
An Adaptive Pseudo-Wavelet Approach for Solving

Nonlinear Partial Differential Equations

Gregory Beylkin and James M. Keiser

Wavelet Analysis and Applications, v.6, 1997, Academic Press.

Contents

1 Introduction 2

1.1 The Model Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Semigroup Approach and Quadratures 8

3 Preliminaries and Conventions of Wavelet Analysis 10

3.1 Multiresolution Analysis and Wavelet Bases . . . . . . . . . . . . . . 10
3.2 Representation of Functions in Wavelet Bases . . . . . . . . . . . . . 13
3.3 Representation of Operators in Wavelet Bases . . . . . . . . . . . . . 15
3.4 The Non-Standard Form of Differential Operators . . . . . . . . . . 23

4 Non-Standard Form Representation of Operator Functions 26

4.1 The Non-Standard Form of Operator Functions . . . . . . . . . . . . 26
4.2 Vanishing Moments of the B-Blocks . . . . . . . . . . . . . . . . . . 29
4.3 Adaptive Calculations with the Non-Standard Form . . . . . . . . . 31

5 Evaluating Functions in Wavelet Bases 35

5.1 Adaptive Calculation of u2 . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Remarks on the Adaptive Calculation of General f(u) . . . . . . . . 42

6 Results of Numerical Experiments 43

6.1 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Generalized Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusions 63

1



An Adaptive Pseudo-Wavelet Approach for
Solving Nonlinear Partial Differential Equations

Gregory Beylkin James M. Keiser
Department of Applied Mathematics

University of Colorado
Boulder, CO 80309-0526

Abstract

We numerically solve nonlinear partial differential equations of the
form ut = Lu+Nf(u) where L and N are linear differential operators
and f(u) is a nonlinear function. Equations of this form arise in the
mathematical description of a number of phenomena including, for ex-
ample, signal processing schemes based on solving partial differential
equations or integral equations, fluid dynamical problems, and general
combustion problems. A generic feature of the solutions of these prob-
lems is that they can possess smooth, non-oscillatory and/or shock-like
behavior. In our approach we project the solution u(x, t) and the op-
erators L and N into a wavelet basis. The vanishing moments of the
basis functions permit a sparse representation of both the solution and
operators, which has led us to develop fast, adaptive algorithms for
applying operators to functions, e.g. Lu, and computing functions,
e.g. f(u) = u2, in the wavelet basis.

These algorithms use the fact that wavelet expansions may be
viewed as a localized Fourier analysis with multiresolution structure
that is automatically adaptive to both smooth and shock-like behavior
of the solution. In smooth regions few wavelet coefficients are needed
and in singular regions large variations in the solution require more
wavelet coefficients. Our new approach allows us to combine many of
the desirable features of finite-difference, (pseudo) spectral and front-
tracking or adaptive grid methods into a collection of efficient, generic
algorithms. It is for this reason that we term our algorithms as adap-

tive pseudo-wavelet algorithms. We have applied our approach to a
number of example problems and present numerical results.

1 Introduction

This Chapter describes a wavelet-based methodology for solving a class
of nonlinear partial differential equations (PDE’s) that have smooth, non-

1This research was partially supported by ONR grant N00014-91-J4037 and ARPA

grant F49620-93-1-0474.
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oscillatory solutions and can exhibit shock-like behavior. Generally speak-
ing, the approach takes advantage of the efficient representation of functions
and operators in wavelet bases, and updates the solution by implementing
two recently developed adaptive algorithms that operate on these represen-
tations. Specifically, the algorithms involve the adaptive application of oper-
ators to functions (‘special’ matrix-vector multiplication) and the adaptive
evaluation of nonlinear functions of the solution of the PDE, in particular,
the pointwise product. These algorithms use the fact that wavelet expan-
sions may be viewed as a localized Fourier analysis with multiresolution
structure that automatically or adaptively distinguishes between smooth
and shock-like behavior. The algorithms are adaptive since they update the
solution using its representation in a wavelet basis, which concentrates signif-
icant coefficients near singular behaviour. Additionally, and as we will show,
the algorithm for evaluating nonlinear functions is analogous to the approach
used to update the solution of a PDE via pseudo-spectral type algorithms.
These two features of the algorithms allow us to combine the desirable fea-
tures of finite-difference approaches, spectral methods and front-tracking or
adaptive grid approaches into a collection of efficient, generic algorithms.
We refer to the overall methodology for updating the solution of a nonlinear
PDE via these algorithms as an adaptive pseudo-wavelet method.

1.1 The Model Equation

In this Chapter we are concerned with computing numerical solutions of

ut = Lu+Nf(u), (1.1)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (1.2)

and the periodic boundary condition

u(0, t) = u(1, t), 0 ≤ t ≤ T. (1.3)

We explicitly separate the evolution Equation (1.1) into a linear part, Lu,
and a nonlinear part, Nf(u), where the operators L and N are differential
operators that do not depend on time t. The function f(u) is typically
nonlinear, e.g. f(u) = up.
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Examples of Equation (1.1) in 1+1 dimensions include reaction-diffusion
equations, e.g.

ut = νuxx + up, p > 1, ν > 0, (1.4)

equations describing the buildup and propagation of shocks, e.g. Burgers’
Equation

ut + uux = νuxx, ν > 0, (1.5)

[15], and equations having special soliton solutions, e.g. the Korteweg-de
Vries equation

ut + αuux + βuxxx = 0, (1.6)

where α and β are constant, [1, 24]. Finally, a simple example of Equa-
tion (1.1) is the classical diffusion (or heat) equation

ut = νuxx, ν > 0. (1.7)

Although we do not address multi-dimensional problems in this Chapter,
we note that the Navier-Stokes equations may also be written in the form
(1.1). Consider

ut + 1
2 [u · ∇u +∇(u · u)] = ν∇2u−∇p, (1.8)

where
div u = 0, (1.9)

and p denotes the pressure. Applying divergence operator to both sides of
(1.8) and using (1.9), we obtain

∆p = f(u), (1.10)

where f(u) = − 1
2∇ [u · ∇u +∇(u · u)] is a nonlinear function of u. Equa-

tion (1.1) is formally obtained by setting

Lu = ν∇2u, (1.11)

and
Nu = −1

2 [u · ∇u +∇(u · u)]−∇
(
∆−1f(u)

)
. (1.12)

The term ∆−1f(u) is an integral operator which introduces a long-range
interaction and has a sparse representation in wavelet bases.

A one-dimensional model that may be thought of as a prototype for the
Navier-Stokes equation is

ut = H(u)u, (1.13)
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where H(·) is the Hilbert transform (see [18]). The presence of the Hilbert
transform in (1.13) introduces a long-range interaction which models that
found in the Navier-Stokes equations. Even though in this paper we de-
velop algorithms for one-dimensional problems, we take special care that
they generalize properly to several dimensions so that we can address these
problems in the future.

Several numerical techniques have been developed to compute numerical
approximations to the solutions of equations such as (1.1). These techniques
include finite-difference, pseudo-spectral and adaptive grid methods (see e.g.
[19, 24]). An important step in solving Equation (1.1) by any of these meth-
ods is the choice of time discretization. Standard explicit schemes (which
are easiest to implement) may require prohibitively small time steps usually
because of diffusion terms in the evolution equation. On the other hand,
implicit schemes allow for larger time steps but require solving a system of
equations at each time step and, for this reason, are somewhat more difficult
to implement in an efficient manner. In our approach [11] we have used new
time discretization schemes for solving nonlinear evolution equations of the
form (1.1), where L represents the linear and N (f(u)) the nonlinear terms
of the equation, respectively. A distinctive feature of these new schemes is
the exact evaluation of the contribution of the linear part. Namely, if the
non-linear part is zero, then the scheme reduces to the evaluation of the
exponential function of the operator (or matrix) L representing the linear
part. We show in [12] that such schemes have very good stability properties
and, in fact, describe explicit schemes with stability regions similar to those
of typical implicit schemes used in e.g. fluid dynamics applications. In this
paper we simply use one such scheme.

The main difficulty in computing solutions of equations like (1.1) is the
resolution of shock-like structures. Straightforward refinement of a finite-
difference scheme easily becomes computationally excessive. Specialized
front-tracking or adaptive grid methods require some criteria to perform
local grid refinement. Usually in such schemes these criteria are chosen in
an ad hoc fashion (especially in multiple dimensions) and are generally based
on the amplitudes or local gradients in the solution.

Pseudo-spectral methods, as described in e.g. [24], usually split the evo-
lution equation into linear and nonlinear parts and updates the solution
by adding the linear contribution, calculated in the Fourier space, and the
nonlinear contribution, calculated in the physical space. Pseudo-spectral
schemes have the advantages that they are spectrally accurate, relatively

5



straightforward to implement and easy to understand analytically. However,
pseudo-spectral schemes have a disadvantage in that the linear and nonlin-
ear contributions must be added in the same domain, either the physical
space or the Fourier space. For equations which exhibit shock-like solutions
such transformations between the domains are costly. The Fourier trans-
form of such solutions possesses frequency contributions across the entire
spectrum as the shock becomes more pronounced. The wavelet approach,
described next, is comparable to spectral methods in their accuracy, whereas
the automatic placement of significant wavelet coefficients in regions of large
gradients parallels general adaptive grid approaches.

Let the wavelet transform of the solution of (1.1) consist of Ns signifi-
cant coefficients concentrated near any shock-like structures which may be
present in the solution. We describe two adaptive algorithms that update
the solution using O(Ns) operations, using only the significant wavelet coeffi-
cients. In other words, the resulting algorithmic complexity of our approach
is proportional to the number of significant coefficients in the wavelet ex-
pansions of functions and operators. The algorithms we describe have the
desirable features of specialized adaptive grid or front-tracking algorithms
and pseudo-spectral methods. We also recall that in the wavelet system of
coordinates differential operators may be preconditioned by a diagonal ma-
trix, see e.g. [7, 28, 20]. For a related approach used in finite elements, see
e.g. [14]. In addition, a large class of operators, namely Calderón-Zygmund
and pseudo-differential operators, are sparse in wavelet bases. Therefore,
efficient numerical algorithms can be designed using the wavelet representa-
tion of these operators. These observations make a good case for developing
new numerical algorithms for computing in wavelet bases.

The theoretical analysis of the functions and operators appearing in (1.1)
by wavelet methods is well-understood, [21, 16, 30, 36]. Additionally, there
have been a number of investigations into the use of wavelet expansions for
numerically computing solutions of differential equations, see e.g. [34, 29,
25]. In our approach we emphasize the adaptive aspects of computing the
solution.

Any wavelet-expansion approach to solving differential equations is es-
sentially a projection method. In a projection method the goal is to use
the fewest number of expansion coefficients to represent the solution since
this leads to efficient numerical computations. We note that the number
of coefficients required to represent a function expanded in a Fourier series
(or similar expansions based on the eigenfunctions of a differential opera-
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tor) depends on the most singular behavior of the function. Since we are
interested in solutions of partial differential equations that have regions of
smooth, non-oscillatory behavior interrupted by a number of well-defined
localized shocks or shock-like structures, using a basis of the eigenfunctions
of differential operators would require a large number of terms due to the
singular regions. Alternately, a localized representation of the solution, typ-
ified by front-tracking or adaptive grid methods, may be employed in order
to distinguish between smooth and shock-like behavior. In our approach the
number of operations is proportional to the number of significant coefficients
in the wavelet expansions of functions and operators and, thus, is similar to
that of adaptive grid methods.

The basic mechanism of refinement in wavelet-based algorithms is very
simple. Due to the vanishing moments of wavelets, see e.g. [22], we know
that (for a given accuracy) the wavelet transform of a function ‘automat-
ically’ places significant coefficients in a neighborhood of large gradients
present in the function. We simply remove coefficients below a given accu-
racy threshold. This combination of basis expansion and adaptive thresh-
olding is the foundation for our adaptive pseudo-wavelet approach.

In order to take advantage of this ‘adaptive transform’ and compute so-
lutions of (1.1) in wavelet bases using O(Ns) operations, we have developed
two algorithms: the adaptive application of operators to functions, and the
adaptive pointwise product of functions. These algorithms are necessary in-
gredients of any fast, adaptive numerical scheme for computing solutions of
partial differential equations. The algorithm for adaptively multiplying op-
erators and functions is based on a ‘vanishing-moment property’ associated
with the B-blocks of the so-called Non-Standard Form representation of a
class of operators (which includes differential operators and Hilbert trans-
forms). The algorithm for adaptively computing f(u), e.g. the pointwise
product, is analogous to the method for evaluating nonlinear contributions
in pseudo-spectral schemes. The spectral expansion of u is projected onto
a ‘physical’ subspace, the function f(u) is evaluated, and the result is pro-
jected into the spectral domain. In our algorithm, contributions to f(u) are
adaptively computed in ‘pieces’ on individual subspaces.

