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The relation is considered between the distorted-wave Born (DWB) and the distorted-wave Rytov (DWR) approxima- 
tions. Analyzing the Helmholtz equation, it is shown that the formal asymptotic justification of DWB and DWR approxi- 
mations remains the same as that of the ordinary ones. A relation is derived between the first DWB and DWR approxima- 
tions and an example given to emphasize that these approximations, though simply related, have quite different ranges of 
accuracy. 

This paper considers the relation between the dis- 
torted-wave Born (DWB) and the distorted-wave Rytov 
(DWR) approximations. The ordinary Born [I] and 
Rytov [2 ] approximations are used to simplify both 
forward and inverse problems of wave propagation in 
applications ranging from nuclear physics to seismic 
exploration (see refs. [4-71, for example). Within 
these approximations, the solution of a partial differ- 
ential equation is expressed as a perturbation about a 
known solution to a simpler equation. The only dif- 

ference between the ordinary and distorted-wave ap- 
proximations is that for the distorted-wave approach, 
one assumes that the known solution is already “per- 
turbed” relative to some ideal, simple model. 

To illustrate this we consider the Helmholtz equa- 
tion and show that the formal asymptotic justification 
of DWB and DWR approximations remains the same 
as that of the ordinary ones [3]. We also derive a rela- 
tion between the first DWB and DWR approximations 
and give an example to show that these approximations, 
though simply related, have quite different ranges of 
accuracy. 

We start with the homogeneous Helmholtz equa- 
tion 

[V2 +/&2(x)] U(x,k) = 0, (1) 

where n(x) is the index of refraction. We assume that 

n2(x)=ni(x)+ en,(x)+ e%r2(x)+ . ..) (2) 
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where E is a small paraineter. The index of refraction 
no(x) corresponds to the unperturbed model. In the 
case of the ordinary Born and Rytov approximations 
no(x) is a constant. 

The DWB approximation can be formally obtained 
if we seek a solution of eq. (1) in the form 

U(x,k)=U()(x,k)+eUJx,k)+ . . . . (3) 

Substituting expression (3) in (1) and equating coef- 
ficients of like powers of E, we arrive at equations for 
the functions U&x,k),j = 0,l . . . . 

(02 + k%r$Uu = 0, 

(V2 + k2n;)U, = -k2n U 1 0’ 

(V2 t k2n@12 = -k2n2Uo - k2n U 1 1’ 

. . . . (4) 

Eq. (3) is the DWB approximation and eqs. (4) show 
how to compute consecutive terms of series for U. 

In particular, if n;(x) = 1, then the DWB approxima- 
tion reduces to the classical Bron approximation. We 

then have Ui(x,k) = exp(+ikx mv), where v is a unit 
vector, and the function VI (x,z) satisfies the equation 

(V2 t k2)U,(x,k) = -k2n,(x) exp(tikx.v), 

etc. (see ref. [4] for example). 
We turn now to the Rytov approximation. The DWR 
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approximation can be obtained if we seek a solution 
of eq. (1) in the form 

U(x,k) = ,ik@@,k), (5) 

where the phase function +(x , k) is a formal series 

@(x,k) = @,Jx,k) + dl(x,k) + e2QZ(x,k) + . . . . (6) 

Using (5) and (1) we find that the phase function 
Q(x,k) satisfies the equation 

(V@)2 - rz2 t (l/&)02@ = 0. (7) 

We now substitute the series (6) in (7), equate the 
coefficients of powers of E, and arrive at equations for 
functions Qj(x,k),j = O,l...: 

(V@$ t (l/ik)V%, - iz; = 0, 

2V@, l vq + (l/ik)V2~, - rzl = 0, 

2V+, - V@, t (l/ik)V2@, - n2 + (VQ1)2 = 0, 

. . . . (8) 

Eqs. (5) and (6) are the DWR approximation and eqs. 
(8) show how to compute the consecutive terms of the 
series for Cp. Let us now compare DWB and DWR ap- 
proximations. It is easy to estimate the relative error 

of the mth DWR approximation. Indeed, it follows 
from (5) and (6) that 

(U- U,“)/U= 1 - exp -ik j=F+l ejaj) 
( 

= o(ikP+l@m+l>, 

where CJF is the mth Rytov approximation, 

m 

Ur(x,k) = exp ikrG dQj(x,k) . 

(9) 

To estimate the relative error of the DWB approxi- 
mation we first establish relations between terms in 
series in (6) and (3). We have 

X c 
j,fjyt...+jd=l 

(10) 

The mth DWB approximati.on is the sum of the m + 1 
first terms in (lo), 

Thereby, we have 

X c @jl @j2 . . . @jd 1 (11) 
jItjzt,..tjd=mtl 

Specifying the estimates (9) and (11) to the first 
DWB and DWR approximations, we have 

(U - Ui)lU = 1 - exp 
( 
-ik J$ ejQj) 

= 6 (ikE2a2), 

and 

Pa) 

(U - Z&/U = O(e2(ikQ2 - ;k2@f)). (1 la) 

When x and k are fixed, estimates in (9) and (11) dem- 
onstrate that both DWB and DWR approximations are 
of the same order of accuracy with respect to E. Clearly, 
however, the errors in these two approximations will 
behave differently as functions of x and k. 

