to interpolate between the tabulated shells, and to do
this we must evaluate the two-dimensional expansions at a given point on several
consecutive shells. However, the computation involves only a few coefficients on
each shell, and speed is gained in memory access if these can be stored closer
together.

This can be done by subdividing the surface into a number of ‘panels’ which,
taken together, cover the spherical surface. Panels for the same angles but different
heights are stored contiguously in memory, which provides faster memory access.

2.3.1. Partition of the spherical surface
In this model we subdivide each spherical shell into six panels which may be
regarded as the six faces of a cube. This is done in such a way that the grid spacing
for the polar regions is the same as that for the equatorial regions, and no excessive
distortion of the grid on the spherical surface occurs.

To obtain six square panels, we subdivide the surface of a sphere as indicated
in Table I. Panels are numbered 1–6, and the angle ranges of spherical surface co-
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TABLE I

Subdivision of the spherical surface to obtain six panels

Panel Angle ranges x-coordinate y-coordinate

1 −π �φ < −π/2, −π/4 � θ �π/4 α φ + 3 α θ

2 −π/2 �φ < 0, −π/4 � θ �π/4 α φ + 1 α θ

3 0 �φ < π/2, −π/4 � θ �π/4 α φ − 1 α θ

4 π/2 �φ < π, −π/4 � θ �π/4 α φ − 3 α θ

5 |γ | � 1, |ω| � 1, θ > 0 α tan−1 (ω) ± 2 −α sin−1 (γ )

6 |γ | � 1, |ω| � 1, θ < 0 α tan−1 (ω) ± 2 −α sin−1 (γ )

ordinates (φ, θ) for each panel appear in the second column. Canonical coordinates
on the face of each panel are (x, y), where −1 � x, y � 1, and these are obtained
as indicated in columns 3 and 4 of the table with α = 4/π . Panels designated 5 and
6 contain the north and south poles, respectively, and we define ω = tan θ/ cosφ
and γ = cos θ sinφ in rows 5 and 6 of the table. For the x-coordinate in rows 5
and 6, we use the minus sign if ω > 0 and the plus sign if ω < 0.

We note that the B-spline expansion for each panel overlaps its immediate
neighbors. Thus, to use this model for the estimation problem, we would need
to add a certain number of equations to ensure that the representation near the
boundaries of each panel is consistent with that of its neighbors.

2.3.2. Computing the B-spline expansion coefficients
Coefficients for this model are computed in the same manner as described in Sec-
tion 2.3.2. After computing B-spline expansion coefficients to cover a doubly-
periodic extension of the sphere, coefficients to cover each of the first four panels
are extracted and stored. The sphere is then rotated, another doubly-periodic expan-
sion computed, then coefficients are extracted to cover the two remaining panels.
The rotation is necessary to avoid excessive distortion of the grid near the poles
(mentioned in §2.1).

We note that it is inconvenient to store the gravity force field for the polar
regions in spherical coordinates. In this coordinate system, the representation of
a vector at the poles is not unique, since the longitudinal angle φ is arbitrary at the
poles.

2.4. PERFORMANCE RESULTS

Here we present performance results obtained with the local model described in
Section 2.3. Table II shows memory requirements for the spline cube model. In
the first column, ‘order of model’ refers to the degree and order of the underlying
spherical harmonic model, and in the second column we list the size in megabytes
for a spline cube model which approximates it. As expected, local models require
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TABLE II

Size of local models

Order of model Size in Mbytes

18 10.29

41 27.86

70 70.28

TABLE III

Comparison of evaluation times

Order of Time for Time for Speed-up Largest

model sph. harm local model factor l2 error

18 3.2745 0.8988 3.6430 0.12e-12

41 16.427 0.8410 19.532 0.16e-11

70 47.547 0.8471 56.130 0.13e-10

substantially more memory than spherical harmonic models. However, modern
computers have sufficient RAM to handle the increased size easily.

Tests for timing and accuracy reported in Table III were done by comparing
performance of the local model directly to the WGS84 spherical harmonic model
[7]. The test consists of computing gravity vectors for 10,000 randomly generated
points, then comparing execution times and accuracy. Accuracy is measured by
computing the l2-norm of the difference between the gravity vectors produced by
the two different models, and reporting the largest error. Execution times are in
seconds, and the speed-up factor is obtained by dividing the execution time for the
spherical harmonic model by the execution time for the local model.

Observe that, while evaluation time for the spherical harmonic model increases
quadratically with the order of the model, evaluation time for the local model is
constant.

3. Estimation of the Geopotential

The estimation problem may be formulated as an L2-minimization problem as
follows: given a set of measurements {up}, corresponding to a set of positions {rp}
(where rp = (rp, φp, θp) in spherical coordinates), we want to construct a function
u that satisfies Laplace’s equation in addition to interpolating the data,

up = u(rp), for each p. (7)

We refer to this problem as the harmonic interpolation problem. The condition (7)
is usually replaced by a minimization criterion, for example minimize the error in
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L2-norm. In practice, the problem of finding u is often replaced by the problem of
finding the corrections for u.