Each of our adaptive algorithms uses O(Ns) operations, where Ns is
the number of significant coefficients of the wavelet representation of the
solution of (1.1). The adaptivity of our algorithms and the analogy with
pseudo-spectral methods, prompts us to refer to our overall approach as an
adaptive pseudo-wavelet method.
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The outline of this Chapter is as follows. In Section 2 we use the semi-
group approach to replace the nonlinear differential equation (1.1) by an
integral equation and describe a procedure for approximating the integral
to any order of accuracy. We provide a brief review of wavelet “tools” rele-
vant to our discussion in Section 3. In Section 4 we are concerned with the
construction of and calculations with the operators appearing in the quadra-
ture formulas derived in Section 2. Specifically, we describe a method for
constructing the wavelet representation, derive the vanishing-moment prop-
erty, and describe a fast, adaptive algorithm for applying these operators
to functions expanded in a wavelet basis. In Section 5 we introduce a new
adaptive algorithm for computing the pointwise product of functions ex-
panded in a wavelet basis, and discuss the calculation of general nonlinear
functions. In Sections 4 and 5 we give simple numerical examples illustrat-
ing the algorithms. In Section 6 we illustrate the use of these algorithms
by providing the results of a number of numerical experiments. Finally, in
Section 7 we draw a number of conclusions based on our results and indicate
directions of further investigation.

2 The Semigroup Approach and Quadratures

We use the semigroup approach to write the partial differential equation
(1.1) as a nonlinear integral equation in time. We then approximate the
integrals to arbitrary orders of accuracy by quadratures with operator-valued
coefficients. These operators have wavelet representations with a number of
desirable properties described in Sections 4.1 and 4.2.

The semigroup approach is a well-known analytical tool that is used to
express partial differential equations in terms of nonlinear integral equations
and to obtain estimates associated with the behavior of their solutions (see
e.g. [37]). The solution of the initial value problem (1.1) is given by

u(x, t) = e(t−t0)Lu0(x) +

∫ t

t0
e(t−τ)LNf(u(x, τ))dτ, (2.14)

where the differential operator N is assumed to be independent of t and the
function f(u) is nonlinear. For example, in the case of Burgers’ equation
the operator N = ∂

∂x and f(u) = 1
2u

2, so that Nf(u) = uux appears as
products of u and its derivative. Equation (2.14) is useful for proving the
existence and uniqueness of solutions of (1.1) and computing estimates of
their magnitude, verifying dependence on initial and boundary data, as well
as performing asymptotic analysis of the solution, see e.g. [37].
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In this Chapter we use Equation (2.14) as a starting point for an efficient
numerical algorithm for solving (1.1). A significant difficulty in designing
numerical algorithms based directly on (2.14) is that the matrices repre-
senting these operators are dense in the ordinary representation. As far as
we know, it is for this reason that the semigroup approach has had limited
use in numerical calculations. We show in Sections 4.1 and 4.2 that in the
wavelet system of coordinates these operators are sparse (for a fixed but
arbitrary accuracy) and have properties that allow us to develop fast, adap-
tive numerical algorithms. Discrete evolution schemes for (2.14) were used
in [11], and further investigated in [12].

The starting point for our discrete evolution scheme is (2.14) where we
consider the function u(x, t) at the discrete moments of time tn = t0 +
n∆t, where ∆t is the time step. Let us denote un ≡ u(x, tn) and Nn ≡
N (f(u(x, tn))). Discretizing (2.14) yields

un+1 = eql∆tun+1−l + ∆t

(
γNn+1 +

M−1∑

m=0

βmNn−m

)
, (2.15)

where M + 1 is the number of time levels involved in the discretization,
and l ≤ M . The expression in parenthesis in (2.15) may be viewed as the
quadrature approximation of the integral in (2.14). To simplify notation,
we suppress the dependence of the coefficients γ and βm on l.

The discrete scheme in (2.15) is explicit if γ = 0, otherwise it is implicit.
For a given M , the order of accuracy is M for an explicit scheme and M +1
for an implicit scheme due to one more degree of freedom, γ. This family of
schemes is investigated in [12] and is referred to as exact linear part (ELP)
schemes.

Applying this procedure to Burgers’ Equation (1.5), we approximate

I(t) =

∫ t

t0
e(t−τ)Lu(τ)ux(τ)dτ, (2.16)

and list the results for m = 1 and m = 2. For m = 1, Equation (2.16) can
be approximated by

I(t) = 1
2OL,1 (u(t0)ux(t0) + u(t1)ux(t1)) +O((∆t)2), (2.17)

or
I(t) = 1

2OL,1 (u(t0)ux(t1) + u(t1)ux(t0)) +O((∆t)2), (2.18)

where
OL,m = (em∆tL − I)L−1, (2.19)
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I is the identity operator and where u(ti) = ui and v(ti) = vi. Note that
(2.17) is equivalent to the standard trapezoidal rule. For m = 2 our proce-
dure yields an analogue of Simpson’s rule

I(t) =
2∑

i=0

ci,iu(ti)ux(ti) +O((∆t)3), (2.20)

where

c0,0 = 1
6OL,2 − 1

3L, (2.21)

c1,1 = 2
3OL,2, (2.22)

c2,2 = 1
6OL,2 + 1

3L, (2.23)

For the derivation of higher order schemes (m > 2) and the stability analysis
of these schemes we refer to [12], since our goals in this Chapter are limited to
explaining how to make effective use of such schemes in adaptive algorithms.

3 Preliminaries and Conventions of Wavelet Anal-

ysis

In this Section we review the relevant material associated with wavelet basis
expansions of functions and operators. In Section 3.1 we set a system of
notation associated with multiresolution analysis. In Section 3.2 we describe
the representation of functions expanded in wavelet bases, and in Section
3.3 we describe the representation of operators in the standard and non-
standard forms. In Section 3.4 we discuss the construction of the non-
standard form of differential operators, following [5]. Much of this material
has previously appeared in a number of publications, and we refer the reader
to e.g. [22, 16, 36] for more details.

3.1 Multiresolution Analysis and Wavelet Bases

We consider a multiresolution analysis (MRA) of L2(IR) as

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . ., (3.24)

see e.g. [21, 22], such that

1.
⋂

j∈ZZ Vj = {0} and
⋃

j∈ZZ Vj is dense in L2(R),
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2. For any f ∈ L2(R) and any j ∈ ZZ , f(x) ∈ Vj if and only if f(2x) ∈
Vj−1,

3. For any f ∈ L2(R) and any k ∈ ZZ , f(x) ∈ V0 if and only if f(x−k) ∈
V0, and

4. There exists a scaling function ϕ ∈ V0 such that {ϕ(x − k)}k∈ZZ is a
Riesz basis of V0.

In our work, we only use orthonormal bases and will require the basis of
Condition 4 to be an orthonormal rather than just a Riesz basis,

4′. There exists a scaling function ϕ ∈ V0 such that {ϕ(x − k)}k∈ZZ is an
orthonormal basis of V0.

As usual, we define an associated sequence of subspaces Wj as the or-
thogonal complements of Vj in Vj−1,

Vj−1 = Vj

⊕
Wj . (3.25)

Repeatedly using (3.25) shows that subspace Vj can be written as the direct
sum

Vj =
⊕

j′>j

Wj′ . (3.26)

We denote by ϕ(·) the scaling function and ψ(·) the wavelet. The family of
functions {ϕj,k(x) = 2−j/2ϕ(2−jx − k)}k∈ ZZ forms an orthonormal basis of
Vj and the family {ψj,k(x) = 2−j/2ψ(2−jx− k)}k∈ ZZ , forms an orthonormal
basis of Wj .

An immediate consequence of Conditions 1, 2, 3, and 4′ is that the
function ϕ may be expressed as a linear combination of the basis functions
of V−1,

ϕ(x) =
√

2

Lf−1∑

k=0

hkϕ(2x− k). (3.27)

Similarly, we have

ψ(x) =
√

2

Lf−1∑

k=0

gkϕ(2x− k). (3.28)

The coefficients H = {hk}Lf

k=1 and G = {gk}Lf

k=1 are the quadrature mirror
filters (QMF’s) of length Lf . In general, the sums (3.27) and (3.28) do
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not have to be finite and, by choosing Lf <∞, we are selecting compactly
supported wavelets, see, e.g. [22].

The function ψ(·) has M vanishing moments, i.e.,

∫ ∞

−∞
ψ(x)xmdx = 0, 0 ≤ m ≤M − 1. (3.29)

The vanishing moments property simply means that the basis functions
ψj,k(x) are chosen to be orthogonal to low degree polynomials. We note
that additional conditions may be imposed on the basis functions ϕ and
ψ. In the development of the algorithm for adaptively computing nonlinear
functions, described in Section 5, we will use a scaling function that has M
shifted vanishing moments, (see [8, 22]),

∫ ∞

−∞
ϕ(x)(x− α)mdx = 0, 1 ≤ m ≤M, (3.30)

where

α =

∫ ∞

−∞
ϕ(x)dx. (3.31)

Such basis functions have been called ‘coiflets’, and are described in [8, 22].
The quadrature mirror filters H and G, which are defined by the wavelet

basis, are related by

gk = (−1)khLf−k−1, k = 0, . . . , Lf − 1. (3.32)

The number Lf of the filter coefficients is related to the number of vanishing
moments M , and Lf = 2M for the wavelets constructed in [21]. If additional
conditions are imposed (see [8] for an example where Lf = 3M), then the
relation might be different, but Lf is always even. In fact, if one does
not insist that α be an integer in (3.31) then the filter length may satisfy
Lf = 3M − 2, [10].

The filter G = {gl}l=Lf−1
l=0 has M vanishing moments, i.e.,

Lf−1∑

l=0

lmgl = 0, m = 0, 1, 2, . . . ,M − 1. (3.33)

We observe that once the filter H has been chosen, it completely determines
the functions ϕ and ψ and therefore, the multiresolution analysis. Moreover,
in properly constructed algorithms, the values of the functions ϕ and ψ
are usually never computed. Due to the recursive definition of the wavelet
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bases, via the two-scale difference equations (3.27) and (3.28), all of the
manipulations are performed with the quadrature mirror filters H and G,
even if these computations involve quantities associated with ϕ and ψ.

We will not go into the full discussion of the necessary and sufficient
conditions for the quadrature mirror filters H and G to generate a wavelet
basis and refer to [22] for the details. The coefficients, hk and gk, of the
quadrature mirror filtersH andG, are computed by solving a set of algebraic
equations (see e.g. [22]).

The first and simplest example of a multiresolution analysis satisfying
conditions 1, 2, 3, and 4′ is the chain of subspaces generated by the Haar
basis [26]. The scaling function in this case is the characteristic function of
the interval (0, 1). The Haar function is defined as

h(x) =





1, for 0 < x < 1/2;
−1, for 1/2 ≤ x < 1;

0, elsewhere,
(3.34)

and the family of functions hj,k(x) = 2−j/2h(2−jx− k), j, k ∈ ZZ , forms the
Haar basis. For the Haar function M = 1, (3.29) is easily verified, and the
Haar function is indeed trivially orthogonal to constants.

For numerical purposes we define a ‘finest’ scale, j = 0, and a ‘coarsest’
scale, j = J , such that the infinite chain (3.24) is restricted to

VJ ⊂ VJ−1 ⊂ . . . ⊂ V0, (3.35)

where the subspace V0 is finite dimensional. In numerical experiments spec-
ifying the QMF’s H and G defines the properties of the wavelet basis. We
will also consider a periodized version of the multiresolution analysis that is
obtained if we consider periodic functions. Such functions then have projec-
tions on V0 which are periodic of period N = 2n, where N is the dimension
of V0. With a slight abuse of notation we will denote these periodized sub-
spaces also by Vj and Wj . We can then view the space V0 as consisting
of 2n ‘samples’ or lattice points and each space Vj and Wj as consisting of
2n−j lattice points, for j = 1, 2, . . . , J ≤ n.

3.2 Representation of Functions in Wavelet Bases

The projection of a function f(x) onto subspace Vj is given by

(Pjf)(x) =
∑

k∈ ZZ

sj
kϕj,k(x), (3.36)
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where Pj denotes the projection operator onto subspace Vj. The set of

coefficients {sj
k}k∈ ZZ , which we refer to as ‘averages’, is computed via the

inner product

sj
k =

∫ +∞

−∞
f(x)ϕj,k(x)dx. (3.37)

Alternatively, it follows from (3.26) and (3.36) that we can also write (Pjf)(x)
as a sum of projections of f(x) onto subspaces Wj′ , j

′ > j

(Pjf)(x) =
∑

j′>j

∑

k∈ ZZ

dj′

k ψj′,k(x), (3.38)

where the set of coefficients {dj
k}k∈ ZZ , which we refer to as ‘differences’, is

computed via the inner product

dj
k =

∫ +∞

−∞
f(x)ψj,k(x)dx. (3.39)

The projection of a function on subspace Wj is denoted (Qjf)(x), where
Qj = Pj−1 − Pj . Since we are considering a ‘periodized’ MRA, on each
subspace Vj and Wj the coefficients of the projections satisfy

sj
k = sj

k+2n−j ,

dj
k = dj

k+2n−j ,
(3.40)

for each j = 1, 2, . . . , J and k ∈ IF2n−j = ZZ /2n−j ZZ , i.e. IF2n−j is the finite
field of 2n−j integers, e.g. the set {0, 1, . . . , 2n−j − 1}.

