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Abstract

We develop a two-dimensional solver for the acoustic wave equation with spatially varying coefficients. In what is a new
approach, we use a basis of approximate prolate spheroidal wavefunctions and construct derivative operators that incorporate
boundary and interface conditions. Writing the wave equation as a first-order system, we evolve the equation in time using the
matrix exponential. Computation of the matrix exponential requires efficient representation of operators in two dimensions and for
this purpose we use short sums of one-dimensional operators. We also use a partitioned low-rank representation in one dimension
to further speed up the algorithm. We demonstrate that the method significantly reduces numerical dispersion and computational
time when compared with a fourth-order finite difference scheme in space and an explicit fourth-order Runge–Kutta solver in time.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we demonstrate how to use bases for bandlimited functions in algorithms of wave propagation. Using
bandlimited functions allows us to achieve a low sampling rate while significantly reducing numerical dispersion.
In addition, we show how to compute and use the matrix exponential as a propagator by employing separated and
partitioned low rank representations.

Using bases for bandlimited functions is a significant departure from the usual approach in numerical analysis.
For example, the standard notion of the order of approximation is not appropriate in its usual form since in our
construction the basis itself is generated for a finite but arbitrary accuracy. We note that the methods we describe in
this paper are applicable to many other problems.
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The first step in constructing a numerical scheme is to select a basis for representing solutions and operators.
Typically, in spectral and pseudo-spectral methods, the trigonometric functions{eikπx}N

k=0 have been used for
periodic, and Legendre and/or Chebyshev polynomials for non-periodic problems. Instead, we consider bandlimited
functions on an interval. A basis for bandlimited functions, the prolate spheroidal wave functions (PSWFs), was
introduced in the 1960s by Slepian et al. in a series of papers[1–5]. Recently the generalized Gaussian quadratures
became available in[6,7], making it possible to construct efficient numerical algorithms for such functions.

We review the construction of three bases for bandlimited functions. First we consider bases{eicθkx}N
k=1 on

the interval [−1,1], where|θk| < 1 are the nodes of the generalized Gaussian quadrature constructed for a given
precision and bandlimit. We note that these functions are not necessarily periodic. Such bases may not be suitable
for some numerical computations (heuristically, they correspond to the basis of monomials). For this reason, we
also consider bases of approximate PSWFs and interpolating bases and use them in our computations.

There are at least two deficiencies of orthogonal polynomials in using them for numerical computations. First
is the concentration of Gaussian nodes near the end points of the interval. Second is the sampling rate that never
approaches, even asymptotically, the rate for periodic functions, namely,π versus two points per wavelength, see
e.g. [8]. As it turns out, the nodes of the generalized Gaussian quadratures for exponentials do not concentrate
excessively (the rate reported in[6] is in error, seeSection 2.2) and the sampling rate asymptotically approaches
the rate for periodic functions.

In recent preprints[9,10] the authors present a study of the PSWFs as a tool for solving PDEs. We note that
our use of the PSWFs differs in several ways that have a significant impact on the performance. We first select the
desired accuracy and then, for a given bandlimit, construct the (nearly) optimal quadratures for these parameters.
Alternatively, for a selected accuracy and a given number of nodes, we find the largest possible bandlimit (see
discussion inSection 2.2). We note that in[9,10] the number of nodes is selected proportional to the bandlimit,
which is not the optimal choice. We also use a different approach to time evolution described below.

An important observation in using the PSWFs is that the norm of the derivative matrix based on bandlimited
functions is smaller than that based on polynomials. In constructing derivative operators we incorporate boundary
conditions into the derivative matrix. In the case of discontinuous interface conditions, these conditions are also
incorporated into the derivative matrix in a way similar to[11]. We also use the spectral projector to remove spurious
large eigenvalues and corresponding eigenspaces from the derivative operators, thus further reducing their norm.
For time evolution we use a semigroup approach (that involves computing the matrix exponential) and compare it
with the standard fourth-order Runge–Kutta method. We note that for time evolution one can also use the approach
introduced in[12] or the spectral method in[13]. We will discuss approaches that avoid computing the matrix
exponential explicitly elsewhere.

We write the acoustic equation as a first order system[14]. After discretizing the spatial operator, the equation
takes the form of the system of linear first order ordinary differential equations:

ut = Lu+ F(t)

with the initial conditionu(0) = u0. In the case of time independent coefficients, the solution is given by

u(t) = etL u0 +
∫ t

0
e(t−τ)L F(τ) dτ. (1)

Using(1) for time evolution requires computing the matrix exponential e
tL for a time step
t. The computation
of e
tL and applying it to a function is costly in dimensions 2 and higher and, therefore, this approach is rarely used
for numerical computations.

We use the separated representation introduced in[15] to represent the operatorL for problems in two or higher
dimensions. This representation significantly reduces the cost of computing the matrix exponential and matrix–
vector multiplications. The separated representation of an operator in two or higher dimensions is given by a sum
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of products of operators acting in one dimension. We refer to the number of terms in the separated representation
as the separation rank. The separation rank for the matrix exponential e
tL grows with the size of the time step
t,
and we will see that a time step between one and two temporal periods is appropriate to control both the separation
rank and the number of time steps. We note a typical time step in problems of wave propagation is a fraction of a
temporal period.

We reduce the computational cost further by using the partitioned low-rank (PLR) representation for operators
acting in one dimension. This representation is similar to the partitioned singular value decomposition considered
in [16,17]. We note that both the separated and PLR representations are interesting on their own, with applications
in other areas, e.g., computational quantum mechanics (see[15,18]).

We note that in[19,13] the authors present a spectral method for applying the matrix exponential without
constructing such matrix. Our approach is competitive if the problem has to be solved repeatedly for the same
model with different initial conditions. We will consider a comparison of the method in[19,13]with our approach
separately.

We begin with a review of the bandlimited functions inSection 2and construct derivative operators incorporating
boundary and interface conditions in the following section. InSection 4we provide several numerical examples
demonstrating the accuracy of the derivative matrix based on bandlimited functions and also construct integration
operators with respect to bandlimited functions. In the following section we review the separated representation
and the PLR representation, and describe linear algebra algorithms for operators in these representation. We also
introduce the PLR representation and describe linear algebra algorithms for operators in this representation. Finally,
we apply these tools to solve the acoustic equation in two dimensions inSection 6and give a number of numerical
examples and comparisons.

2. Bandlimited functions and their approximations

In physical phenomena there is always a bound for both the spatial/time extent and the wavenumber/frequency
range. However, a function cannot be compactly supported in both the space and the Fourier domain. In order
to manage this apparent contradiction, it is natural to consider the basis of eigenfunctions of the space and band
limiting operator. This has been the topic of a series of papers by Slepian et al.[1–5], which introduced the prolate
spheroidal wave functions (PSWFs) as an eigensystem bandlimited in [−c, c] and maximally concentrated within
the space interval [−1,1].

The bandlimited periodic functions can be expanded into the Fourier basis{eikπx}N
k=0 or, if we consider zero

boundary conditions, into the basis{sink(π(x + 1))/2}Nk=1. However, in order to divide the computational domain
into subdomains, we need to allow arbitrary boundary conditions on the subdomains, and neither the Fourier nor
the sine basis are then acceptable. This motivates the introduction of a basis that can efficiently represent functions
of the typeeibx for an arbitrary real valueb, such that|b| < c, wherec is a fixed parameter, the bandlimit.

We note that solutions of equations of mathematical physics behave more like exponentials than polynomials.
This provides a naive but compelling motivation for using bandlimited functions rather than polynomials, as a
tool for approximating solutions. As we demonstrate, for a given accuracy, computing with bandlimited functions
significantly reduces the computational cost.