Let us consider now the relation between the first 
DWB and the first DWR approximations. This relation 
for ordinary Born and Rytov approximations is of im- 
portance in linearized inverse scattering problems [7]. 
We set 

@ 
1 

= e-lXwOW 
1 (12) 

and obtain from (8) that the function W, satisfies the 

214 



Volume 53, number 4 OPTICS COMMUNICATIONS 15 March 1985 

following equation 

[V2 + k2n@)J W, = iknleik@o. (13) 

Also, from expressions (6) and (12) we have 

@i = a0 t ee-ik’oIV1. (14) 

Comparing (13) and the equation for the function U, 
in (4) and using (14) we arrive at the relation between 

the first DWB and DWR approximations, 

@k = (Pu t (e/ti)e”k@eU1, (15) 

where U, is the first-order term in the DWB approxi- 
mation, 

u; = uu + EU1. 

If n,,(x) = 1, relation (15) reduces to the well-known 
relation between classical Born and Rytov approxima- 
tions [8] . 

The first D WR and D WB approximations are always 
related through (15), but the domains over which they 
are accurate can be quite different as follows from es- 
timates in (9a) and (1 Ia). To show this, wei provide a 
simple example. Since DWR and DWB do not differ 
from ordinary Rytov and Born approximations with 
respect to this property, our example deals with the 
ordinary ones for simplicity. 

Consider a plane wave incident upon the interface 

between two homogeneous halfspaces (fig. 1). Let (y,z) 

Incident 
Plane Wave 

k?flected 
Plane Wave 

Transmitted 
Plane Wave 

Fig. 1. Plane wave incident upon tnt: mterface between two 
homogeneous halfspaces. 

be coordinates of points in this space and let the index 
of refraction be as follows 

n2ti,a) = 1 + nlti,z), (16) 

where 

nI(y,z)-nI(z)=O, z <o; 

2 =a _ 1, z>o (17) 

and a is a positive constant. Comparing (16) with (2) 
we set the parameter e = 1 in further consideration. 

The problem of scattering of the plane wave 

exp [ik( y sin 0 + z cos e)] , 

where 0 is a fixed angle and k is the wave number, can 
be solved explicitly. We have the following expressions 

for the field 

u(y,z) = exp[i/c(y sin 0 t z cos ey 

t R exp [ik( y sin B - z cos e)] , z<o; 

=Texp(ikbsinetz(l to)1/2 cose]),z>O, 

where 
08) 

a= (a2 - iyc0s2e. 

The reflection and transmission coefficients are given 

respectively by 

R = 1 - (1 + c&z 
T= 

2 

1 + (1 t 0)1/Z ’ 1 t (1 t cX)1/2 . 

To obtain the Rytov approximation to the field in 
(18) using a constant background with the index of re- 
fraction ni = 1 we first compute the phase of the back- 
ground field. The phase of the background field is the 
phase of the plane wave which is as follows 

The first perturbation of the phase, the function G1, 

depends only on z and satisfies the corresponding equa- 
tion in (8) which in this case reduces to 

d’$(z) 1 d”@,(a) 
2 case dzt----= 

ik &2 nI(z), (19) 

where nl (z) is described in (17). a1 (z) and its normal 
derivative d$ (z)/dz should be continuous at z = 0. 
Using these continuity conditions together with the 
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condition for the field to be outgoing for z > 0 we solve 
(19) and arrive at 

Q&z) = @1(z) 

= -(a/4ik) exp(-2ikz cos e), z < 0; 

= (zcY/2) cos e - 0!/4ik, z>o. (20) 

Therefore, the first Rytov approximation to the field 
is a follows 

uR(y,z) = exp[ik(y sin 19 + z cos 0) 

1 cue-2tiz cos e ] 
-;i 7 z<o; 

= exp[ik(y sin 8 t z cos e) 

+:ikzac0se-&I, Z>O. (21) 

Similar considerations of eq. (4) for the first Born ap- 
proximation yield 

uB(y,z) = exp[ik(y sin e + z cos e)] 

-&exp[ik(ysin8-zcOse)], z<O; 

= [i -idi - 2ikz c~se)l (22) 

X exp[ik(y sin e t z cos e)] , z >o. 

Eqs. (21) and (22) are obviously related through (15). 
However, for a given value of z , their accuracy is quite 
different, as follows from comparisons with the exact 
solution. In particular, the difference-between the two 
is dramatic for the transmitted field (z > 0) due to the 
presence of the term proportional to z in the Born ap- 
proximation (22) for the transmitted field. Because of 
this term, the error accumulates with increasing z, no 
matter how small the perturbation is. In contrast, the 

Rytov approximation (2 1) provides a reasonable ans- 
wer. 

The same conclusion about the behavior of Born 

and Rytov approximations can be drawn from esti- 
mates (9a) and (1 la). Using corresponding equation in 
(8) we compute the function a2 and obtain 

Gc@~(z)=&~~ exp(-2ikz cos e) 

-&a2 exp(-4ikz COST), Z< 0; 

=-;ikzcw2 COS~-+Y~, z > 0. 

Compared to the relative error of the Rytov approxima- 
tion (9a), the estimate of the relative error of the Born 
approximation (1 la) has an extra term $k2@f. It fol- 
lows from (20) that this term is as follows 

1 2 ;k2@;(z) = --%a , z<o; 

=&2(kzcose-1/2i)2, z>O, 

which predicts much faster accumulation of error in 
the Born approximation compared to the Rytov ap- 
proximation for the transmitted field (z > 0). 
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