In our numerical algorithms, the expansion into the wavelet basis of
(P0f)(x) is given by a sum of successive projections on subspaces Wj, j =
1, 2, . . . , J , and a final ‘coarse’ scale projection on VJ ,

(P0f)(x) =
J∑

j=1

∑

k∈IF
2n−j

dj
kψj,k(x) +

∑

k∈IF
2n−J

sJ
kϕJ,k(x). (3.41)

Given the set of coefficients {s0
k}k∈IF2n , i.e. the coefficients of the projection

of f(x) on V0, we use (3.27) and (3.28) to replace (3.37) and (3.39) by the
following recursive definitions for sj

k and dj
k,

sj
k =

Lf−1∑

l=1

hls
j−1
l+2k+1, (3.42)

dj
k =

Lf−1∑

l=1

gls
j−1
l+2k+1, (3.43)
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where j = 1, 2, . . . , J and k ∈ IF2n−j .
Given the coefficients s0 = P0f ∈ V0 consisting of N = 2n ‘samples’

the decomposition of f into the wavelet basis is an order N procedure,
i.e. computing the coefficients dj

k and sj
k recursively using (3.42) and (3.43)

is an order N algorithm. Computing the J -scale decomposition of f via
(3.42) and (3.43) by the pyramid scheme is illustrated in Figure 1. Figure 2

{s0k} −→ {s1k} −→ {s2k} −→ {s3k} · · · −→ {sJ
k}

↘ ↘ ↘ ↘
{d1

k} {d2
k} {d3

k} · · · {dJ
k}

Figure 1: Projection of the coefficients {s0
k} into the multiresolution analysis

via the pyramid scheme.

illustrates a typical wavelet representation of a function withN = 2n, n = 13
and J = 7. We have generated this Figure using ‘coiflets’, see e.g. [21],
with M = 6 vanishing moments and an accuracy (cutoff) of ε = 10−6,
and note that a similar result is obtained for other choices of a wavelet
basis. The top Figure is a graph of the projection of the function f on
subspace V0, which we note is a space of dimension 213. Each of the next
J = 7 graphs represents the projection of f on subspaces Wj, for j =
1, 2, . . . 7. Each Wj is a space of dimension 213−j , i.e. each consists of
213−j coefficients. Even though the width of the graphs is the same, we
note that the number of degrees of freedom in Wj is twice the number of

degrees of freedom in Wj+1. Since these graphs show coefficients dj
k which

are above the threshold of accuracy, ε, we note that the spaces W1, W2,
W3, and W4 consist of no significant wavelet coefficients. This illustrates
the ‘compression’ property of the wavelet transform: regions where the
function (or its projection (P0f) = f0) has large gradients are transformed
to significant wavelet coefficients. The final (bottom) graph represents the
significant coefficients of the projection of f on VJ . This set of coefficients,
{sJ

k}k∈IF26
, is typically dense and in this example there are 61 significant

coefficients, for the threshold of accuracy 10−6.

3.3 Representation of Operators in Wavelet Bases

In order to represent an operator T : L2(IR) → L2(IR) in the wavelet sys-
tem of coordinates, we consider two natural ways to define two-dimensional

15



Figure 2: Graphical representation of a ‘sampled’ function on V0 and its
projections onto Wj for j = 1, 2, . . . 7 and V7. Entries above the threshold
of accuracy, ε = 10−6, are shown. We refer to the text for a full description
of this Figure.
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wavelet bases. First, we consider a two-dimensional wavelet basis which is
arrived at by computing the tensor product of two one-dimensional wavelet
basis functions, e.g.

ψj,j′,k,k′(x, y) = ψj,k(x)ψj′,k′(y), (3.44)

where j, j ′, k, k′ ∈ ZZ . This choice of basis leads to the standard form (S-
form) of an operator, [5, 8]. The projection of the operator T into the
multiresolution analysis is represented in the S-form by the set of operators

T = {Aj , {Bj′

j }j′≥j+1, {Γj′

j }j′≥j+1}j∈ ZZ , (3.45)

where the operators Aj , B
j′

j , and Γj′

j are projections of the operator T into
the multiresolution analysis as follows

Aj = QjTQj : Wj →Wj ,

Bj′

j = QjTQj′ : Wj′ →Wj,

Γj′

j = Qj′TQj : Wj →Wj′ ,

(3.46)

for j = 1, 2, . . . , n and j ′ = j + 1, . . . , n.
If n is the finite number of scales, as in (3.35), then (3.45) is restricted

to the set of operators

T0 = {Aj , {Bj′

j }j
′=n

j′=j+1, {Γ
j′

j }j
′=n

j′=j+1, B
n+1
j ,Γn+1

j , Tn}j=1,...,n, (3.47)

where T0 is the projection of T on V0. Here the operator Tn is the coarse
scale projection of the operator T on Vn,

Tn = PnTPn : Vn → Vn. (3.48)

The subspaces Vj and Wj appearing in (3.46) and (3.48) can be periodized
in the same fashion as described in Section 3.2.

The operators Aj , B
j′

j , Γj′

j , and Tn appearing in (3.45) and (3.47) are

represented by matrices αj , βj,j′ , γj,j′ and sn with entries defined by

αj
k,k′ =

∫ ∫
ψj,k(x)K(x, y)ψj,k′(y)dxdy,

βj,j′

k,k′ =
∫ ∫

ψj,k(x)K(x, y)ψj′,k′(y)dxdy,

γj,j′

k,k′ =
∫ ∫

ψj,k(x)K(x, y)ψj′,k′(y)dxdy,

sn
k,k′ =

∫ ∫
ϕn,k(x)K(x, y)ϕn,k′(y)dxdy,

(3.49)
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where K(x, y) is the kernel of the operator T . The operators in (3.47) are
organized as blocks of a matrix as shown in Figure 3.3.

In [8] it is observed that if the operator T is a Calderón-Zygmund or
pseudo-differential operator then for a fixed accuracy all the operators in
(3.45) are banded. In the case of a finite number of scales the operator
Tn and possibly some other operators on coarse scales can be dense. As a
result the S-form has several ‘finger’ bands, illustrated in Figure 3.3. These
‘finger’ bands correspond to interactions between different scales. For a large
class of operators, e.g. pseudo-differential, the interaction between different
scales (characterized by the size of the coefficients in the bands) decays as
the distance |j − j ′| between the scales increases. Therefore, if the scales j

and j′ are well separated then for a given accuracy the operators B j′

j and Γj′

j

can be neglected. For compactly supported wavelets, the distance |j − j ′| is
quite significant; in a typical example for differential operators |j − j ′| = 6.
This is not necessarily the case for other families of wavelets. For example,
Meyer’s wavelets [30] are characterized by

ψ̂(ξ) =





(2π)−1/2eiξ/2 sin(π
2 ν(

2
3π |ξ| − 1)), 2π

3 ≤ |ξ| ≤ 4π
3 ;

(2π)−1/2eiξ/2 cos(π
2 ν(

2
3π |ξ| − 1)), 4π

3 ≤ |ξ| ≤ 8π
3 ;

0, otherwise,

(3.50)

where ν is a C∞ function satisfying

ν(x) =

{
0, x ≤ 0;
1, x ≥ 1,

(3.51)

and
ν(x) + ν(1− x) = 1. (3.52)

In this case the interaction between scales for differential operators is re-
stricted to nearest neighbors where |j− j ′| ≤ 1. On the other hand, Meyer’s
wavelets are not compactly supported in the time domain which means the
finger bands will be much wider than in the case of compactly supported
wavelets. The control of the interaction between scales is more efficient in
the non-standard representation of operators, which we will discuss later.

Another property of the S-form which has an impact on numerical ap-
plications is due to the fact that the wavelet decomposition is not shift

invariant. Even if the operator T is a convolution, the B j′

j and Γj′

j blocks of
the S-form are not convolutions. Thus, the S-form of a convolution operator
is not an efficient representation, especially in multiple dimensions.
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Figure 3: Organization of the standard form of a matrix.

An alternative to forming two-dimensional wavelet basis functions using
the tensor product (which led us to the S-form representation of operators) is
to consider basis functions which are combinations of the wavelet, ψ(·), and
the scaling function, ϕ(·). We note that such an approach to forming basis
elements in higher dimensions is specific to wavelet bases (tensor products
as considered above can be used with any basis, e.g. Fourier basis).

We will consider representations of operators in the non-standard form
(NS-form), following [8] and [5]. Recall that the wavelet representation of
an operator in the NS-form is arrived at using bases formed by combinations
of wavelet and scaling functions, for example, in L2(IR2)

ψj,k(x) ψj,k′(y),
ψj,k(x) ϕj,k′(y),
ϕj,k(x) ψj,k′(y),

(3.53)

where j, k, k′ ∈ ZZ . The NS-form of an operator T is obtained by expanding
T in the ‘telescopic’ series

T =
∑

j∈ ZZ

(QjTQj +QjTPj + PjTQj), (3.54)
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Figure 4: Schematic illustration of the finger structure of the standard form.

where Pj and Qj are projectors on subspaces Vj and Wj , respectively. We
observe that in (3.54) the scales are decoupled. The expansion of T into the
NS-form is, thus, represented by the set of operators

T = {Aj , Bj,Γj}j∈ ZZ , (3.55)

where the operators Aj , Bj , and Γj act on subspaces Vj and Wj,

Aj = QjTQj : Wj →Wj,
Bj = QjTPj : Vj →Wj,
Γj = PjTQj : Wj → Vj,

(3.56)

see e.g. [8].
If J ≤ n is the finite number of scales, as in (3.35), then (3.54) is trun-

cated to

T0 =
J∑

j=1

(QjTQj +QjTPj + PjTQj) + PJTPJ , (3.57)

and the set of operators (3.55) is restricted to

T0 = {{Aj , Bj ,Γj}j=J
j=1 , TJ}, (3.58)
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where T0 is the projection of the operator on V0 and TJ is a coarse scale
projection of the operator T

TJ = PJTPJ : VJ → VJ , (3.59)

using (in L2(IR2)) the basis functions

ϕJ,k(x) ϕJ,k′(y), (3.60)

for k, k′ ∈ ZZ .

The price of uncoupling the scale interactions in (3.54) is the need for
an additional projection into the wavelet basis of the product of the NS-
form and a vector. The term “non-standard form” comes from the fact that
the vector to which the NS-form is applied is not a representation of the
original vector in any basis. Referring to Figure 3.3, we see that the NS-
form is applied to both averages and differences of the wavelet expansion
of a function. In this case we can view the multiplication of the NS-form
and a vector as an embedding of matrix-vector multiplication into a space
of dimension

M = 2n−J(2J+1 − 1), (3.61)

where n is the number of scales in the wavelet expansion and J ≤ n is the
depth of the expansion. The result of multiplying the NS-form and a vector
must then be projected back into the original space of dimension N = 2n.
We note that N < M < 2N and, for J = n, we have M = 2N − 1.

It follows from (3.54) that after applying the NS-form to a vector we
arrive at the representation

(T0f0)(x) =
J∑

j=1

∑

k∈IF
2n−j

d̂j
kψj,k(x) +

J∑

j=1

∑

k∈IF
2n−j

ŝj
kϕj,k(x). (3.62)

The representation (3.62) consists of both averages and differences on all
scales which can either be projected into the wavelet basis or reconstructed
to space V0. In order to project (3.62) into the wavelet basis we form the
representation,

(T0f0)(x) =
J∑

j=1

∑

k∈IF
2n−j

dj
kψj,k(x) +

∑

k∈IF
2n−J

sJ
kϕJ,k(x), (3.63)
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Figure 5: Organization of the non-standard form of a matrix. Aj, Bj, and
Γj , j = 1, 2, 3, and T3 are the only non-zero blocks.

using the decomposition algorithm described by (3.42) and (3.43) as follows.
Given the coefficients {ŝj}Jj=1 and {d̂j}Jj=1, we decompose {ŝ1} into {s̃2}
and {d̃2} and form the sums {s2} = {ŝ2 + s̃2} and {d2} = {d̂2 + d̃2}.
Then on each scale j = 2, 3, . . . , J − 1, we decompose {sj} = {ŝj + s̃j}
into {s̃j+1} and {d̃j+1} and form the sums {sj+1} = {ŝj+1 + s̃j+1} and
{dj+1} = {d̂j+1 + d̃j+1}. The sets {sJ} and {dj}Jj=1 are the coefficients of
the wavelet expansion of (T0f0)(x), i.e. the coefficients appearing in (3.63).
This procedure is illustrated in Figure 7.