2.1. The prolate spheroidal wave functions

Let us briefly review the results in[1,2,20]relevant to the purposes of this paper. The PSWFs are constructed for
a fixed bandlimitc > 0. Consider the operatorFc : L2([−1,1]) → L2([−1,1]):

Fc(ψ)(ω) =
∫ 1

−1
eicxω ψ(x) dx (2)
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andQc = (c/2π)F∗
c Fc:

Qc(ψ)(y) = 1

π

∫ 1

−1

sin(c(y − x))

y − x
ψ(x) dx.

The PSWFs are the eigenfunctions of the operatorsQc andFc. The eigenvaluesλ of Fc andµ of Qc are related via

µ = c

2π
|λ|2. (3)

In our notation we may suppress the dependence of the eigenfunctions and eigenvalues onc.
Let us consider the spaces of bandlimited functions,

Bc = {f ∈ L2(R)|f̂ (ω) = 0 for |ω| ≥ c}.

The PSWFs form a complete basis inL2([−1,1]) andBc [1]. The eigenfunctionsψj(x) are real and orthogonal on
both [−1,1] andR:∫ 1

−1
ψi(x)ψj(x) dx = δij (4)

and ∫ ∞

−∞
ψi(x)ψj(x) dx = 1

µi

δij, (5)

whereµi are eigenvalues of the operatorQc.
The PSWFs are uniformly bounded on [−1,1], ‖ψj‖L∞([−1,1]) ≤ Kc, for some constantKc, for all j = 0,1, . . .

The existence ofKc can be proven by observing that the PSWFs approach the Legendre polynomials forj � c,
although finding tight bounds remains an open problem.

The eigenvalues ofQc are real and the spectrum is naturally divided into three parts. For large bandlimitsc, the
first ≈ 2c/π eigenvaluesµi of Qc are close to 1. The next≈ logc eigenvalues make an exponentially fast transition
to zero and the remaining eigenvalues are very close to zero.

We have from(2) the spectral decomposition of the kernel:

eicωx =
∞∑
j=0

λjψj (ω)ψj (x) (6)

for all x, ω ∈ [−1,1]. This is the most efficient separated representation for eicωx, where the series can be truncated
for somej > 2c/π, due to the exponential decay of the eigenvaluesλj.

For the derivatives of PSWFs we establish the following proposition.

Proposition 1. On the interval[−1,1],

∥∥∥∥dψj

dx

∥∥∥∥
L2([−1,1])

≤ c‖ψj‖L2(R) = c√
µj

.

The proof follows from Bernstein’s inequality(see e.g. [21. Ch. 2.5])and‖ψj‖L2(R) = 1/
√
µj. It is interesting to

compare this bound with another version of Bernstein’s inequality(see, e.g., [21, Ch. 2.4]), which states that ifp(x)
is annth degree polynomial on the interval [−1,1] and|p(x)| ≤ 1 then, on this interval,|p′(x)| ≤ n2.

Recently, the generalized Gaussian quadratures for bandlimited exponentials were developed in[6,7].
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Proposition 2. For c > 0andε > 0,we construct nodes−1 < θ1 < θ2 < · · · < θM < 1andweightswk > 0,such
that for anyx ∈ [−1,1]:∣∣∣∣∣

∫ 1

−1
eictx dt −

M∑
k=1

wk eicθkx

∣∣∣∣∣ < ε (7)

and the number of nodes, M, is (nearly) optimal. The nodes and weights maintain the natural symmetry, θk =
−θM−k+1 andwk = wM−k+1.

Thus, we can integrate all functionseibx with |b| < c usingProposition 2. The nodes and weights inProposition 2
are computed as a function of the bandlimitc > 0 and the accuracyε > 0 and can be viewed as the generalized
Gaussian quadratures for the bandlimited functions. We note that the algorithm in[7] identifies the nodes of the
generalized Gaussian quadratures as zeros of thediscreteprolate spheroidal wave functions (DPSWF) corresponding
to small eigenvalues. For a study of DPSWFs we refer to[5].

2.2. On the distribution of nodes for Gaussian quadratures

As it is well known, nodes of Gaussian quadratures (both the usual and generalized) accumulate near the end
points as the number of nodes grows. The rate of such accumulation has a critical influence in a variety of applications
where quadratures are used either for integration or interpolation.

Although we compute the nodes and weights as in[7] by selecting first the bandlimit,c, and then computing
the minimal (or nearly minimal) number of nodes,M, to achieve a given accuracyε, once such quadratures are
generated we use the number of nodes as the variable andc = c(M, ε) to study node accumulation.

Let us consider the ratio

r(M, ε) = θ2 − θ1

θ�M/2� − θ�M/2�−1
, (8)

where “�M/2�” denotes least integer part. Observing that the distance between nodes of the Gaussian quadratures
changes monotonically from the middle of the interval toward the end points, and that the smallest distance is
between the two nodes closest to an end point, this ratio can be used as a measure of node accumulation. For
example, the distance between the nodes near the end points of the standard Gaussian quadratures for polynomials
decreases asO(1/M2), whereM is the number of nodes, so that we haver(M, ε) = O(1/M).

Using the method in[7], we have computed the generalized Gaussian quadratures for different accuracies and
observed the rater(M, ε) at which nodes accumulate near the end points. We illustrate our results for two choices
of accuracy,ε ≈ 10−7 and≈ 10−17. The error

ε(M) = max
x∈[−1,1]

∣∣∣∣∣2sincx

cx
−

M∑
m=1

wm eicθmx

∣∣∣∣∣ (9)

was computed by selecting equally spaced points in [−1,1] (including the end points) with an oversampling factor
of 10. Although we attempted to maintain a fixed accuracy, it is changing slightly asM varies and it results in a
jittery appearance of graphs inFigs. 1 and 2.

In Fig. 1we show that the oversampling factor:

α(M, ε) = πM

c(M, ε)
> 1

approaches 1 for large M. This factor compares the critical rate of sampling of smooth periodic functions, either for
integration or interpolation, to that of smooth (non-periodic) functions on an interval. We recall that in the case of
the Gaussian quadratures for polynomials this limit isπ/2 rather than 1 (see e.g.[8]).
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Fig. 1. The ratior(M, ε) in (8) and the oversampling factorα(M, ε) plotted against the number of nodes for quadratures of accuracyε ≈ 10−7

and≈ 10−17 (see alsoFig. 2).

We note that an erroneous comment was made in[6] about the rate of accumulation of nodes, suggesting that
(in our terms)r(M, ε) = O(1/

√
M). Our results clearly rule out this rate of accumulation, suggesting instead that

the ratio approaches a constant,r(M, ε) = O(− logε), although there might be weaker terms not easily observable
in our experiments. An asymptotic analysis of DPSWFs and PSWFs should lead to an analytic estimate ofr(M, ε).

We also note that there have been attempts to modify the polynomial based quadratures to avoid the problems
caused by the accumulation of nodes near the end points[23,24]. However such approach resolves the issues
associated with using such quadratures only partially.

2.3. Bases for bandlimited functions on an interval

Following [7], let us define

Ec =
{
u ∈ L∞([−1,1])|u(x) =

∑
k∈Z

ak eicbkx : {ak}k∈Z ∈ l1,bk ∈ [−1,1]

}
.

Fig. 2. The accuracy of the quadratureε(M) in (9) as a function of the number of nodes.
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We haveEc ⊆ C∞([−1,1]) and prove the following theorem (seeAppendix A)

Theorem 3. For everyε > 0 andu ∈ Bc there exists a functioñu ∈ Ec, such that‖u − ũ‖L2([−1,1]) < ε.