The actual estimation problem is more complicated since the input data often
consists of measurements made from satellites, which contain errors due to various
sources and, thus, at best can only be expected to be close to values of the actual
geopotential. This situation brings in additional complications which we would
like to ignore for now and, therefore, we confine our discussion to the problem of
harmonic interpolation in order to illustrate several important points.

A traditional approach for solving the problem is to represent u with spherical
harmonics and estimate the coefficients. We could thus make use of expression
(1), which contains spherical harmonics up through degree and order N . This
representation obviously solves the Laplace equation, and the problem is one of
computing the coefficients to solve the interpolation problem (7). Difficulties occur
if the measurements contain spatial frequencies higher than can be accounted for
by the expression (1), in particular local changes of high frequency. Condition of
the resulting system is a serious problem as well.

We propose another approach, namely, to build a multiresolution representation
of the harmonic interpolant u. Let us express the solution of Laplace’s equation as

u(r, φ, θ) =
∫ 2π

0

∫ π/2

−π/2
K(r, θ, θ ′, φ − φ′)u(a, φ′, θ ′) dθ ′ dφ′. (8)

for r > a, where

K(r, θ, θ ′, φ − φ′) = 1

4π

a(r2 − a2) cos θ ′

(r2 − 2ar cos γ + a2)3/2
,

is the kernel that appears in (8), and

cos γ = sin θ sin θ ′ + cos θ cos θ ′ cos(φ − φ′) .

We now seek a wavelet expansion for the function u in (8) of the form

u(a, φ′, θ ′) =
∑
k,l

snk,lϕ
n
k (θ

′)ϕn
l (φ

′) +
n∑

j=1

∑
k,l

{
d

1,j
k,l ψ

j

k (θ
′)ψj

l (φ
′) +

+ d
2,j
k,l ϕ

j

k (θ
′)ψj

l (φ
′) + d

3,j
k,l ψ

j

k (θ
′)ϕj

l (φ
′)
}

(9)

which is an expansion of u over j = 1, . . . , n scales, where n is an adjustable
parameter. Substituting (9) into (8) and applying the condition (7), we obtain

u(rp) =
∑
k,l

snk,l t
n,p

k,l +
n∑

j=1

∑
k,l

{
d

1,j
k,l α

j,p

k,l + d
2,j
k,l β

j,p

k,l + d
3,j
k,l γ

j,p

k,l

}
(10)

where, for example,

α
j,p

k,l =
∫ 2π

0

∫ π/2

−π/2
K(rp, θp, θ

′, φp − φ′)ψj

k (θ
′)ψj

l (φ
′) dθ ′ dφ′.
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The definitions of tn,pk,l , β
j,p

k,l and γ
j,p

k,l are similar, and are obtained by substituting
(9) into (8) and comparing the result to (10).

Collecting all such equations, for p = 1, . . . , Np, where Np is the number of
observations, we have a linear system of the form

T x = u, (11)

where x is a vector representing all coefficients d
1,j
k,l , d

2,j
k,l , d

3,j
k,l , and snk,l , and T

is a matrix containing the elements α
j,p

k,l , β
j,p

k,l , γ
j,p

k,l , and t
n,p

k,l . The right-hand side
u = {u1, . . . , uNp

} is a vector of observations.
The matrix T of the linear system (11) is sparse and typically very ill-condi-

tioned. We are now faced with solving an ill-conditioned least squares problem.
The standard approach to such problems is to use the rank-revealing QR algori-
thm which yields a solution of minimum l2-norm. However, existence of a
large (numerical) null space often renders minimum l2-norm solution unsatis-
factory.

We have developed an algorithm for solving ill-conditioned least squares prob-
lems [8] which produces what we call the ‘minimum detail’ solution. This al-
gorithm is a QR-type algorithm where the unknowns are organized by their spectral
content. In a wavelet system of coordinates it simply means that we work one scale
at a time.

The algorithm makes two passes. First, it restructures the matrix by selecting
the unknowns which can be resolved given a particular set of observations. This
pass proceeds from the coarsest scale to the finest. Second, it computes the val-
ues of the selected unknowns, starting from the finest scale and proceeding to the
coarsest.

The algorithm depends critically on the fact that the basis functions are localized
both in space and wave number domains. Such an algorithm would be impossible
if, for example, the basis functions were spherical harmonics.

We provide this discussion partly to emphasize the fact that it is not sufficient
to consider only representation of the gravity field. One must also consider all
algorithms that will be used in conjuction with the representation, as well
as for the estimation, since these aspects represent the two sides of the same
problem.