An alternative to projecting the representation (3.62) into the wavelet
basis is to reconstruct (3.62) to space V0, i.e. form the representation (3.36)

(P0f)(x) =
∑

k∈ ZZ

s0kϕ0,k(x), (3.64)

using the reconstruction algorithm described in Section 3 as follows. Given
the coefficients {ŝj}Jj=1 and {d̂j}Jj=1, we reconstruct {d̂J} and {ŝJ} into

{s̃J−1} and form the sum {sJ−1} = {ŝJ−1 + s̃J−1}. Then on each scale
j = J − 1, J − 2, . . . , 1 we reconstruct {ŝj} and {d̂j} into {s̃j−1} and form
the sum {sj−1} = {ŝj−1+ s̃j−1}. The final reconstruction (of {d1} and {s1})
forms the coefficients {s0} appearing in (3.64). This procedure is illustrated
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Figure 6: Illustration of the application of the non-standard form to a vector.

in Figure 8.

3.4 The Non-Standard Form of Differential Operators

Following [5], in this Section we recall the wavelet representation of differ-
ential operators ∂p

x in the NS-form. The rows of the NS-form of differential
operators may be viewed as finite-difference approximations on subspace V0

of order 2M−1, where M is the number of vanishing moments of the wavelet
ψ(x).

The NS-form of the operator ∂p
x consists of matrices Aj , Bj ,Γj, for j =

0, 1, . . . , J and a ‘coarse scale’ approximation T J . We denote the elements

{ŝ0} → {ŝ1 + s̃1} = {s1} → · · · → {ŝJ + s̃J} = {sJ}
↘ ↘ ↘
{d̂1 + d̃1} = {d1} · · · {d̂J + d̃J} = {dJ}

Figure 7: Projection of the product of the NS-form and a function into a
wavelet basis.
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{ŝ0} ← {s1} = {ŝ1 + s̃1} · · · ← {sJ−1} = {ŝJ−1 + s̃J−1} ← {sJ}
↖ ↖ ↖
{d1} = {d̂1 + d̃1} · · · {dJ−1} = {d̂J−1 + d̃J−1} {dJ}

Figure 8: Reconstruction of the product of the NS-form and a function to
space V0.

of these matrices by αj
i,l, β

j
i,l, and γj

i,l, for j = 0, 1, . . . , J , and sJ
i,l. Since

the operator ∂p
x is homogeneous of degree p, it is sufficient to compute the

coefficients on scale j = 0 and use

αj
l = 2−pjα0

l ,

βj
l = 2−pjβ0

l ,

γj
l = 2−pjγ0

l ,

sj
l = 2−pjs0l .

(3.65)

We note that if we were to use any other finite-difference representation as
coefficients on V0, the coefficients on Vj would not be related by scaling
and would require individual calculations for each j.

Using the two-scale difference equations (3.27) and (3.28), we are led to

αj
l = 2

∑Lf−1
k=0

∑Lf−1
k′=0 gkgk′sj−1

2i+k−k′,

βj
l = 2

∑Lf−1
k=0

∑Lf−1
k′=0 gkhk′sj−1

2i+k−k′,

γj
l = 2

∑Lf−1
k=0

∑Lf−1
k′=0 hkgk′sj−1

2i+k−k′.

(3.66)

Therefore, the representation of ∂p
x is completely determined by s0

l in (3.49)
or in other words, by the representation of ∂p

x projected on the subspace V0.
To compute the coefficients s0

l corresponding to the projection of ∂p
x on

V0, it is sufficient to solve the system of linear algebraic equations

s0l = 2p


s02l + 1

2

Lf /2∑

k=1

a2k−1(s
0
2l−2k+1 + s02l+2k−1)


 , (3.67)

for −Lf + 2 ≤ l ≤ Lf − 2 and

Lf−2∑

l=−Lf+2

lp s0l = (−1)pp! , (3.68)
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where a2k−1 are the autocorrelation coefficients of H defined by

an = 2

Lf−1−n∑

i=0

hi hi+n, n = 1, . . . , Lf − 1. (3.69)

We note that the autocorrelation coefficients an with even indices are zero,

a2k = 0, k = 1, . . . , Lf/2 − 1, (3.70)

and a0 =
√

2. The resulting coefficients s0
l corresponding to the projection

of the operator ∂p
x on V0 may be viewed as a finite-difference approximation

of order 2M − 1. Further details are found in [5].
We are interested in developing adaptive algorithms, i.e. algorithms such

that the number of operations performed is proportional to the number
of significant coefficients in the wavelet expansion of solutions of partial
differential equations. The S-form has ‘built-in’ adaptivity, i.e. applying
the S-form of an operator to the wavelet expansion of a function, (3.38), is a
matter of multiplying a sparse vector by a sparse matrix. On the other hand,
as we have mentioned before, the S-form is not a very efficient representation
(see, e.g., our discussion of convolution operators in Section 3.3).

In the following Sections we address the issue of adaptively multiplying
the NS-form and a vector. Since the NS-form of a convolution operator
remains a convolution, the Aj, Bj , and Γj blocks may be thought of as being
represented by short filters. For example, the NS-form of a differential op-
erator in any dimension requires O(C) coefficients as it would for any finite
difference scheme. We can exploit the efficient representation afforded us
by the NS-form and use the vanishing-moment property of the B j and Γj

blocks of the NS-form of differential operators and the Hilbert transform
to develop an adaptive algorithm. In Section 4.1 we describe two meth-
ods for constructing the NS-form representation of operator functions. In
Section 4.2 we establish the vanishing-moment property which we later use
to develop an adaptive algorithm for multiplying operators and functions
expanded in a wavelet basis. Finally, in Section 4.3 we present an algorithm
for adaptively multiplying the NS-form representation of an operator and
a function expanded in the wavelet system of coordinates.
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4 Non-Standard Form Representation of Opera-

tor Functions

In this Section we are concerned with the construction of and calculations
with the non-standard form (NS-form) of operator functions (see, e.g.,
(2.15)). We show how to compute the NS-form of the operator functions
and establish the vanishing-moment property of the wavelet representation
of these operators. Finally, we describe a fast, adaptive algorithm for ap-
plying operators to functions in the wavelet system of coordinates.

4.1 The Non-Standard Form of Operator Functions

In this Section we construct the NS-forms of functions of the differential
operator ∂x. We introduce two approaches for approximating the NS-forms
of operator functions: (i) compute the projection of the operator function
on V0,

P0f(∂x)P0, (4.71)

or, (ii) compute the function of the projection of the operator,

f(P0∂xP0). (4.72)

The difference between these two approaches depends on how well |ϕ̂(ξ)|2
acts as a cutoff function, where ϕ(x) is the scaling function associated with
a wavelet basis. It might be convenient to use either (4.71) or (4.72) in
applications.

The operator functions we are interested in are those appearing in so-
lutions of the partial differential Equation (1.1). For example, using (2.14)
with (2.18), solutions of Burgers’ equation can be approximated to order
(∆t)2 by

u(x, t+ ∆t) = e∆tLu(x, t)−
1
2OL,1 [u(x, t)∂xu(x, t+ ∆t) + u(x, t+ ∆t)∂xu(x, t)] ,

(4.73)
where L = ν∂2

x and OL,1 is given by (2.19). Therefore, we are interested in
constructing the NS-forms of the operator functions

e∆tL, (4.74)

and
OL,1 =

(
e∆tL − I

)
L−1, (4.75)

26



for example. In the following we assume that the function f is analytic.
In computing solutions of (1.1) (via e.g. (4.73)) we can precompute the
NS-forms of the operator functions and apply them as necessary.

We note that if the operator function f is homogeneous of degree m
(e.g. m = 1 and 2 for the first and second derivative operators), then the
coefficients appearing in the NS-form are simply related, see e.g. (3.65).
On the other hand, if the operator function f is not homogeneous then we
compute s0k,k′ via (3.49) and compute the coefficients αj

k,k′, β
j
k,k′ , and γj

k,k′

via equations (3.66) for each scale j = 1, 2, . . . , J ≤ n. We note that if f is a
convolution operator then the formulas for s0

k−k′ are considerably simplified
(see [5]).

We first describe computing the NS-form of an operator function by pro-
jecting the operator function into the wavelet basis via (4.71). To compute
the coefficients

sj
k,k′ = 2−j

∫ +∞

−∞
ϕ(2−jx− k)f(∂x)ϕ(2−jx− k′)dx, (4.76)

let us consider

f(∂x)ϕ(2−jx− k′) =
1√
2π

∫ ∞

−∞
f(−iξ2−j)ϕ̂(ξ)e−iξk′

ei2
−jxξdξ, (4.77)

where ϕ̂(ξ) is the Fourier transform of ϕ(x),

ϕ̂(ξ) =
1√
2π

∫ +∞

−∞
ϕ(x)eixξdx. (4.78)

Substituting (4.77) into (4.76) and noting that sj
k,k′ = sj

k−k′, we arrive at

sj
l =

∫ +∞

−∞
f(−iξ2−j)|ϕ̂(ξ)|2eiξldξ. (4.79)

We evaluate (4.79) by setting

sj
l =

∫ 2π

0

∑

k∈ZZ

f(−i2−j(ξ + 2πk))|ϕ̂(ξ + 2πk)|2, (4.80)

or

sj
l =

∫ 2π

0
g(ξ)eiξldξ, (4.81)
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where
g(ξ) =

∑

k∈ZZ

f(−i2−j(ξ + 2πk))|ϕ̂(ξ + 2πk)|2. (4.82)

We now observe that for a given accuracy ε the function |ϕ̂(ξ)|2 acts as a
cutoff function in the Fourier domain, i.e. |ϕ̂(ξ)|2 < ε for |ξ| > η for some
η > 0. Therefore, Equation (4.80) is approximated to within ε by

g̃(ξ) =
K∑

k=−K

f(−i2−j(ξ + 2πk))|ϕ̂(ξ + 2πk)|2, (4.83)

for some K. Using (4.83) (in place of g(ξ)) in (4.81) we obtain an approxi-
mation to the coefficients sj

l ,

s̃j
l = 1

N

N−1∑

n=0

g̃(ξn)eiξnl. (4.84)

The coefficients s̃j
l are computed by applying the FFT to the sequence

{g̃(ξn)} computed via (4.83).

In order to compute the NS-form of an operator function via (4.72), we
use the DFT to diagonalize the differential operator ∂x and apply the spec-
tral theorem to compute the operator functions. Starting with the wavelet
representation of ∂x on V0 (see Section 3.4 or [5]) of the discretization of
∂x, we write the eigenvalues explicitly as

λk = s0 +
L∑

l=1

(sle
2πi kl

N + s−le
−2πi kl

N ), (4.85)

where the wavelet coefficients of the derivative, sl = s0l , are defined by (3.49).
Since

f(A) = Ff(Λ)F−1, (4.86)

where Λ is a diagonal matrix and F is the Fourier transform (see [37]),
we compute f(λk) and apply the inverse Fourier transform to the sequence
f(λk),

s0l =
N∑

k=1

f(λk)e
2πi

(k−1)(l−1)
N , (4.87)

to arrive at the projection of the operator functions f(∂x) on the subspace
V0, i.e. the wavelet coefficients s0

l . The remaining elements of the NS-form
are then recursively computed using equations (3.66).
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4.2 Vanishing Moments of the B-Blocks

We now establish the vanishing-moment property of the B-blocks of the
NS-form representation of functions of a differential operator described in
Section 4.1 and the Hilbert transform. We note that a similar result also
holds for the B-blocks of some classes of pseudo-differential operators, see
e.g. [31]. Additionally, we note that these results do not require compactly
supported wavelets and we prove the results for the general case. In Section
4.3 we use the vanishing-moment property to design an adaptive algorithm
for multiplying the NS-form of an operator and the wavelet expansion of a
function.

Proposition 1. If the wavelet basis has M vanishing moments, then the
B-blocks of the NS-form of the analytic operator function f(∂x), described
in Section 4.1, satisfy

+∞∑

l=−∞

lmβj
l = 0, (4.88)

for m = 0, 1, 2, . . . ,M − 1 and j = 1, 2, . . . J .
Proof. Using the definition (3.49), we obtain

+∞∑

l=−∞

lmβl =

∫ +∞

−∞
ψ(x− k)f(∂x)Pm(x)dx. (4.89)

We have used the fact that
+∞∑

l=−∞

lmϕ(x− l) = Pm(x), (4.90)

where Pm(x) is a polynomial of degree m, for 0 ≤ m ≤M − 1, see [30].
Since the function f(·) is an analytic function of ∂x, we can expand f in

terms of its Taylor series. Therefore, the series for f(∂x)Pm(x) is finite and
yields a polynomial of degree less than or equal to m,

f(∂x)Pm(x) = P̃m′(x), (4.91)

where m′ ≤ m. Due to the M > m vanishing moments of ψ(x), the integrals
(4.89) are zero and (4.88) is verified.

Proposition 2. Under the conditions of Proposition 1, the B-blocks of
the NS-form of the Hilbert transform

(Hf)(x) =
1

π
p.v.