Any bandlimited function fromEc can be approximated by a linear combination of a finite number of exponentials
in the form eicθkx where |θk| ≤ 1. The phasesθk are chosen as nodes of the generalized Gaussian quadratures
([7, Theorem 6.1], see also[6]). Following[7], we use the quadrature nodes and weights to construct bases forEc.

Theorem 4. Consideru ∈ Ec,

u(x) =
∑
k∈Z

ak eibkx

and let{θl}Ml=1 and{wl}Ml=1 be quadrature nodes and weights for the bandlimit2c and accuracyε2. Then there exist
coefficients{ul}Ml=1 and a constant A such that

∥∥∥∥∥u(x) −
M∑
l=1

ul eicθl x

∥∥∥∥∥
L∞([−1,1])

≤ A

(∑
k∈Z

|ak|
)
ε.

The set of exponentials{eicθkx}M
k=1 may be viewed as a basis for bandlimited functionsEc with accuracyε. The

basis of exponentials has the obvious advantage of being easy to differentiate and integrate but these functions are
far from being orthonormal and one must be careful using them for numerical computations. In this respect they
are analogous to monomials as a basis for polynomials. In order to construct a basis analogous to the orthogonal
polynomials, we turn to the PSWFs.

Instead of using the PSWFs directly, we choose to construct their approximations[7], as it is sufficient for our
purposes. Given the bandlimitc > 0 and accuracy thresholdε > 0, let us construct quadrature nodes and weights
according toTheorem 4. We then solve the algebraic eigenvalue problem:

M∑
l=1

wl eicθmθl �j (θl ) = ηj�j (θm) (10)

and define the approximate PSWFs on [−1,1] by

Ψj(x) = 1

ηj

M∑
l=1

wl eicxθl �j (θl ), (11)

whereψ(θl) are the eigenvectors in(10).
The matrix in(10)does not have zero eigenvalues as can be easily checked numerically although we do not have a

proof for this fact. We expect the eigenvalues{ηj}Mj=1 to approximate the firstM eigenvalues{λj} and eigenvectors of
Fc. This is indeed the case, with the exception of small eigenvalues, where the relative error may be large. Since the
absolute values of the first� 2c/π eigenvalues in(2) are very close, some of them are numerically indistinguishable
(within the machine precision). As a result, we do not construct approximations to the individual PSWFs via(10)
but, instead, approximate correctly the subspace spanned by these functions.

Let us consider the inner products of functions in(11):

Sij =
∫ 1

−1
Ψi(x)Ψj(x) dx (12)

for i, j = 1, . . . ,M. We have the following proposition(see [7], Proposition 8.1).
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Proposition 5. The functionsΨm andΨn are nearly orthogonal and the elements of S satisfy

|Smn − δmn| ≤




ε2∑M
k=1 wk

|ηm‖ηn| if Ψm and Ψn are both even or both odd

0 otherwise

.

The matrixSdeviates from the identity matrix only when bothηm andηn are small and close toε. We observe that
in our numerical experiments the condition number ofShas been less than 3.

In many applications, it is convenient to work with function values as well as with expansion coefficients with
respect to a set of basis functions. Following[7], we define the interpolating basis functions for bandlimited functions
as

Rk(x) =
M∑
l=1

rkl eicθl x (13)

for k = 1, . . . ,M, where

rkl =
M∑
j=1

wk�j(θk)
1

ηj
�j(θl)wl.

It is shown in[7] that the functionsRk(x) are interpolating,Rk(θl) = δkl.

2.4. Examples of approximation by bandlimited functions

The three bases forEc, the exponential basis, the basis of approximate PSWFs, and the interpolating basis span
the same subspace since they are constructed as linear combinations of the eigenvectors in(10). However, it is
important to observe that the condition numbers of the transformation matrices for changing bases are drastically
different and determine how these bases are used for numerical computations. InTable 1we display the condition
numbers of transformation matrices for two accuracies. In both cases the condition number for transforming between
approximate PSWFs and the interpolating basis is small, while the other transformation matrices have very large
condition numbers.

This is similar to transformations between bases spanning the subspace of polynomials of degree≤ N, namely,
the monomials, the Legendre polynomials, and the Lagrange interpolating polynomials with the Legendre nodes.
The basis of monomials corresponds to the basis of exponentials, while the basis of approximate PSWFs (which
are nearly orthonormal) is similar to that of the Legendre polynomials.

Let us provide several examples of approximation by the bandlimited functions. In our examples we sample
the function at the quadrature nodes which gives us the coefficients of the interpolating basis. We then find the

Table 1
Condition number for transformation matrices,c = 8.5π

Transformation matrix ε = 10−7 ε = 10−14

Prolate→ interpolating 2.7 3.5
Exponential→ prolate 1.1 × 108 2.5 × 1014

Exponential→ interpolating 1.2 × 108 3.1 × 1014

The accuracyε = 10−7 requires 32 nodes and the accuracyε = 10−14 requires 41 nodes.
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Fig. 3. Absolute error (log10) for approximating the functioneibx in the interval [−1,1] with |b| ≤ 16π. We use quadratures with 32 nodes and
different accuracies.

expansion coefficientsβk with respect to the basis of the approximate PSWFs:

f (x) �
N∑

k=1

βkΨk(x). (14)

Expanding each PSWF via exponentials, we obtain the coefficientsαk and

f (x) �
N∑

k=1

αk eicθkx. (15)

In Fig. 3we illustrate the error of approximating the functioneibx in the interval [−1,1]. In Fig. 4we display the
error of approximating the Chebyshev polynomials and an “almost” bandlimited Gaussianf (x) = e−x2/2σ2

on the
interval [−1,1] with variancesσ2 ∈ [0.00005,5].

Fig. 4. Absolute error (log10) of approximating the Chebyshev polynomialsTk(x), k = 0, . . . ,63, on [−1,1] (left) and the Gaussians using
approximate PSWFs. We use quadratures with 64 nodes and different accuracies.
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3. Derivative matrices with boundary and interface conditions

In this section we illustrate how to incorporate the boundary and interface conditions into the derivative operator.
We follow the method in[11] (essentially the tau method, see e.g.[25,26]) and extend the technique to a non-
orthogonal basis since the approximate PSWFs{Ψi(x)}Mi=1 are not orthonormal.

Let S be theM-by-M matrix (12). We consider the derivative operator on an interval subdivided into subin-
tervals and use 2N subintervals noting that other subdivisions are also possible. We set ¯xl = −1 + 21−Nl for
l = 0,1, . . . ,2N , and defineφkl(x) by

φkl(x) =
{
Ψk(2N (x − x̄l) − 1), x ∈ [x̄l, x̄l+1],

0, x �∈ [x̄l, x̄l+1]
(16)

for l = 0, . . . ,2N − 1 andk = 1, . . . ,M.
Consider functionsf (x) of the form

f (x) =
2N−1∑
l=0

M∑
i=1

silφil(x). (17)

Let us represent the derivativef ′(x) as

df

dx
=

2N−1∑
l=0

M∑
i=1

s̃ilφil(x), (18)

where the transition matrix between the coefficientssil ands̃il has the block tridiagonal structure

D =




rl0 r−1 rl1

r1 r0 r−1

r1 r0 r−1

...
...

...

...
...