4. Conclusions and Future Work

At this point we fully understand the interplay between the choices available for
representing functions (e.g. the geopotential) and for constructing estimation al-
gorithms. We are currently involved in constructing optimal representations for
the geopotential, as well as implementing our approach to estimation using actual
data, after which we will compare the resulting multiresolution models with current
spherical harmonic models. The results will be reported elsewhere.
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Appendix A. Illustration of the Multiresolution Decomposition

In Figure 1 we illustrate the multiresolution decomposition of the geopotential (see
§2.1.4) within the B-spline model. The underlying spherical harmonic model is
EGM96 (360 × 360 order and degree model). The plot in the upper left corner is a
high resolution display of a selected region of Earth’s geopotential. This particular
region was chosen because of the wide bandwidth of its features. Going from left
to right and top to bottom, the sequence shows the successive coarsening using the
multiresolution decomposition.

Appendix B. An Analogue of Gibbs’ Phenomenon Due to Abrupt Truncation
of the Spherical Harmonic Expansion

Let us present a comparison that illuminates diffculties inherent in current spherical
harmonic models. We consider the difference between two models, WGS84-41 and
WGS84-70 [7]. As the coefficients of WGS84-41 are identical with the coefficients
of WGS84-70 up through order 41, we can view WGS84-41 as a truncated spher-
ical harmonic expansion of the full WGS84-70 model. In the same way, WGS84-70
can be viewed as a truncation of even higher order models.

To illustrate our comparison, we plot the function V for both models WGS84-
70 and WGS84-41 on the surface of the Earth aroud its equator, taking r = R, θ =
π/2, and 0 � φ � 2π in (1). This particular choice provides a good representative
of the typical behavior.

Figure 2 shows the SGS84-70 model together with the WGS84-41 model and
the difference between them. The relative difference is plotted in Figure 3.

The question that one might ask is what part of this difference is due to the ana-
logue of Gibbs’ phenomenon. (Gibbs’ phenomenon is an oscillatory error which
occurs if a Fourier series with slowly decaying coefficients is truncated abruptly.
Here we refer to the abrupt truncation of the spherical harmonic expansion.) The
difference between the two graphs is most likely due to the abrupt truncation.
Spherical harmonics, being global, oscillatory functions, depend on cancellation
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Figure 1. Multiresolution decomposition of a selected region using the B-spline representation of the
spherical harmonic geopotential model EGM96.
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Figure 2. Geopotentials on the equator computed using the WGS84-70 model and the WGS84-41
model displayed together with the difference between them. In this and the following figures we plot
only the ‘correction’ terms of V , that is, only those for n� 3.

Figure 3. Relative difference between WGS84-70 and WGS84-41. We attribute the peaks, which
are above 5% locally, to the Gibbs type phenomenon near the locations of the rapid change of the
geopotential.
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Figure 4. Relative difference between WGS84-70 and LWGS84-70R. Note that the difference is at
most about 0.3%.

(destructive interference) to achieve the approximation. If high frequencies are re-
moved by truncation then Gibbs’ phenomenon occurs (in full analogy with Fourier
series).

Now let us consider the B-spline approximation of the surface potential V (r =
R in (1)), obtained by interpolating V on an equispaced, two-dimensional grid. The
size of the grid is roughly 4N ×4N , where N is the order and degree of the model,
which is sufficient for a highly accurate representation of the potential function V

(or its derivatives). For example, we use a 160 × 160 grid to represent the WGS84-
41 model with accuracy ≈ 10−11 and represent the WGS84-70 model with the same
accuracy on a 280 × 280 grid. Let us refer to the former B-spline representation as
LWGS84-41 (local WGS84-41) and to the latter as LWGS84-70 (local WGS84-
70). Model LWGS84-70 is, for practical purposes, indistinguishable from model
WGS84-70, and LWGS84-41 is likewise indistinguishable from WGS84-41.

Performing one step of multiresolution decomposition (see §2.1.4) on the
representation LWGS84-70, we obtain the reduced model, which we refer to as
LWGS84-70R. This reduced model is supported on a 140 × 140 grid and thus
is somewhat smaller in size than the LWGS84-41 model. The relative difference
between LWGS84-70R and WGS84-70 is shown in Figure 4.

Note that the relative difference in Figure 4 is roughly 20 times smaller than that
in Figure 3. This indicates a low information content of roughly half of the spher-
ical harmonic coefficients in WGS84-70 model, corresponding to the high spatial
frequencies. The B-spline model LWGS84-70R preserves the essential features of
WGS84-70 much more faithfully than does WGS84-41, and yet it is practically
devoid of high frequency content, and is essentially equivalent to WGS84-41 in
its resolution. The difference is that LWGS84-70R was not obtained by an abrupt
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truncation, but rather by a smoothing process which, unlike truncation, avoids the
introduction of strong oscillatory artifacts (Gibbs’ phenomenon).

In summary, we have seen that there exist significant differences between
WGS84-41 and WGS84-70 and that these differences are indicative of errors in-
troduced by abrupt truncation. It then seems likely that WGS84-70 would contain
the same kinds of errors if it were obtained as a truncation of a higher-order model.
The higher order and degree models, such as EGM96, do not avoid this problem,
since the abrupt trunction is still present. Using a smoothing process based on
multiresolution analysis (e.g. B-splines) for generation of lower resolution models,
rather than a truncation process, yields significantly better results.
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