∫ ∞

−∞

f(s)

s− xds, (4.92)
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(where p.v. indicates the principle value), satisfy

+∞∑

l=−∞

lmβj
l = 0, (4.93)

for 0 ≤ m ≤M − 1 and j = 1, 2, . . . J .
Proof. The βl elements of the NS-form of the Hilbert transform are given
by

βl =

∫ +∞

−∞
ψ(x− l)(Hϕ)(x)dx, (4.94)

and proceeding as in Proposition 1, we find

+∞∑

l=−∞

lm βl =
+∞∑

l=−∞

lm
∫ +∞

−∞
ψ(x− l)(Hϕ)(x)dx

= −
+∞∑

l=−∞

lm
∫ +∞

−∞
(Hψ)(x)ϕ(x + l)dx

= −
∫ +∞

−∞
(Hψ)(x)Pm(x)dx, (4.95)

where, once again, we have used (4.90).
To show that the integrals in (4.95) are zero, we establish that (Hψ)(x)

has at least M vanishing moments. Let us consider the generalized function
∫ ∞

−∞
(Hψ)(x)xmeiξxdξ = i−m∂m

ξ
̂(Hψ)(ξ). (4.96)

In the Fourier domain the Hilbert transform of the function g defined by

̂(Hg)(ξ) = −i sign(ξ)ĝ(ξ), (4.97)

may be viewed as a generalized function, derivatives of which act on test
functions f ∈ C∞0 (IR) as

<
dm

dξm
(−i sign(ξ)ĝ(ξ)) , f > = −i

m∑

j=1

(
m

l

)
f (j−1)(0)ĝ(m−j)(0) +

i

∫ ∞

−∞
sign(ξ) ĝ(m)(ξ)f(ξ)dξ. (4.98)

In order to show that (Hψ)(x) has M vanishing moments, we recall that
in the Fourier domain vanishing moments are characterized by,

dm

dξm
ψ̂(ξ)|ξ=0 = 0, for m = 0, 1, . . . ,M − 1, (4.99)
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where ψ̂(ξ) is the Fourier transform of ψ(x). Setting ĝ(ξ) = ψ̂(ξ) in (4.98),
the sum on the right hand side of (4.98) is zero. We also observe that
the integrand on the right hand side of (4.98), i.e. sign(ξ)ψ̂(m)(ξ)f̂(ξ), is
continuous at ξ = 0, once again because ψ(x) has M vanishing moments.
We can then define functions Ŵ(m)(ξ) for m = 0, 1, . . . ,M − 1, as

Ŵ(m)(ξ) =





−i ψ̂(m)(ξ), ξ > 0;
0, ξ = 0;

i ψ̂(m)(ξ), ξ < 0,

(4.100)

such that Ŵ(m)(ξ) coincides with them-th derivative of the generalized func-
tion (4.97) on the test functions f ∈ C∞0 (IR). Since Ŵ(m)(ξ) are continuous
functions for m = 0, 1, . . . ,M − 1, we obtain instead of (4.96)

∫ ∞

−∞
(Hψ)(x)xmeiξxdx = Ŵ(m)(ξ). (4.101)

Since Ŵ(m)(ξ)|ξ=0 = 0 the integrals (4.95) are zero and (4.93) is established.

4.3 Adaptive Calculations with the Non-Standard Form

In [8] it was shown that Calderón-Zygmund and pseudo-differential operators
can be applied to functions in O(−N log ε) operations, where N = 2n is
the dimension of the finest subspace V0 and ε is the desired accuracy. In
this Section we describe an algorithm for applying operators to functions
with sub-linear complexity, O(CNs), where Ns is the number of significant
coefficients in the wavelet representation of the function.

We are interested in applying operators to functions that are solutions
of partial differential equations having regions of smooth, non-oscillatory
behavior interrupted by a number of well-defined localized shocks or shock-
like structures. The wavelet expansion of such functions (see e.g. (3.41))
then consists of differences {dj} that are sparse and averages {sj} that may
be dense. Adaptively applying the NS-form representation of an operator
to a function expanded in a wavelet basis requires rapid evaluation of

d̂j
k =

∑

l

Aj
k+ld

j
k+l +

∑

l

Bj
k+ls

j
k+l, (4.102)

ŝj
k =

∑

l

Γj
k+ld

j
k+l, (4.103)
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Figure 9: For the operators considered in Section 4.2 the vanishing-moment
property of the rows of the B-block yields a sparse result (up to a given
accuracy ε) when applied to a smooth and dense vector {sj}.

for j = 1, 2, . . . , J − 1 and k ∈ IF2n−j = {0, 1, 2, . . . , 2n−J − 1} and on the
the final, coarse scale,

d̂J
k =

∑

l

AJ
k+ld

J
k+l +

∑

l

BJ
k+ls

J
k+l, (4.104)

ŝJ
k =

∑

l

ΓJ
k+ld

J
k+l +

∑

l

T J
k+ls

J
k+l, (4.105)

for k ∈ IF2n−J . The difficulty in adaptively applying the NS-form of an
operator to such functions is the need to apply the B-blocks of the operator
to the averages {sj} in (4.102). Since the averages are “smoothed” versions
of the function itself, these vectors are not necessarily sparse and may consist
of 2n−j significant coefficients on scale j. Our algorithm uses the fact that
for the operator functions considered in Section 4.1, the rows of the B-blocks
have M vanishing moments. This means that when the row of a B-block is
applied to the “smooth” averages {sj} the resulting vector is sparse (for a
given accuracy ε), as is illustrated in Figure 9.

Since each row of the B-block has the same number of vanishing moments
as the filter G, we can use the {dj} coefficients of the wavelet expansion to
predict significant contributions to (4.102). In this way we can replace the
calculations with a dense vector {s} in (4.102) by calculations with a sparse
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vector {s̃},
d̃j

k =
∑

l

Aj
k+ld

j
k+l +

∑

l

Bj
k+ls̃

j
k+l, (4.106)

for j = 1, 2, . . . , J − 1 and k ∈ IF2n−j . In what follows we describe a method
for determining the indices of {s̃j} using the indices of the significant wavelet
coefficients {dj}.

The formal description of the procedure is as follows. For the functions
under consideration the magnitude of many wavelet coefficients {dj} are
below a given threshold of accuracy ε. The representation of f on V0,
(3.41), using only coefficients above the threshold ε is

(P0f)ε(x) =
J∑

j=1

∑

{k:|dj

k
|>ε}

dj
kψj,k(x) +

∑

k∈IF
2n−J

sJ
kϕJ,k(x), (4.107)

whereas for the error we have

||(P0f)ε(x)− (P0f)(x)||2 =




J∑

j=1

∑

{k:|dj

k
|≤ε}

|dj
k|2



1/2

< εN1/2
r , (4.108)

where Nr is the number of coefficients below the threshold. The number of
significant wavelet coefficients is defined as Ns = N − Nr, where N is the
dimension of the space V0.

We define the ε-accurate subspace for f , denoted Dε
f ⊂ V0, as the

subspace spanned by only those basis functions present in (4.107),

Dε
f = VJ

⋃
{span {ψj,k(x)} : |dj

k| > ε}, (4.109)

for 1 ≤ j ≤ J and k ∈ IF2n−j . Associated with Dε
f are subspaces Sε

f,j

determined using the two-scale difference relation, e.g. Equation (3.28).
Namely, for each j = 0, 1, . . . , J − 1

Sε
f,j = {span {ϕj,2k+1(x)} : ψj+1,k(x) ∈ Dε

f}. (4.110)

For j = J we define the space Sε
f,j as

Sε
f,J = VJ . (4.111)

In terms of the coefficients dj+1
k , the space Sε

f,j may be defined by

Sε
f,j = {span {ϕj,2k+1(x)} : |dj+1

k | > ε}. (4.112)
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In this way we can use Dε
f to ‘mask’ V0 forming Sε

f,j ; in practice all we do

is manipulate indices. The subset of coefficients {s̃j} that contribute to the
sum (4.106) may now be identified by indices of the coefficients correspond-
ing to basis functions in Sε

f,j .

We now show that significant wavelet coefficients dj+1 and contributions
of Bjsj to (4.102) both originate from the same coefficients sj. In this way
we can use the indices of dj+1 to identify the coefficients s̃j that contribute
to the sum (4.106). We begin by expanding f(x+2jl) into its Taylor series,

f(x+ 2jl) =
M−1∑

m=0

f (m)(x)

m!
2jmlm +

f (M)(z)

M !
(z − x)M , (4.113)

where z = z(x, j, l) lies between x and x + 2jl. We begin by computing

d
j
k =

∑
l β

j
k+ls

j
k+l using (4.113) and obtain

d
j
k = 2−j/2

∫ ∞

−∞
ϕ(2−jx− k)

M−1∑

m=0

f (m)(x)

m!
(2jm)




L∑

l=−L

βj
k+ll

m


dx+

2−j/2

M !

L∑

l=−L

βj
k+l

∫ ∞

−∞
ϕ(2−jx− k)f (M)(z)(z − x)Mdx. (4.114)

By the vanishing-moment property of the B-block, the first term in (4.114)
is zero and, after a change of variables, we find

d
j
k =

2−j/2

M !

L∑

l=−L

βj
k+l

∫ ∞

−∞
ϕ(x)f (M)(z)(z − 2j(x+ k))Mdx, (4.115)

for k ∈ IF2J−j .
To compute the differences dj+1

k′ =
∑

l gls
j
2k′+l, we use the averages

sj
2k′+l = 2−j/2

∫ ∞

−∞
ϕ(2−jx− 2k′)f(x+ 2jl)dx. (4.116)

Substituting (4.113) into (4.116), we obtain

dj+1
k′ = 2−j/2

∫ ∞

−∞
ϕ(2−jx− 2k′)

M−1∑

m=0

f (m)(x)

m!
(2jm)

(∑

l

gll
m

)
dx+

2−j/2

M !

∑

l

gl

∫ ∞

−∞
ϕ(2−jx− 2k′)f (M)(z)(z − x)Mdx.

34



Using the vanishing moments of the filter G = {gl}, we obtain

dj+1
k′ =

2−j/2

M !

∑

l

gl

∫ ∞

−∞
ϕ(x)f (M)(z)(z − 2j(x+ 2k′))Mdx, (4.117)

for k′ ∈ IF2J−(j+1) .

To show that |dj+1
k′ | < ε implies |dj

k| < Cε, we consider two cases. First,

if |dj+1
k′ | < ε and k is even, i.e. k = 2n for n ∈ IF2J−(j+1) , then we see that

d
j
2n and dj+1

k′ given by (4.117) only differ in the coefficients gl and βj
2n+l.

Since gl and βj
2n+l are of the same order, the differences satisfy |dj

2n| < Cε
for some constant C. On the other hand, if k = 2n+ 1 for n =∈ IF2J−(j+1) ,
we find

d
j
2n+1 =

2−j/2

M !

L∑

l=−L

βj
2n+1+l

∫ ∞

−∞
ϕ(x+ 1)f (M)(z)(z − 2j(x+ 2n))Mdx,

(4.118)
which again is of the same order as dj+1

k′ . Therefore, if |dj+1
k′ | < ε for k′ ∈

IF2J−(j+1) , then for some constant C, |dj
k| < Cε, for k ∈ IF2J−j .

5 Evaluating Functions in Wavelet Bases

In this Section we describe our adaptive algorithm for evaluating the point-
wise product of functions represented in wavelet bases. More generally, our
results may be applied to computing functions f(u), where f is an analytic
function and u is expanded in a wavelet basis. We note that since pointwise
multiplication is a diagonal operator in the ‘physical’ domain, computing
the pointwise product in any other domain appears to be less efficient. A
successful and efficient algorithm should at some point compute f(u) in the
physical domain using values of u and not expansion coefficients of u.

First let us make several observations regarding the calculation of f(u),
where u is expanded in an arbitrary basis,

u(x) =
N∑

i=1

uibi(x), (5.119)

where ui are the coefficients and bi(x) are the basis functions. In general,
we have

f(u(x)) 6=
N∑

i=1

f(ui)bi(x). (5.120)
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For example, if u(x) is expanded in its Fourier series, clearly the Fourier
coefficients of the function f(u) do not correspond to the function of the
Fourier coefficients. This has led to the development of pseudo-spectral
algorithms for numerically solving partial differential equations, see e.g. [23,
24].

In order to explain the algorithm for computing f(u) in the wavelet
system of coordinates, we begin with the assumption that u and f(u) are
both elements of V0, u, f(u) ∈ V0. Then

u(x) =
∑

k

s0kϕ(x− k), (5.121)

where s0k are coefficients defined, as in (3.37), by

s0k =

∫ ∞

−∞
u(x)ϕ(x − k)dx. (5.122)

Let us impose an additional assumption that the scaling function is inter-
polating, so that

s0k = u(k). (5.123)

Since we have assumed that u, f(u) ∈ V0, we obtain

f(u) =
∑

k

f(s0k)ϕ(x− k), (5.124)

i.e. f(u) is evaluated by computing the function of the expansion coefficients
f(s0k). Below we will describe how to relax the requirement that the scaling
function be interpolating and still have property (5.124) as a quantifiable
approximation.