...

r1 r0 r−1

r1 r0 r−1

rr−1 r1 rr0




, (19)

where each block is anM × M matrix.
For each interval let us definesl = [s1l, s2l, . . . , sMl]T ands̃l = [s̃1l, s̃2l, . . . , s̃Ml]T for l = 0, . . . ,2N − 1, where

the coefficientssil ands̃il are the expansion coefficients in(17)and(18). Following the derivation in[11], we obtain

Ss̃l = −bG∗s̃l−1 + ((1 − a)F − (1 − b)E − K)sl + aGsl+1 (20)

for l = 0, . . . ,2N − 1, whereE, F andG are rank one matrices defined by

Ekl = Ψk(−1)Ψl(−1), Fkl = Ψk(1)Ψl(1) and Gkl = φΨk(1)Ψl(−1),

and 0≤ a, b ≤ 1 are coupling parameters for the subintervals. For the first subinterval we have

Ss̃0 = ((1 − a)F − E − K) s0 + aGs1 (21)
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Table 2
The expressions for the blocks in(19)

Stencil type Expression

Periodic r1 = rll = − 1
2(S−1G∗)

r−1 = rr−1 = 1
2(S−1G)

rl0 = rr0 = r0 = 1
2(S−1(K∗ − K))

f (±1) = 0 r−1 = 1
2(S−1G)

r1 = − 1
2(S−1G∗)

rl0 = S−1( 1
2F − K)

r0 = 1
2(S−1(K∗ − K))

rr0 = S−1(− 1
2E − K)

f (±1) arbitrary r−1 = 1
2(S−1G)

r1 = − 1
2(S−1G∗)

rl0 = S−1( 1
2F − E − K)

r0 = 1
2(S−1(K∗ − K))

rr0 = S−1(F − 1
2E − K)

Only non-zero blocks shown.

and iff (−1) = 0, then

Ss̃0 = ((1 − a)F − K)s0 + aGs1. (22)

For the last subinterval we have

Ss̃2N−1 = −bG∗s2N−2 + (F + (b − 1)E − K)s2N−1 (23)

and iff (x̄2N−1) = 0, then we obtain

Ss̃2N−1 = −bG∗s2N−2 + ((b − 1)E − K)s2N−1, (24)

whereG∗ denotes the complex transpose.
In order to construct derivative matrices for periodic boundary conditions, we use(20)for the interior subintervals.

For the first and the last subintervals we use(20) by identifyings−1 = s2N−1 ands2N = s0. Using(20)–(24)with
a = b = 1/2, we obtain expressions for the blocks in(19)as shown inTable 2, where we usedK = F − E − K∗.

If we have only one interval, then the derivative matrix for arbitrary boundary values isD = S−1K∗, the derivative
matrix for zero boundary conditionsD0 = −S−1K, and that for periodic boundary conditions is given by

Dper = 1
2(S−1(G − G∗ − K + K∗)).

4. Differentiation and integration of bandlimited functions

Let us compare numerical differentiation and integration of bandlimited functions with finite differences and
pseudo-spectral methods. We use the derivative operators constructed in the previous section and demonstrate that
using spectral projectors to remove spurious eigenvalues of derivative matrices with boundary conditions improves
the accuracy.

For the first test let us fix the number of nodes and change the accuracyε, thus obtaining different bandlimits
c. Using 32 nodes on the interval [−1,1], we note that corresponding bandlimit for periodic functions (sampled at
the Nyquist frequency) is 16π. We construct 4 derivative matrices using 32 nodes and accuraciesε equal to 10−13,
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Fig. 5. Absolute (left) and relative (right) errors for the first derivative of the functioneibx in the interval [−1,1] with |b| ≤ 16π using a basis
of 32 approximate PSWFs.

10−10, 10−7, and 10−4, with the corresponding bandlimitsc set to 5.5π, 7π, 8.5π, and 10.5π, respectively. We
differentiate the functionf (x) = eibx (not necessarily periodic in [−1,1]) for 200 values ofb, −16π ≤ b ≤ 16π.
For eachb we differentiate using 32× 32 derivative operator and then interpolate the result to 32 equally spaced
points (including the end points) in the interval [−1,1] and compare it with the exact answer. The result is shown
in Fig. 5.

We note fromFig. 5that the error is almost uniform for|b| ≤ c. It is also clear that a derivative matrix constructed
for a lower accuracy gives a good approximation within a larger bandwidth than a derivative matrix constructed for
a higher accuracy.

Compared toFig. 3 we note that we lose 2–3 digits in differentiation. This is expected since according to
Proposition 1the ratio‖Du‖2/‖u‖2 is approximately bounded byc and, thus, the absolute error may be amplified
by a factor≈c. Since the maximum absolute norm of deibx/dx equalsb, dividing the absolute error byb gives us
the relative error which is smaller than the absolute error for all but the lowest frequencies (seeFig. 5).

4.1. Comparison with pseudo-spectral methods and finite differences

Let us now compare the accuracy of differentiation using approximate PSWFs to a second order finite-difference
and spectral differentiation. For spectral differentiation we use the Chebyshev polynomials. We construct two
derivative matrices using approximate PSWFs for the accuracyε = 10−7 and bandlimitc = 8.5π, andε = 10−13

and bandlimitc = 5.5π. For comparison, we construct a second-order central finite-difference derivative matrix,
using a second order boundary stencil for the first and the last row of the matrix. For the spectral differentiation, we
construct a block diagonal derivative matrix where each diagonal block is a derivative matrix with respect to the first
eight Chebyshev polynomials constructed using the algorithm in ([25, Appendix C]). Each block is applied to one of
the four subintervals [−1,−1/2], [−1/2,0], [0,1/2], and [1/2,1]. We use subdivision since the derivative matrices
based on Chebyshev polynomials tend to have large norm for high degree polynomials[27]. We differentiate the
functionf (x) = sin(bx) for 200 values ofb, −16π ≤ b ≤ 16π. The result is shown inFig. 6.

We next consider an experiment using 64 nodes. We construct two derivative matrices using PSWFs with the
accuracyε = 10−7 and bandlimitc = 23π, and withε = 10−13 and bandlimitc = 18.5π. For comparison, we
construct a second-order central finite-difference derivative matrix and, for spectral differentiation, a block diagonal
spectral derivative matrix where each diagonal block is a derivative matrix with respect to the first 16 Chebyshev
polynomials. We differentiate the functionf (x) = sin(bx) for 200 values ofb, −32π ≤ b ≤ 32π. The result is
shown inFig. 6.
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Fig. 6. Comparison of absolute errors for the first derivative of the function sin(bx) in the interval [−1,1] with |b| ≤ 16π and|b| ≤ 32π. The
derivative matrices in the basis of approximate PSWFs are constructed using 32 and 64 nodes.

4.2. Using spectral projectors to improve accuracy

The accuracy of the derivative matrix can be increased by projecting out a subspace corresponding to “spurious”
eigenvectors. Our approach is similar to filtering of eigenvalues of derivative matrices obtained with polynomial
quadratures (see e.g.[28]). We describe such projection for the first derivative operator with the periodic boundary
conditions and later use it for the second derivative operator with zero boundary conditions.

Consider the eigenvalue problem

Du ≡ u′ = λu, u(−1) = u(1). (25)

It is easily seen that

uk(x) = eikπx,

for k = 0,1, . . ., are eigenfunctions of (25) with the corresponding eigenvaluesλk = ikπ. Let us consider a dis-
cretization ofDobtained by using the approximate PSWFs with the bandlimitc. The eigenfunctions of the discretized
problem mimic the eigenfunctionsuk(x) and we obtain a good approximation ofuk(x) for all k = 0,1, . . . such
thatkπ ≤ c. Forc/π < k ≤ N, the eigenvectors “attempt” to describe the corresponding eigenfunctionsuk(x), but
the accuracy of the approximation rapidly decrease with increasingk. We note that the eigenvectors corresponding
to eigenfunctionsuk(x) for k > c/π are not useful to us, since we seek an approximation of bandlimited functions
within the bandlimitc. Hence, the eigenvectors corresponding to frequenciesk > c/π can be discarded. More for-
mally, letP denote the projector onto the space spanned by all eigenfunctionsuk(x) such thatk ≤ c/π. Our goal is
then to find a derivative matrix that approximates the operatorPDP.