We point out that typically f(u) is not in the same subspace as u. In
what follows we describe an adaptive algorithm for computing the point-
wise square of a function, f(u) = u2. In this algorithm we split f(u) into
projections on different subspaces. Then we consider ‘pieces’ of the wavelet
expansion of u in finer subspaces where we calculate contributions to f(u)
using an approximation to (5.124). This is in direct comparison with calcu-
lating f(u) in a basis where the entire expansion must first be projected into
a ‘physical’ space where f(u) is then computed, e.g. pseudo-spectral meth-
ods. In Section 5.2 we briefly discuss an algorithm for adaptively evaluating
an arbitrary function f(u).
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5.1 Adaptive Calculation of u2

Since the product of two functions can be expressed as a difference of squares,
it is sufficient to explain an algorithm for evaluating u2. The algorithm we
describe is an improvement over that found in [6, 7].

In order to compute u2 in a wavelet basis, we first recall that the projec-
tions of u on subspaces Vj and Wj are given by Pju ∈ Vj and Qju ∈Wj

for j = 0, 1, 2, . . . , J ≤ n, respectively (see the discussion in Section 3). Let
jf , 1 ≤ jf ≤ J (see, e.g., Figure 10 where jf = 5 and J = 8), be the finest
scale having significant wavelet coefficients that contribute to the ε-accurate
approximation of u, i.e. the projection of u can be expressed as

(P0u)ε(x) =
J∑

j=jf

∑

{k:|dj

k
|>ε}

dj
kψj,k(x) +

∑

k∈IF
2n−J

sJ
kϕJ,k(x). (5.125)

Let us first consider the case where u and u2 ∈ V0, so that we can expand
(P0u)

2 in a ‘telescopic’ series,

(P0u)
2 − (PJu)

2 =
J∑

j=jf

(Pj−1u)
2 − (Pju)

2. (5.126)

Decoupling scale interactions in (5.126) using Pj−1 = Qj +Pj , we arrive at

(P0u)
2 = (PJu)

2 +
J∑

j=jf

2(Pju)(Qju) + (Qju)
2. (5.127)

Later we will remove the condition that u and u2 ∈ V0.
Remark: Equation (5.127) is written in terms of a finite number of

scales. If j ranges over ZZ , then (5.127) can be written as

u2 =
∑

j∈ZZ

2(Pju)(Qju) + (Qju)
2, (5.128)

which is essentially the paraproduct, see [13].
Evaluating (5.127) requires computing (Qju)

2 and (Pju)(Qju), where
Qju and Pju are elements of subspaces on the same scale and, thus, have
basis functions with the same size support. In addition, we need to compute
(PJu)

2 which involves only the coarsest scale and is not computationally
expensive. The difficulty in evaluating (5.127) is that the terms (Qju)

2 and
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(Pju)(Qju) do not necessarily belong to the same subspace as the multipli-
cands. However, since

Vj

⊕
Wj = Vj−1 ⊂ Vj−2 ⊂ . . . ⊂ Vj−j0 ⊂ . . . , (5.129)

we may think of both Pju ∈ Vj and Qju ∈Wj as elements of a finer sub-
space, that we denote Vj−j0 , for some j0 ≥ 1. We compute the coefficients
of Pju and Qju in Vj−j0 using the reconstruction algorithm, e.g. (3.41),
and on Vj−j0 we can calculate contributions to (5.127) using (5.124). The
key observation is that, in order to apply (5.124), we may always choose j0
in such a way that, to within a given accuracy ε, (Qju)

2 and (Pju)(Qju)
belong to Vj−j0. It is sufficient to demonstrate this fact for j = 0.

In order to show that such j0 ≥ 1 exists, we begin by assuming u ∈ V0 ⊂
V−j0 . This assumption implies that, in the Fourier domain, the support of
ϕ̂(2−j0ξ) “overlaps” the support of û(ξ). Then, for scaling functions with a
sufficient number of vanishing moments, the coefficients s−j0

l and the values
u(xl), for some xl, may be made to be within ε of each other. In this way
we may then apply (5.124).

The coefficients s−j0
l of the projection of u on V−j0 are given by

s−j0
l = 2j0/2

∫ ∞

−∞
u(x)ϕ(2j0x− l)dx, (5.130)

which can be written in terms of û(ξ) as

s−j0
l = 2j0/2

∫ ∞

−∞
û(2j0ξ)ϕ̂(ξ)e−iξldξ. (5.131)

Replacing the integral in (5.131) by that over [−π, π], we have

s−j0
l = 2j0/2

∑

k∈ZZ

∫ π

−π
û(2j0(ξ + 2πk))ϕ̂(ξ + 2πk)e−iξldξ. (5.132)

Since u ∈ V0, for any ε > 0 there is a j0 such that the infinite sum in (5.132)
may be approximated to within ε by the first term

s−j0
l = 2j0/2

∫ π

−π
û(2j0ξ)ϕ̂(ξ)e−iξldξ. (5.133)

In order to evaluate (5.133), we consider scaling functions ϕ(x) having
M shifted vanishing moments, i.e.

∫∞
−∞(x − α)mϕ(x)dx = 0, where α =∫∞

−∞ xϕ(x)dx, see e.g. [8, 22]. We then write
∫ ∞

−∞
(x− α)mϕ(x)dx =

1

(−i)m

∂m

∂ξm
eiαξ

∫ ∞

−∞
ϕ(x)e−iξxdx

∣∣∣∣
ξ=0

= 0, (5.134)
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for m = 1, 2, . . . ,M and arrive at

(−i)−m ∂m

∂ξm
ϕ̂(ξ)eiαξ

∣∣∣∣
ξ=0

= 0, (5.135)

and
ϕ̂(ξ)e−iαξ

∣∣∣
ξ=0

= 1. (5.136)

Expanding ϕ̂(ξ)eiαξ in its Taylor series near ξ = 0, we arrive at

ϕ̂(ξ)eiαξ = 1 +
ξM+1

(M + 1)!

∂M+1

∂ξM+1
ϕ̂(ξ)eiαξ

∣∣∣
ξ=z

, (5.137)

where z lies between ξ and zero.
Since u ∈ V0, the support of û(2j0(ξ + 2πk)) occupies a smaller portion

of the support of ϕ̂(ξ + 2πk) as j0 increases, and there exists a sufficiently
large j0 such that the coefficients (5.133) can be computed by considering
only a small neighborhood about ξ = 0. Therefore, substituting (5.137) in
(5.133), we arrive at

s−j0
l = 2j0/2

∫ π

−π
û(2j0ξ)e−iξ(l+α)dξ +EM,j0 , (5.138)

where

EM,j0 =
2j0/2

(M + 1)!

∫ π

−π
û(2j0ξ)e−iξ(l+α) ξM+1 ∂

M+1

∂ξM+1

(
ϕ̂(ξ)eiαξ

)∣∣∣∣∣
ξ=z

dξ,

(5.139)
is the error term that is controlled by choosing j0 sufficiently large.
Remark: In practice j0 must be small, and in our numerical experiments
j0 = 3. We note that for the case of multiwavelets [2, 3] the proof using
the Fourier domain does not work since basis functions are discontinuous.
However, one can directly use the piecewise polynomial representation of the
basis functions instead. For spline wavelets both approaches are available.

To describe the algorithm for computing the pointwise product, let us
denote byRj

j0
(·) the operator to reconstruct (represent) a vector on subspace

Vj or Wj in the subspace Vj−j0. On Vj−j0 we can then use the coefficients

Rj
j0

(Pju) and Rj
j0

(Qju) to calculate contributions to the product (5.127)
using ordinary multiplication as in (5.124). To this end, the contributions
to (5.127), for j = jf , jf + 1, . . . , J − 1, are computed as

Pj−j0(u
2) = 2(Rj

j0
(Pju))(Rj

j0
(Qju)) + (Rj

j0
(Qju))

2, (5.140)
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where Pjf(u) is the contribution to f(u) on subspace Vj (see (5.127). On
the final coarse scale J , we compute

PJ−j0(u
2) = (Rj

j0
(PJu))

2+2(Rj
j0

(PJu))(Rj
j0

(QJu))+(Rj
j0

(QJu))
2. (5.141)

We then project the representation on subspaces Vj−j0, for j = jf , . . . J into
the wavelet basis. This procedure is completely equivalent to the decompo-
sition one has to perform after applying the NS-form. The algorithm for
computing the projection of u2 in a wavelet basis is illustrated in Figure 10.
In analogy with “pseudo-spectral” schemes, as in e.g. [23, 24], we refer to
this as an adaptive pseudo-wavelet algorithm.

To demonstrate that the algorithm is adaptive, we recall that u has
a sparse representation in the wavelet basis. Thus, evaluating (Qju)

2 for
j = 1, 2, . . . , J requires manipulating only sparse vectors. Evaluating the
square of the final coarse scale averages (PJu)

2 is inexpensive. The difficulty
in evaluating (5.140) lies in evaluating the productsRj

j0
(Pju)(Rj

j0
Qju) since

the vectors Pju are typically dense. The adaptivity of the algorithm comes
from an observation that, in the products appearing in (5.140), we may use
the coefficients Qju as a ‘mask’ of the Pju (this is similar to the algorithm
for adaptively applying operators to functions). In this way contributions to
(5.140) are calculated based on the presence of significant wavelet coefficients
Qju and, therefore, significant productsRj

j0
(Pju)(Rj

j0
Qju). The complexity

of our algorithm is automatically adaptable to the complexity of the wavelet
representation of u.
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Figure 10: The adaptive pseudo-wavelet algorithm. Averages on Vj are
‘masked’ by corresponding differences on Wj . These coefficients are then
projected onto a finer subspace Vj−j0 , Equation (5.140) is evaluated and
the result is projected into the wavelet basis.
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5.2 Remarks on the Adaptive Calculation of General f(u)

This Section consists of a number of observations regarding the evaluation
of functions other than f(u) = u2 in wavelet bases. For analytic f(u) we can
apply the same approach as in Section 5.1, wherein we assume f(P0u) ∈ V0

and expand the projection f(P0u) in the ‘telescopic’ series

f(P0u)− f(PJu) =
J∑

j=1

f(Pj−1u)− f(Pju). (5.142)

Using Pj−1 = Qj +Pj to decouple scale interactions in (5.142) and assuming
f(·) to be analytic, we substitute the Taylor series

f(Qju+ Pju) =
N∑

n=0

f (n)(Pju)

n!
(Qju)

n +Ej,N(f, u), (5.143)

to arrive at

f(P0u) = f(PJu) +
J∑

j=1

N∑

n=1

f (n)(Pju)

n!
(Qju)

n +Ej,N(f, u). (5.144)

For f(u) = u2, jf = 1 and N = 2 we note that (5.144) and (5.127) are
identical.

This approach can be used for functions f(u) that have rapidly converg-
ing Taylor series expansions, e.g. f(u) = sin(u), for |u| sufficiently small. In
this case, for a given accuracy ε we fix an N so that |Ej,N (f, u)| < ε. We
note that the partial differential Equation (1.1) typically involves functions
f(·) that are not only analytic but in many cases are p-degree polynomials
in u. If this is the case then for each fixed j the series in (5.143) is of degree
p and Ej,N(f, u) = 0 for N > p. In any event we are led to evaluate the
double sum in (5.144), which can be done using the adaptive pseudo-wavelet
algorithm described in Section 5.1.

If the function f is not analytic, e.g. f(u) = |u|, then the primary con-
cern is how to quantify an appropriate value of j0, i.e. how much refinement
(or ‘oversampling’) is needed to take advantage of the interpolating prop-
erty (5.123). On the other hand, determining j0 may become a significant
problem even if f is analytic. For example if the Taylor series expansion of
f(u) does not converge rapidly, e.g. f(u) = eu, we may be led to consider
the following alternatives.
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In the first approach we begin, as above, by expanding eu in the ‘tele-
scopic’ series

eP0u − ePJu =
J∑

j=1

ePj−1u − ePju, (5.145)

and using Pj−1 = Qj +Pj to decouple scale interactions. We then arrive at

eP0u = ePJu +
J∑

j=1

ePju(eQju − 1). (5.146)

Since the wavelet coefficients Qju are sparse, the multiplicand eQju − 1 is
significant only where Qju is significant. Therefore, we can evaluate (5.146)
using the adaptive pseudo-wavelet algorithm described in Section 5.1, where
in this case the mask is determined by significant values of eQju − 1. The
applicability of such an approach depends on the relative size (or dynamic
range) of the variable u. For example, if u(x) = α sin(2πx) on 0 ≤ x ≤ 1
then e−α ≤ f(u) ≤ eα. It is clear that even for relatively moderate values
of α the function eu may range over several orders of magnitude.