To project the derivative matrixD, we diagonalizeD and set the unwanted eigenvalues to zero. Formally, let
us denote byek andfk the left and the right eigenvectors ofD, with the eigenvalueλk. We scaleek (or fk) so that
f Tk ek = 1 and definePk = ekf Tk . SinceD is anN-by-N diagonalizable matrix, we haveD = ∑N

k=1 λkPk. Then the
projected matrixD̃ is given byD̃ = ∑

|λk |≤c λkPk. Alternatively, we can use the sign iteration method described in
[17].

The same procedure applies to the second derivative operator with zero boundary conditions. The second deriva-
tive is constructed asL0 = DD0, whereD is the first derivative operator without boundary conditions andD0 is the



276 G. Beylkin, K. Sandberg / Wave Motion 41 (2005) 263–291

Fig. 7. Comparison of the error for spectrally projected second derivative with zero boundary conditions (left) and the error for different
accuracies (right) for the function sinbkx, wherebk = kπ/2, k = 1, . . . ,64.

first derivative operator with zero boundary conditions. We then apply the spectral projector and arrive at

Lproj =
∑

|λk |≤c2

λkekf Tk ,

whereek andfk are the left and the right eigenvector ofL0, respectively, scaled such thatf Tk ek = 1.
Let us demonstrate the impact of using the spectral projector. We construct two second derivative matrices

with zero boundary conditions with and without the spectral projector, for the bandlimitc = 20.5π and accuracy
ε = 10−10 using 64 nodes. In all experiments we differentiate the functionf (x) = sinbkx, wherebk = kπ/2,
k = 1, . . . ,64. If we use the projected derivative matrix, then the error is smaller within the bandlimitc, as shown
in Fig. 7. We attribute reduced error to a smaller norm of the projected derivative matrix (by a factor≈50) and zero
eigenvalues for highly oscillatory, spurious eigenfunctions. We further illustrate inFig. 7 the performance of the
projected derivative matrix for different accuracy thresholds and resulting different bandwidths.

4.3. The integration operator

In solving integral equations it is often useful to map a sequence of function values{f (θk)}Nk=1 to the sequence

of integrals{∫ θk
−1 f (x) dx}Nk=1. Let us construct an integration matrix for bandlimited functions on an interval,

Tlk =
∫ θk

−1
Rl(x) dx,

whereRl(x) is a function of the interpolating basis for bandlimited functions. We use the definition ofΨl to
obtain

∫ θk

−1
Ψl(x) dx = 1

ηl

N∑
m=1

wm�l(θm)
eicθmθk − e−icθm

icθm
,

and proceed by using the definition ofRl(x) in terms of the approximate PSWFs to obtainTlk.
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Fig. 8. Absolute error for integrals
∫ θk
−1 eibx dx with |b| ≤ 32π, where{θk}64

k=1 are the quadrature nodes.

Let us illustrate the accuracy of integration using the bandlimited functions. We use 64 nodes and construct 4
derivative matrices using the same setting for the bandlimits and the accuracies as before. Let{θk}64

k=1 be a set of

the generalized Gaussian quadrature nodes for bandlimited functions. We compute the integrals
∫ θk
−1 e

ibx dx for 200
values of−32π ≤ b ≤ 32π. The results are shown inFig. 8.

5. Separated and partitioned low rank representations of operators

Using the matrix exponential to solve the wave equation allows us to take large time steps while controlling
the accuracy. However, computing the matrix exponential directly in two and higher dimensions becomes pro-
hibitively expensive even for moderate matrix sizes since the computational cost of the matrix-matrix multiplication
is O(N3d) in d-dimensions. In order to overcome the prohibitive cost of computing and using the matrix exponential,
we need an efficient operator representation. We use separated representations that have been introduced in[15].
In this paper we consider only the two-dimensional case, and note that our approach generalizes to higher dimen-
sions using the algorithms in[15]. For operators in each separated direction we also use the so-called partitioned
low rank (PLR) representation, a simplification of the partitioned singular value decomposition (PSVD) used in
[16,29,30,17].

5.1. The separated representation

Let us consider a linear operatorLacting on functions of two variables. We representLby a matrixL(j1, j
′
1, j2, j

′
2),

where the indices (j′
1, j

′
2) denote the input and (j1, j2) the output variables. For simplicity we assume the same

range for all indices,j1, j
′
1, j2, j

′
2 = 1, . . . , N.

Definition 6. For a givenε, we represent the matrixL(j1, j
′
1, j2, j

′
2), L : C

N2 → C
N2

, as

r∑
k=1

skAk(j1, j
′
1) ⊗ Bk(j2, j

′
2),
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where⊗ denotes the Kronecker product,{Ak(j1, j
′
1)}rk=1 and {Bk(j2, j

′
2)}rk=1 are N × N matrices,‖Ak‖ = 1,

‖Bk‖ = 1, sk > 0, and

∥∥∥∥∥L(j1, j
′
1, j2, j

′
2) −

r∑
k=1

skAk(j1, j
′
1) ⊗ Bk(j2, j

′
2)

∥∥∥∥∥ ≤ ε.

The number of terms in the representation,r, is the separation rank ofL for accuracyε.

We note that the separation rank differs from the operator rank, a similar representation that splits the input and
output variables. We note that (only in two dimensions) the separated representation can be computed using the
singular value decomposition (SVD). However, even in that case we use a simpler algorithm described below. In
higher dimension algorithms for computing separated representations can be found in[15].

If u ∈ C
N2

is a vector in two dimensions, stored as a two-dimensional array, then the matrix–vector product can
be computed by

r∑
k=1

skAkuB
T
k , (26)

where the matrixAk acts upon the columns ofu, andBk acts upon the rows ofu. The computational cost for a
matrix–vector multiplication is then given by O(2rN3) provided that no additional representations are employed.
Linear algebra operations in separated representations are easily accomplished but the separation rank of the result
will grow. For example, the matrix product of the two separated representationsL1 andL2 is computed as

L1L2 =
r1∑

k=1

r2∑
l=1

s
(1)
k s

(2)
l (A(1)

k A
(2)
l ) ⊗ (B(1)

k B
(2)
l ), (27)

yielding the separation rankr1r2. To reduce the separation rank in(27) while maintaining accuracyε, we use the
algorithm described inSection 5.3. In most cases, the resulting rank ˜r is significantly less thanr1r2.

As an example of a separated representation, consider an operator with variable coefficients,

L = 1

κ(x, y)

∂

∂x

(
σ(x, y)

∂

∂x

)
+ 1

κ(x, y)

∂

∂y

(
σ(x, y)

∂

∂y

)

in the acoustic equationutt = Lu. We construct

∥∥∥∥∥σ(x, y) −
rσ∑
l=1

sσl σ̂l(x)σ̃l(y)

∥∥∥∥∥ ≤ ε,

∥∥∥∥∥ 1

κ(x, y)
−

rκ∑
l′=1

sκl′
1

κ̂l′ (x)κ̃l′ (y)

∥∥∥∥∥ ≤ ε,

and obtain an approximation toL,

rκ∑
l′=1

rσ∑
l=1

sσl s
κ
l′

[
1

κ̂l′ (x)

∂

∂x

(
σ̂l(x)

∂

∂x

)
σ̃l(y)

κ̃l′ (y)
+ σ̂l(x)

κ̂l′ (x)

1

κ̃l′ (y)

∂

∂y

(
σ̃l(y)

∂

∂y

)]
,

which we may reduce further. This computation is performed using a discrete representation of all coefficients and
operators and typically results in a very low separation rank.
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Fig. 9. Matrix subdivision for the 3-level PLR representation. The diagonal blocks are stored as full matrices and whereas the off-diagonal
blocks are of low rank and are represented accordingly.