In order to take the dynamic range into account, we apply a scaling and
squaring method. Instead of computing eu directly one calculates eu2−k

and
repeatedly squares the result k times. The constant k (which plays the role
of j0 in the algorithm for f(u) = u2) depends on the magnitude of u and
is chosen so that the variable u is scaled, for example, as −1 ≤ 2−ku ≤
1. In this interval, calculating eu2−k

can be accomplished as described by
Equation (5.146) and the adaptive pseudo-wavelet algorithm of Section 5.1.

One then repeatedly applies the algorithm for the pointwise square to eu2−k

to arrive at the wavelet expansion of eu.

6 Results of Numerical Experiments

In this Section we present the results of numerical experiments in which
we compute approximations to the solutions of the heat equation, Burgers’
equation, and two generalized Burgers’ equations. In each of the examples
we replace the initial value problem (1.1) with (1.2) and (1.3) by a suitable
approximation, e.g. (2.15). The wavelet representation of the operators
appearing in this approximation are computed via (4.72). In order to il-
lustrate the use of our adaptive algorithm for computing f(u) developed
in Section 5, we choose the basis having a scaling function with M shifted
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vanishing moments (see (3.30)) the so-called ‘coiflets’. This allows us to use
the approximate interpolating property, see e.g. (6.148), below.

In each experiment we use a cutoff of ε = 10−6, roughly corresponding to
single precision accuracy. The number of vanishing moments is then chosen
to be M = 6 and the corresponding length of the quadrature mirror filters

H = {hk}Lf

k=1 and G = {gk}Lf

k=1 for ‘coiflets’ satisfies Lf = 3M , see e.g. [22].
The number of scales n in the numerical realization of the multiresolution
analysis depends on the most singular behaviour of the solution u(x, t). The
specific value of n used in our experiments is given with each example. We
fix J , the depth of the wavelet decomposition, satisfying 2n−J > Lf , so that
there is no ‘wrap-around’ of the filters H and G on the coarsest scale.

Each of our experiments begins by projecting the initial condition (1.2)
on V0, which amounts to evaluating

s0l =

∫ ∞

∞
u0(x)ϕ(x − l)dx. (6.147)

For smooth initial conditions we approximate the integral (6.147) (using the
shifted vanishing moments of the scaling function ϕ(·)) to within ε via

s0l ≈ u(l − α), (6.148)

(see the discussion in Section 5.1). We note that in this case the discretiza-
tion of the initial condition is similar to traditional discretizations, where
one sets

U(xi, t0) = u0(i∆x), (6.149)

for i = 0, 1, 2, . . . , 2n−1, where ∆x = 2−n and where U(xi, t) is the numerical
approximation of the solution at grid point xi = i∆x and time t.

Since approximations to the integral in (2.14) are implicit in time, we
solve an equation of the form

U(tj+1) = E(U(tj)) + I(U(tj), U(tj+1)), (6.150)

for U(tj+1) by iteration, where we have dropped the explicit x dependence.
In (6.150) E(·) is the explicit part of the approximation to (2.14) and I(·)
is the implicit part.

One can use specialized techniques for solving (6.150), e.g. accelerating
the convergence of the iteration by using preconditioners (which may be
readily constructed in a wavelet basis, see e.g. [7]). However, in our experi-
ments we use a straightforward fixed-point method to compute U(tj+1). We
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begin by setting

U0(tj+1) = E(U(tj)) + I(U(tj), U(tj)), (6.151)

and repeatedly evaluate

Uk+1(tj+1) = E(U(tj)) + I(U(tj), Uk(tj+1)), (6.152)

for k = 0, 1, 2 . . .. We terminate the iteration when

‖Uk+1(tj+1)− Uk(tj+1)‖ < ε, (6.153)

where

‖Uk+1(tj+1)− Uk(tj+1)‖ =

(
2−n

2n∑

i=1

(Uk+1(xi, tj+1)− Uk(xi, tj+1))
2

)1/2

.

(6.154)
Once (6.153) is satisfied, we update the solution and set

U(tj+1) = Uk+1(tj+1). (6.155)

Again we note that one can use a more sophisticated iterative scheme and dif-
ferent stopping criteria for evaluating (6.150) (e.g. simply compute (6.152)
for a fixed number of iterations).

6.1 The Heat Equation

We begin with this simple linear example in order to illustrate several points
and provide a bridge to the nonlinear problems discussed below. In particu-
lar we show that in the wavelet system of coordinates, higher order schemes
do not necessarily require more operations than lower order schemes. We
consider the heat equation on the unit interval,

ut = νuxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (6.156)

for ν > 0, with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (6.157)

and the periodic boundary condition u(0, t) = u(1, t). There are several
well-known approaches for solving (6.156) and more general equations of
this type having variable coefficients. Equation (6.156) can be viewed as a
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simple representative of this class of equations and we emphasize that the
following remarks are applicable to the variable coefficient case, ν = ν(x)
(see also [32]).

For diffusion-type equations, explicit finite difference schemes are con-
ditionally stable with the stability condition ν∆t/(∆x)2 < 1 (see e.g. [19])
where ∆t = 1/Nt, ∆x = 1/N , and Nt is the number of time steps. This con-
dition tends to require prohibitively small time steps. An alternate, implicit
approach is the Crank-Nicolson scheme, [19], which is unconditionally stable
and accurate to O((∆t)2 + (∆x)2). At each time step, the Crank-Nicolson
scheme requires solving a system of equations,

AU(tj+1) = BU(tj), (6.158)

for j = 0, 1, 2, . . . , Nt − 1, where we have suppressed the dependence of
U(x, t) on x. The matrices A and B are given by A = diag(− α

2 , 1 + α,−α
2 )

and B = diag(α
2 , 1− α, α

2 ), where α = ν ∆t
(∆x)2 .

Alternatively, we can write the solution of (6.156) as

u(x, t) = etLu0(x), (6.159)

where L = ν∂xx, and compute (6.159) by discretizing the time interval [0, 1]
into Nt subintervals of length ∆t = 1/Nt, and by repeatedly applying the
NS-form of the operator e∆tL via

U(tj+1) = e∆tLU(tj), (6.160)

for j = 0, 1, 2, . . . , Nt − 1, where U(t0) = U(0). The numerical method de-
scribed by (6.160) is explicit and unconditionally stable since the eigenvalues
of e∆t∂2

x are less than one.
The fact that the Crank-Nicolson scheme is unconditionally stable allows

one to choose ∆t independently of ∆x; in particular one can choose ∆t to
be proportional to ∆x. In order to emphasize our point we set ∆x = ∆t
and ν = 1. Although the Crank-Nicolson scheme is second order accurate
and such choices of the parameters ∆x, ∆t, and ν appear to be reasonable,
by analyzing the scheme in the Fourier domain, we find that high frequency
components in an initial condition decay very slowly. By diagonalizing ma-
trices A and B in (6.158), it is easy to find the largest eigenvalue of A−1B,
λN = 1−2α

1+2α . For the choice of parameters ν = 1 and ∆t = ∆x, we see
that as α becomes large, the eigenvalue λN tends to −1. We note that
there are various ad hoc remedies (e.g. smoothing) used in conjunction with
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the Crank-Nicolson scheme to remove these slowly decaying high frequency
components.

For example, let us consider the following initial condition

u0(x) =

{
x, 0 ≤ x ≤ 1

2 ;
1− x, 1

2 ≤ x ≤ 1,
(6.161)

that has a discontinuous derivative at x = 1
2 . Figure 11 illustrates the

evolution of (6.161) via (6.158) with ∆t = ∆x and ν = 1, and the slow decay
of high frequency components of the initial condition. We have implemented
Equation (6.160) and display the result in Figure 12 for the case where ν = 1,
∆t = ∆x = 2−n = 1/N and n = 9. We note that there is a proper decay of
the sharp peak in the initial condition.

In order to illustrate the difference between the results of our wavelet
based approach and those of the Crank-Nicolson scheme, we construct the
NS-form of the operator A−1B and compare it with that of e∆tL. The NS-
form of an operator explicitly separates blocks of the operator that act on the
high frequency components of u. These finer scale or high frequency blocks
are located in the upper left corner of the NS-form. Therefore, the blocks
of the NS-form of the operator A−1B, that are responsible for the high
frequency components in the solution, are located in the upper left portion
of Figure 13. One can compare Figure 13 with Figure 14 illustrating the
NS-form of the exponential operator used in (6.160). Although the Crank-
Nicolson scheme is not typically used for this regime of parameters (i.e.
ν = 1 and ∆t = ∆x), a similar phenomena will be observed for any low
order method. Namely, for a given cutoff, the NS-form representation of
the matrix for the low order scheme will have more entries than that of the
corresponding exponential operator in the wavelet basis.

Referring to Figures 13 and 14 it is clear that the NS-form of the op-
erator e∆tL in our high order scheme is sparser than the NS-form for the
operator A−1B in the second order Crank-Nicolson scheme. The matrix
in Figure 13 has approximately 3.5 times as many entries as the matrix in
Figure 14.

Let us conclude by reiterating that the wavelet based scheme via (6.159)
is explicit and unconditionally stable. The accuracy in the spatial variable
of our scheme is O((∆x)2M ) where M is the number of vanishing moments,
∆x = 2−n and n is the number of scales in the multiresolution analysis.
Additionally, our scheme is spectrally accurate in time. Also it is adaptive
simply by virtue of using a sparse data structure to represent the operator
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Figure 11: Solution of the heat equation using the Crank-Nicolson method
(6.158) with ∆t = ∆x = 2−9 and ν = 1.0. Note the slowly decaying peak in
the solution that is due to the eigenvalue λN = −0.99902344.

Figure 12: Solution of the heat equation using the NS-form of the exponen-
tial with ∆t = ∆x = 2−9 and ν = 1.0, i.e. Equation (6.160).
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eν∆t∂xx , the adaptive algorithm developed in Section 4.3 and the sparsity of
the solution in the wavelet basis. Finally, we note that if we were to consider
(6.156) with variable coefficients, e.g.

ut = ν(x)uxx, (6.162)

the exponential operator e∆tν(x)L can be computed in O(N) operations using
the scaling and squaring method outlined in e.g. [9] (see also [12]).
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Figure 13: NS-form representation of the operator A−1B used in the Crank-
Nicolson scheme (6.158). Entries of absolute value greater than 10−8 are
shown in black. The wavelet basis is Daubechies with M = 6 vanishing
moments (Lf = 18), the number of scales is n = 9 and J = 7. We have set
ν = 1.0 and ∆t = ∆x = 2−9. Note that the top left portion of the Figure
contains non-zero entries which indicate high frequency components present
in the operator A−1B.

Figure 14: NS-form representation of the operator eν∆tL used in (6.160).
Entries of absolute value greater than 10−8 are shown in black. The wavelet
basis is Daubechies with M = 6 vanishing moments (Lf = 18), the number
of scales is n = 9 and J = 7. We have set ν = 1.0 and ∆t = ∆x = 2−9.
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6.2 Burgers’ Equation

Our next example is the numerical calculation of solutions of Burgers’ equa-
tion

ut + uux = νuxx, 0 ≤ x ≤ 1, t ≥ 0, (6.163)

for ν > 0, together with an initial condition,

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (6.164)

and periodic boundary conditions u(0, t) = u(1, t). Burgers’ equation is the
simplest example of a nonlinear partial differential equation incorporating
both linear diffusion and nonlinear advection. Solutions of Burgers’ equation
consist of stationary or moving shocks and capturing such behavior is an
important simple test of a new numerical method, see e.g. [34, 29, 4].

Burgers’ equation may be solved analytically by the Cole-Hopf trans-
formation [27, 17], wherein it is observed that a solution of (6.163) may be
expressed as

u(x, t) = −2ν
φx

φ
, (6.165)

where φ = φ(x, t) is a solution of the heat equation with initial condition

φ(x, 0) = e−
1

4νπ

∫
u(x,0)dx. (6.166)

Remark: We note that if ν is small, e.g. ν = 10−3, then using
(6.165) as the starting point for a numerical method turns out to be a
poor approach. This is due to the large dynamic range of the transformed
initial condition (6.166) (approximately 70 orders of magnitude for the initial
condition u(x, 0) = sin(2πx)). Consequently, the finite arithmetic involved
in a numerical scheme leads to a loss of accuracy in directly calculating
u(x, t) via (6.165), most notably within the vicinity of the shock.

Our numerical scheme for computing approximations to the solution of
(6.163) consists of evaluating

U(ti+1) = e∆tLU(ti)−
1

2
OL,1 [U(ti)∂xU(ti+1) + U(ti+1)∂xU(ti)] , (6.167)

subject to the stopping criterion (6.153). Since the solution is expressed as
the sum (6.167), and the linear part is equivalent to the operator used in the
solution of the heat equation, the linear diffusion in (6.163) is accounted for
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in an essentially exact way. Thus, we may attribute all numerical artifacts
in the solution to the nonlinear advection term in (6.163).