5.2. The partitioned low rank (PLR) representation

The partitioned low rank (PLR) representation is a simplification of the partitioned singular value decomposition
(PSVD) introduced in[16,29,30], and used for spectral projectors in[17]. The PSVD is simplified by dropping the
requirement of orthogonality between vectors as implied by the SVD and using a much simpler algorithm for rank
reduction. The PSVD and PLR are more flexible than wavelet decompositions and are applicable to a wider class
of matrices. In particular, the exponential of a matrix with pure imaginary spectrum and the bandlimited derivative
matrix constructed inSection 4are of high rank, dense, non-Toeplitz, with entries oscillatory as functions of indices.
Unlike operators with real, negative spectrum, exponentials of such operators are not necessarily compressible via
the wavelet transform while the PLR representation is efficient even when wavelet or multiwavelet transforms
are dense. InSection 6we apply PLR representation to exponentials of operators with pure imaginary spectrum
(propagators) and its representation remains efficient for propagation over 1–2 periods (wavelengths).

The PLR representation is defined recursively by splitting a matrix into four blocks. The two diagonal blocks
are split further, whereas the two off-diagonal blocks are maintained using a low rank representation of the form∑

i σieif
∗
i . The 3-level PLR representation is illustrated inFig. 9, where we useDl, Uk

l , andLk
l to denote the

diagonal, upper and lower blocks of the partitioned matrix at different levels. This notation is convenient when
describing linear algebra operations in the PLR representation.

In all our computations for a given accuracyε > 0, we seek an approximatioñA of an operatorA such that
‖A − Ã‖ < ε, where‖ · ‖ is an operator norm. For many operators in the PLR representation, the coefficients of
the low rank representation of the off-diagonal blocks decay rapidly and we truncate the sum. Let us estimate the
threshold value at each level in the PLR representation of an operatorA such that‖A − Ã‖2 < ε, whereÃ is the
truncated operator.

Proposition 7. Consider a matrix A given by the m-level PLR representation. LetÃ denote an approximation of A,
where each off-diagonal block B is approximated byB̃, so that‖B − B̃‖ ≤ ε/(2km) for level k,wherek = 1, . . . m.
Then we have‖A − Ã‖ ≤ ε.

Proof. We have

‖A‖2 ≤
2k∑
l=1

‖Dk
l ‖2 +

m∑
k=1

2k−1∑
l=1

(‖Uk
l ‖2 + ‖Lk

l ‖2). (28)

Using the bound for the off-diagonal blocks, we arrive at the estimate.
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Let a matrixAbe in anm-level PLR representation. In order to compute the matrix–vector productAu, it is clear
from Fig. 9 that there are two types of matrix–vector multiplications we need to evaluate. We need to compute the
dense matrix–vector products for the diagonal blocks and the matrix–vector productsLk

l ũ andUk
l ũ, whereũ ∈ C

Nk ,
Nk = N/2k. If Lk

l = ∑r
i=1 sieif

∗
i , then the matrix–vector product is computed as

Lk
l u =

r∑
i=1

si〈u, fi〉ei. (29)

The cost of such matrix–vector multiplication is O(rNk). Assuming that the rank of all off-diagonal blocks is the
same, the total cost of computingAu is then estimated as 2mN2

m +∑m
k=1 2krNk. If the total size ofA is N = 2m,

then we have the estimate of the total cost of matrix–vector multiplication in the PLR representation as O(N + rN

logN).
We next describe an algorithm for computing the product of two matrices given in the PLR representation.

Consider the matrix productAB, whereA andB are matrices in them-level PLR representation. We considerA and
B as the block matrices,

A =
[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
,

where off-diagonal blocks are of the form
∑r

i=1 σieif
∗
i and the diagonal blocks are in them − 1-level PLR

representation. The product ofA and B involves three types of block multiplications. The first is the prod-
uct between two low rank representations, and such multiplication preserves the low rank form. The second
is the product between them − 1-level PLR and a low rank representation which amounts to matrix–vector
multiplications described above. The resulting low rank representation has to be added at the appropriate lev-
els of the PLR representation and the rank of the result reduced via an algorithm described below. The third
type of block multiplication is the product between the twom − 1-level PLR representations which we treat
recursively.

5.3. Rank reduction

In order to reduce the rank of a separated representation of the form
∑r

i=1 σieif
∗
i , where‖ei‖ = ‖fi‖ = 1, we

need to orthogonalize either the vectors{ei}ri=1 or {fi}ri=1 to reveal the actual rank of the representation. We call
such procedure an orthogonalization sweep and use the size of the dynamically adjustedσi as pivots in choosing the
order in which orthogonalization is performed. As we orthogonalize the vectors{ei}ri=1, we simultaneously modify
the vectors{fi}ri=1 as to maintain the representation.

Once the vectors{ei}ki=1 have been orthogonalized, we project the vectors{ei}ri=k+1 onto the orthogonal comple-

ment ofek, normalize, and modifyfk to maintain the representation. The vectors{ei}k+1
i=1 are now an orthonormal

set and we continue the procedure recursively. We also use the dynamically computedσi to truncate this process as
σi become smaller than the threshold of accuracy.

After one orthogonalization sweep, only one set of vectors remains orthogonal and we may choose to repeat the
procedure for the other set. Such iterations eventually converge to the SVD. Since we do not require orthogonality
in separated representations, we typically perform only two orthogonalization sweeps. This algorithm is briefly
described in[15], where a significantly more complicated algorithm for reducing the separation rank is presented
for higher dimensions.
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6. Solution of the acoustic equation in two dimensions

Let us consider the acoustic equation

utt = 1

κ
[(σux)x + (σuy)y] + F (30)

with the initial conditionsu(x, y, t)|t=0 = f (x, y), ut(x, y, t)|t=0 = g(x, y) and the boundary conditionu|∂D = h,
where (x, y) ∈ D andt ∈ [0,∞). Here the functionκ = κ(x, y) is the compressibility, and the functionσ = σ(x, y)
is the specific volume (the inverse of density) of the medium.

We consider the domainD to be a rectangle which is subdivided, if necessary, into rectangular subdomains. We
are using bandlimited functions on intervals and, thus, can subdivide without inflicting an unreasonable increase in
the number of terms in the representation of functions on subdomains. In the future extensions of our approach for
more general domainsD, we plan to subdivide them into subdomains and map such subdomains into rectangles so
that we can use the tools developed in this paper.

Let us first rewrite the acoustic equation(30) as a first order system in time. Since the coefficientsκ andσ are
time independent, the propagator for the homogeneous problem (F = 0) is given by the exponential of a matrix.
We represent the spatial operator by the separated representation described inSection 5.1which decomposes the
operator into a short sum of matrices acting in one dimension. We then compress these matrices using the PLR
representation inSection 5.2.

Following the derivation by Bazer and Burridge[14], we introduce the functionsv andw, and write the acoustic
equation(30)as




w

v

u




t

=




0 0 σ
∂b

∂x

0 0 σ
∂b

∂y

1

κ

∂

∂x

1

κ

∂

∂y
0







w

v

u


 +




0

0∫ t

0 F (x, y, τ) dτ


 , (31)

where each block is given in its separated representation. Here∂b/∂x and∂b/∂y denote differentiation operators
with boundary conditions imposed in thex andy direction. We rewrite equation(31)as

ut = Lu+ F, with u(0) = u0, (32)

whereu = [ w v u ]T andL is the linear operator incorporating the block matrix on the right-hand side of(31). Using
bases for bandlimited functions (or finite differences in comparison codes), we discretize(32) in space resulting in
a finite-dimensional system of ODEs. IfL is time independent, thenu(t) = etL u0.

Eq. (32)is then solved by

u(t) = P(t)u0 + P(t)
∫ t

0
P(τ)−1F(τ) dτ,

where the propagatorP(t) is an operator solving the integral equation:

P(t) = I +
∫ t

0
L(τ)P(τ) dτ.

We constructL using derivative operators for bandlimited functions with boundary and interface conditions incor-
porated according toSection 3and propagate the solution by applying the matrix exponential etL . Let us describe



282 G. Beylkin, K. Sandberg / Wave Motion 41 (2005) 263–291

a numerical scheme for solving the homogeneous acoustic Eq.(30) in two dimensions with time independent
coefficients and boundary conditions. We proceed via the following steps:

(1) Construct the derivative matrices representing∂/∂x, ∂b/∂x, ∂/∂y and∂b/∂y using the results inSection 3.
(2) Construct separated representations of the multiplication operators 1/κ(x, y) andσ(x, y)
(3) Construct blocks of the 3× 3 spatial operator in(31)and use the algorithm inSection 5.3to reduce the separation

rank of each block.
(4) Select the time step
t (see below) and compute the matrix exponential e
tL using the scaling and squaring

algorithm (see e.g.[31]). The linear combinations and products of the matrix blocks given in the separated
representation are computed using the methods described inSection 5.

(5) Compute the solutionu(tk) = e
tL u(tk−1), starting fromu(t0) = u(0), for k = 1, . . . , Ntime.

We refer to this algorithm as the method of bandlimited bases (MBB) with the exponential propagator (EP). We
note that for time dependent boundary conditions the problem can be reduced to that with zero boundary conditions
and a forcing term.

If the factors in the separated representation (which are ordinary matrices) are large, we use the PLR representation
described inSection 5.2to speed up the computations in Steps 4 and 5 above. As discussed inSection 4, the norm
of the derivative projectors can be greatly reduced by using spectral projectors. For example, to construct projected
versions of∂/∂x and∂b/∂x (derivative operators in thex-direction), we form the block matrix,

L =
[

0 D0

D 0

]
,

whereD andD0 are constructed as inSection 3. The boundary conditions are enforced only for the functionu in
(31)which results in the structure of the matrixL above. We then construct the projected operator,

Lproj =
∑

|λk |≤c

λkekf Tk ,

whereek andfk are the left and the right eigenvector ofL, scaled so thatf Tk ek = 1. The projected version of∂/∂x
is now given by the lower left block ofLproj, and the projected version of∂b/∂x for zero boundary conditions is
given by the upper right block ofLproj. Using these blocks, we assemble the 3× 3 block-matrix representation of
the operator in(31).

In most numerical methods for wave propagation, the time step is restricted by the Courant–Friedrich–Lewy
(CFL) condition (see e.g.[32]). According to the CFL condition, the spatial step is controlled by the speed of
the propagating waves to ensure stability. When using the matrix exponential, the time step
t can be chosen as
large as desired without causing instabilities as long as the operatorL has no eigenvalues with positive real part.
In our approach a very large time step will increase the separation rank and the ranks in the partitioned low rank
representation. We have found that choosing the time step between 0.5 and 2 periods gives a good compromise
between an efficient representation of the matrix exponential and the number of time steps.

In solving the equation, we maintain solutions at the quadrature nodes of the bandlimited representation. For
illustrations, we interpolate the result to an equally spaced grid (seeSection 14).

6.1. Comparison of the results

We compare the MBB with the exponential propagator (MBB with EP) to two other methods. In the first
comparison we use the MBB but replace Steps 4 and 5 with the explicit RK4 solver in time (MBB with RK4). In
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the second comparison we write the acoustic equation (30) as a first order system:

[
v

u

]
t

=


0

1

κ

[
∂

∂x

(
σ
∂b

∂x

)
+ ∂

∂y

(
σ
∂b

∂y

)]

I 0



[
v

u

]
+
[
F

0

]
(33)

and discretize it in space using the fourth-order finite difference stencil on an equally spaced grid including the
endpoints (see[25]) and use the explicit RK4 solver in time (FD with RK4).

To compare methods for solving the acoustic equation, we introduce the characteristic time and length scales.
Let us consider on [−1,1] the wave equationutt = uxx with the zero boundary conditions. This equation describes
a medium with the unit compressibility and specific volume and, thus, the unit velocity. For the initial conditions
u(x,0) = sin((kπ/2)(x + 1)) andut(x,0) = 0, and each integerk, we have the solution

u(x, t) = sin(1
2(kπ)(x + 1)) cos(12(kπ)t).

Since the velocity is equal to 1, we define the characteristic period,τ = π/b, and the characteristic length scale,
λ = π/b, whereb = kπ/2 is the bandlimit. For periodic solutions in dimensiond = 1, the Nyquist sampling rate
(in time) requires two samples per characteristic periodτ. We note that in dimensiond = 2, for sampling purposes
the corresponding time period has an extra factor

√
2 since the solutions ofutt = uxx + uyy in [−1,1] × [−1,1],

with the zero boundary condition and the initial conditionsu(x, y,0) = sin((kπ/2)(x + 1)) sin((kπ/2)(y + 1)) and
ut(x, y,0) = 0, contain the factor cos(

√
2πt/τ).

6.1.1. Comparison of accuracy and speed for constant coefficients
For our first set of experiments, we solve

utt = uxx + uyy, (x, y) ∈ (−1,1) × (−1,1),

u(x, y,0) = sin(1
2(π(x + 1))) sin(12(π(y + 1))) + sin(b(x + 1)) sin(b(y + 1)),

u(±1, y) = u(x,±1) = ut(x, y,0) = 0, (34)

whereb = kπ/2 for some integerk > 1, and the solution is given by

u(x, y, t) = sin

(
π(x + 1)

2

)
sin

(
π(y + 1)

2

)
cos

(
π√
2
t

)
+ sin(b(x + 1)) sin(b(y + 1)) cos(

√
2bt).

We note that this solution contains both low frequency (the first term) and high frequency (the second term) modes.
For the experiments in this section, we measure the error of the vectoru = [ w v u ]T using the relative norm,
namely, ifũ approximates the exact solutionu, then

error= ‖u− ũ‖∞
‖u‖∞

.

In the first experiment, we solve(34) usingb = 22.5π. We propagate the solution and evaluate the error over a
range of approximately 1–104 characteristic periods, and also record the CPU time it took to produce the solution.

For the MBB with EP, we construct 64 quadrature nodes and weights for the bandlimitc = 23π, which for periodic
functions corresponds to an oversampling factor of approximately 1.4. We set the accuracy in the construction
to ε = 10−7 resulting in 64 nodes, and select the time step
t = √

2/23 corresponding to approximately 1.4
characteristic periods. We represent the operator using the separated and PLR representations. This results in
the separation rankr = 5 for the blocks in the exponential operator. For comparison, we use the same spatial
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Fig. 10. Relative error in the max-norm for approximating the solution to(34) (top) and the computational time (bottom).

discretization as for the MBB with EP, but use the RK4 solver in time with the timestep
t/128. The results are
shown inFig. 10.