For each of the following examples, we illustrate the accuracy of our
approach by comparing the approximate solution Uw with the exact solution
Ue using

‖Uw − Ue‖ =

(
2−n

2n−1∑

i=0

(Uw(xi, t)− Ue(xi, t))
2

)1/2

. (6.168)

For comparison purposes, we compute the exact solution Ue via

Ue(x, t) =

∫∞
−∞

x−η
t e−G(η;x,t)/2νdη

∫∞
−∞ e−G(η;x,t)/2νdη

, (6.169)

where

G(η;x, t) =

∫ η

0
F (η′)dη′ +

(x− η)2
2t

, (6.170)

and F (η) = u0(η) is the initial condition (6.164), see e.g. [35]. The initial
conditions have been chosen so that (6.170) may be evaluated analytically
and we compute the integrals in (6.169) using a high order quadrature ap-
proximation.

Example 1. In this example we set n = 15, J = 9, ∆t = 0.001, ν = 0.001
and ε = 10−6. The subspace V0 may be viewed as a discretization of the
unit interval into 215 grid points with the step size ∆x = 2−15. We refer to
Figures 15 and 16. Figure 15 illustrates the projection of the solution on
V0, and Figure 16 illustrates the error (6.168) and the number of significant
coefficients per time step. The number of operations needed to update the
solution is proportional to the number of significant coefficients. The num-
ber of iterations required to satisfy the stopping criterion (6.153) increases
during the formation of the shock, yet never exceeded 10 over the entire
simulation. The compression ratio of the NS-form representation of the
first derivative, exponential and nonlinear operator OL,m is 442.2, 3708.5
and 1364.9, respectively, where the compression ratio is defined as N 2/Ns

where N is the dimension of the finest subspace V0 and Ns is the number
of significant entries.
Example 2. In this example we illustrate the wavelet analogue of the
Gibbs phenomena encountered when one does not use a sufficiently resolved
basis expansion of the solution. In this example n = 10, J = 4, ∆t = 0.001,
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Figure 15: The projection on V0 of the solution of Burgers’ equation at
various time steps computed via the iteration (6.167). In this experiment
n = 15, J = 9, ∆t = 0.001, ν = 0.001 and ε = 10−6. This Figure corresponds
to Example 1 of the text.

Figure 16: The error (6.168) per sample (Figure 15) and the number of
significant wavelet coefficients per time step in the approximation (6.167).
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ν = 0.001, and ε = 10−6, and we refer to Figures 17 and 18. Using n = 10
scales to represent the solution in the wavelet basis is insufficient to represent
the high frequency components present in the solution. Figure 17 illustrates
the projection of the solution on V0 beyond the point in time where the
solution is well represented by n = 10 scales. We see that high frequency
oscillations have appeared in the projection which may be viewed as a local
analogue of the Gibbs phenomenon. Figure 18 illustrates the number of
significant coefficients and the number of iterations per time step required to
satisfy the stopping criterion (6.153). The compression ratio of the NS-form
representation of the first derivative, exponential and nonlinear operator
OL,m is 14.2, 15.4 and 21.3, respectively.

Example 3. In this example we compute the solution to Burgers’ equation
using the initial condition

u(x, t) = sin(2πx) +
1

2
sin(4πx), (6.171)

which leads to the formation of left and right moving shocks. In this example
n = 15, J = 9, ν = 0.001, ∆t = 0.001, and ε = 10−6. We refer to Figures 19
and 20. Figure 19 illustrates the projection of the solution on V0. Figure 20
illustrates the error (6.168) and the number of significant coefficients needed
to represent the solution in the wavelet basis per time step. The number
of operations per time step used to update the solution is proportional to
the number of significant coefficients in the wavelet representation of the
solution.
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Figure 17: The projection on V0 of the solution of Burgers’ equation at
various time steps computed via the iteration (6.167). In this experiment
n = 10, J = 4, ∆t = 0.001, ν = 0.001, and ε = 10−6. An analogue
of the Gibbs phenomenon begins because the shock cannot be accurately
represented by n = 10 scales. Observe that the scheme remains stable in
spite of the oscillations. This Figure corresponds to Example 2 of the text.

Figure 18: The total number of significant wavelet coefficients and the num-
ber of iterations needed to satisfy the stopping criterion (6.153) per time
step.
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Figure 19: The projection on V0 of the solution of Burgers’ equation at
various time steps computed via the iteration (6.167). In this experiment
n = 15, J = 9, ν = 0.001, ∆t = 0.001, ε = 10−6, and the initial condition is
given by (6.171). This Figure corresponds to Example 3 of the text.

Figure 20: The error (6.168) per sample (Figure 19) and the number of
significant wavelet coefficients per time step in the approximation (6.167).
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6.3 Generalized Burgers’ Equation

In this Section we consider the numerical solution of the generalized Burgers’
equation

ut + uβux + λuα = νuxx, 0 ≤ x ≤ 1, t ≥ 0, (6.172)

for constants α, β, ν > 0 and real λ, together with an initial condition u(x, 0),
and periodic boundary conditions u(0, t) = u(1, t). This equation is thor-
oughly studied in [33] and we illustrate the results of a number of experi-
ments which may be compared with [33].

Example 4. In this example we set β = α = 1 and λ = −1, and consider
the evolution of a gaussian initial condition centered on the interval 0 ≤
x ≤ 1, e.g. u(x, 0) = u0e

−(σ(x−1/2))2 . On the interval, the decay of u(x, 0)
is sufficiently fast that we can consider the initial condition to be periodic.
We set n = 15, J = 4, ∆t = 0.001, and ε = 10−6. For easy comparison with
the results of [33], we choose ν = 0.0005. The approximation to the solution
of

ut + uux − u = νuxx, 0 ≤ x ≤ 1, t ≥ 0, (6.173)

is computed via

U(ti+1) = e∆t(ν∂2
x+I)U(ti)−

1

2
Õ∂2

x,1 [U(ti)∂xU(ti+1) + U(ti+1)∂xU(ti)] ,

(6.174)
where

Õ∂2
x,1 =

e∆t(ν∂2
x+I) − I

ν∂2
x + I

, (6.175)

and I is the identity operator. We have chosen to use the operator L in the
form L = ν∂2

x + I, see the development in e.g. Section 2. We note that the
NS-forms of the operators e∆t(ν∂2

x+I) and (6.175) are computed as described
in Section 4.

Due to the negative damping in (6.173), the operator ν∂2
x+I is no longer

negative definite. Therefore, if the nonlinear term were not present, thus
the solution would grow without bound as t increased. The solution of the
nonlinear Equation (6.173) evolves to form a single shock which grows as
it moves to the right. Figure 21 illustrates the evolution of the projection
of the solution and Figure 22 illustrates the number of significant wavelet
coefficients needed to represent the solution over the course of the experi-
ment. On the other hand, the presence of the nonlinearity may affect the
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growth of the solution, depending on the size of the coefficient ν. We have
increased the diffusion coefficient to ν = 0.005, and Figure 23 illustrates
the evolution of the projection of the solution and Figure 24 illustrates the
number of significant wavelet coefficients. We point out that the number of
operations required to update the solution is proportional to the number of
significant coefficients.

Example 5. As a final example, we compute approximations to the
solution of the so-called cubic Burgers’ equation

ut + u2ux = νuxx, 0 ≤ x ≤ 1, t ≥ 0, (6.176)

via

U(ti+1) = e∆tν∂2
xU(ti)−

1

2
O∂2

x,1

[
U2(ti)∂xU(ti+1) + U2(ti+1)∂xU(ti)

]
,

(6.177)
where O∂2

x,1 is given by (2.19). The only difference in (6.177), as compared
with the approximation to Burgers’ equations, (6.167), is the presence of
the cubic nonlinearity. We have computed approximations to the solution
using our algorithms with n = 13, J = 6, ∆t = 0.001, ν = 0.001, and
ε = 10−6. Figures 25 and 26 illustrate the evolution of the solution for a
gaussian initial condition, and Figures 27 and 28 illustrate the evolution of
the solution for a sinusoidal initial condition. The gaussian initial condition
evolves to a moving shock, and the sinusoidal initial condition evolves into
two right-moving shocks. We note that although the number of grid points
in a uniform discretization of such an initial value problem is, in this case,
N = 213, we are using only a few hundred significant wavelet coefficients to
update the solution.
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Figure 21: The projection on V0 of the solution of (6.173) at various time
steps. In this experiment n = 15, J = 4, ∆t = 0.001, ε = 10−6, and
ν = 0.0005. This Figure corresponds to Example 4 of the text.

Figure 22: The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 4 of the text.
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Figure 23: The projection on V0 of the solution of (6.173) at various time
steps. In this experiment n = 15, J = 4, ∆t = 0.001, ε = 10−6, and
ν = 0.005. This Figure corresponds to Example 4 of the text.

Figure 24: The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 4 of the text.

60



Figure 25: The projection on V0 of the solution of the cubic Burgers’ Equa-
tion (6.176) at various time steps, computed using a gaussian initial con-
dition. In this experiment n = 13, J = 6, ∆t = 0.001, ν = 0.001, and
ε = 10−6. This Figure corresponds to Example 5 of the text.

Figure 26: The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 5 of the text.
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Figure 27: The projection on V0 of the solution of the cubic Burgers’ Equa-
tion (6.176) at various time steps, computed using a sinusoidal initial con-
dition. In this experiment n = 13, J = 6, ∆t = 0.001, ν = 0.001, and
ε = 10−6. This Figure corresponds to Example 5 of the text.

Figure 28: The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 5 of the text.
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7 Conclusions

In this Chapter we have synthesized the elements of numerical wavelet anal-
ysis into an overall approach for solving nonlinear partial differential equa-
tions. We have demonstrated an approach which combines the desirable
features of finite difference approaches, spectral methods and front-tracking
or adaptive grid approaches usually applied to such problems. Specifically,
we have considered the construction of and adaptive calculations with op-
erator functions in wavelet bases, and we have developed an algorithm for
the adaptive calculation of nonlinear functions, e.g. f(u) = u2.

We used the semigroup method to replace the nonlinear partial differ-
ential equation (1.1) by a nonlinear integral equation (2.14), and outlined
our approach for approximating such integrals. These approximations are
expressed in terms of functions of differential operators, and we have shown
how to expand these operator functions into a wavelet basis, namely how
to construct the non-standard form (NS-form) representation. We then
presented a fast, adaptive algorithm for multiplying operators in the NS-
form and functions expanded in wavelet bases. Additionally, we have intro-
duced an adaptive algorithm for computing functions f(u), in particular the
pointwise product, where u is expanded in a wavelet basis. Both of these
algorithms have an operation count which is proportional to the number
of significant wavelet coefficients in the expansion of u, and we note that
both of these algorithms are necessary ingredients in any basis-expansion
approach to numerically solving PDE’s.

In order to verify our approach, we have included the results of a num-
ber of numerical experiments including the approximation to the solutions
of the heat equation, Burgers’ equation, and the generalized Burgers’ equa-
tion. The heat equation was included to illustrate a number of simple
observations made available by our approach. Burgers’ equation and its
generalization were included to illustrate the adaptivity inherent in wavelet-
based approaches, namely the ‘automatic’ identification of sharp gradients
inherent in the solutions of such equations. Since Burgers’ equation is the
simplest nonlinear example incorporating both diffusion and advection, it
is typically a first example researchers investigate when introducing a new
numerical method.

There are several directions for this course of work which we have left for
the future. One may consider nonperiodic boundary conditions instead of
the periodic boundary condition (1.3). This may be accomplished by simply
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using a wavelet (or multi-wavelet) basis on an interval rather than a peri-
odized wavelet basis. Also, we note that variable coefficients in the linear
terms of the evolution equation (1.1), see e.g. (6.162), may be accommo-
dated by computing the NS-form of the corresponding operators as outlined
in e.g. [9]. Another direction has to do with the choice of the wavelet ba-
sis. One of the conclusions which we have drawn from this study is that
there seems to be a number of advantages to using basis functions which
are piecewise polynomial. In particular the spline family of bases appears to
be attractive as well as multiwavelets, see e.g. [2]. In both cases there are
also disadvantages and an additional study would help to understand such
a tradeoff. Yet another extension, which of course is the ultimate goal, is to
consider multidimensional problems, e.g. the Navier-Stokes equations.

Finally, although we did not address in this Chapter the problem of com-
puting solutions of nonlinear partial differential equations having wave-like
solutions, let us indicate the difficulties in using a straightforward approach
for such equations. A simple example is the Korteweg-de Vries equation

ut + αuux + βuxxx = 0, (7.178)

where α, β are constant. Although our algorithm for computing the nonlin-
ear contribution to the solution can be directly applied to this problem, the
NS-form representation of the operator functions associated with this prob-
lem, e.g. eβ∆t∂3

x , may be dense even for rather small values of ∆t. Therefore,
the adaptivity and efficiency of our algorithm for applying the NS-form of
an operator to a function expanded in a wavelet basis are lost due to the
large number of significant coefficients present in the NS-form. Further
work is required to find ways of constructing fast, adaptive algorithms for
such problems.
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