In order for the finite difference fourth order scheme to reach similar accuracy, we need more than 1024 samples
in space corresponding to an oversampling factor of approximately 22 (for periodic functions) and a timestep
t = 
t/128. With this sampling rate, the computational time per characteristic period is almost 3 min, or more
than 5000 times slower than using the MBB with EP. However, such oversampling factor is significantly larger
than is typically used. For this reason, in the next experiment we solve the same equation, but use 400 samples
in space for the fourth order scheme, corresponding to an oversampling factor of approximately 8.7 (compared
for the Nyquist frequency for periodic functions), and a timestep
t/32. The results are shown inFig. 11. In this
experiment, the computational times for the two methods are comparable, but the MBB with EP is significantly more
accurate.

In the next experiment, we demonstrate that the cost of improving accuracy is small for the MBB with EP. Let us
fix b = 19.5, and solve the model problem(34)using the MBB with EP for the bandlimitc = 20π with 52, 56, 60,
64, and 68 nodes. For all solutions, we use the time step
t = √

2/20 (approximately 1.4 characteristic periods).
The result is shown inFig. 12.

We observe that using 60 nodes takes approximately two times longer than using 52 nodes but gives approximately
4 more digits of accuracy. We also note that the error increases linearly over time.

6.1.2. Numerical dispersion
Due to inaccuracies of differentiation, the different Fourier modes of a pulse propagate with different speeds.

After some time the shape of the pulse deteriorates.
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Fig. 11. Relative error (log10) in the max-norm for approximating the solution to(34) (top), and the computational time (bottom).

Fig. 12. Relative error in the max-norm for approximating the solution to(34) for b = 19.5π using two different sampling rates (top). The CPU
time for propagating the wave one characteristic period for a varying number of nodes (bottom).
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To examine this phenomenon, let us consider the wave equation in one dimension,ut + cux = 0, the solutions
of which correspond to right-traveling waves. Solutions of this equation take the form:

u(x, t) = eiω(x−ct),

which we refer to as a Fourier mode of frequencyω traveling to the right with velocityc. Exact differentiation of
this solution yields

∂

∂x
u = iω eiω(x−ct).

If the error in the representation of the differentiation operator is of the form

∂

∂x
u � i f(ω) eiω(x−ct),

then the Fourier mode propagates with the velocitycf (ω)/ω. Unlessf (ω) = ω, which corresponds to the exact
differentiation, the Fourier modes of different frequencies travel with different velocities. For example, in the case
of the second order centered finite difference approximation of the derivative,f (ω) = sin(ω).

Fig. 13. Solution of(35)using the MBB with EP. The shape of the pulse is maintained throughout the propagation.
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In this section we compare numerical dispersion using the MBB with EP and the FD with RK4 described in
Section 6.1. Let us solve

utt = uxx + uyy, (x, y) ∈ (−2,2) × (−2,2), u(x, y,0) = sinc2(27πx)sinc2(27πy),

u(±2, y) = u(x,±2) = ut(x, y,0) = 0. (35)

The solution is a sharp pulse originating at the center of the domain, and expanding outward. In the absence of
numerical dispersion, the shape of the pulse should be maintained.

For the MBB with EP, we construct 128 quadrature nodes and weights for the bandlimitc = 54π. We set the
accuracy in the construction toε = 10−7. We divide the domain into four subdomains and approximate the solution
on each subdomain using 128-by-128 nodes. We use the time step
t = 2π/c corresponding to propagating two
characteristic wavelengths, and represent the operator using the separated and PLR representations. This results
in separation rank eitherr = 5 or 6 for the blocks of the exponential operator. For the fourth order scheme, we
use 432 samples in space and the timestep
t = π/10c corresponding to propagating a tenth of the characteristic
wavelength. This sampling rate yields approximately the same computational time for the two schemes. The results
are shown as sequences of images inFigs. 13 and 14.

We note that in the MBB with EP the shape of the pulse is maintained. For the FD with RK4, the pulse begins to
noticeably deteriorate, as the error accumulates due to the numerical dispersion. The numerical dispersion affects
our method as well but at a much slower rate.

Fig. 14. Solution of(35)using the FD with RK4. Note the ripples near the wave front which are caused by numerical dispersion.
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6.1.3. Numerical results for variable coefficients
Let us consider the acoustic equation with variable coefficients. Since we do not have an analytical solution, we

simply display a sequence of images and study the shape of the pulse as it propagates throughout the domain. Let
us solve

utt = 1

κ(y)
(uxx + uyy), (x, y) ∈ (−1,1) × (−1,1), u(x, y,0) = e−1000(x2+y2),

u(±1, y) = u(x,±1) = ut(x, y,0) = 0, (36)

where

κ(y) = 1

1 − sin(π(y + 1))/2
.

The solution is a sharp pulse originating at the origin of the domain, and expanding outwards in the medium with
varying velocity. For the MBB with EP, we construct 128 quadrature nodes and weights for the bandlimitc = 54π.
We set the accuracy in the construction toε = 10−7. We use the time step
t = 2π/c corresponding to propagating
over two characteristic wavelengths. This choice of parameters yields the separation rank eitherr = 7 or 8 for the
blocks of the exponential operator. Using the PLR representation for computing e
tL u is in this case approximately
25% faster than using the dense representation of matrices in one dimension. The gain due to PLR increases for
larger problems. For the FD with RK4, we use 216 samples in space and the timestep
t = π/10c, corresponding

Fig. 15. Solution of(35)using the MBB with EP.
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Fig. 16. Solution of(35)using the FD with RK4. Note the ripples which are caused by numerical dispersion.

to propagating over one-tenth of the characteristic wavelength. This sampling rate gives the two schemes
approximately the same computational time. The results are shown as sequences of images inFigs. 15 and 16.

Both solutions behave qualitatively in the same way by propagating faster in the upper part of the domain where
the wave velocity is higher. We note that for the MBB with EP, the shape of the pulse is maintained. For the FD
with RK4, the pulse begins to noticeably deteriorate, as the error accumulates due to the numerical dispersion.

Appendix A. Proof of Theorem 3

First, let us consider a functionv ∈ Bc ∩ L1(R). Using the Fourier transform, we write it (almost everywhere) as

ṽ(x) =
∫ c

−c

σ(ω) eiωx dω,

whereσ is continuous and bounded sincev ∈ L1(R). Let us definebk = −c + (2kc/N) for k = 1, . . . , N. Then
|bk| ≤ c and we can approximatẽv with the Riemann sum,

ṽ(x) = 2c

N

N∑
k=1

σ(bk) eibkx + EN(x),
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where limN→∞ EN (x) = 0 for all x ∈ [−1,1]. We chooseN sufficiently large, such that‖EN‖L∞[−1,1] < ε/2
√

2
and define forx ∈ [−1,1]

ũ(x) =
N∑

k=1

ak eibkx,

whereak = 2cσ(bk)/N. Thenũ is bounded on [−1,1] and|v(x) − ũ(x)| < ε/2
√

2 almost everywhere.
Next we consider a functionu ∈ Bc. Then, sinceBc ∩ L1(R) is dense inBc, there exists a functionv ∈ Bc ∩ L1(R)

such that

‖u − v‖L2[−1,1] <
ε
2. (A.1)

As we showed above, there exists ˜u ∈ Ec such that|v(x) − ũ(x)| < ε/2
√

2 almost everywhere on [−1,1] and, hence,

‖v − ũ‖2
L2[−1,1] =

∫ 1

−1
|v(x) − ũ(x)|2 dx ≤ ε2

4
,

which combined with(A.1) gives us

‖u − ũ‖L2[−1,1] ≤ ‖u − v‖L2[−1,1] + ‖v − ũ‖L2[−1,1] < ε.
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