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A uniform derivation of the inversion formula for diffraction tomography and inverse scattering
from the fundamental identity for iterated spherical means is presented.

PACS numbers: 02.30. + g, 03.80. 4 r, 03.40.Kf

I. INTRODUCTION

In the book Plane Waves and Spherical Means,' John
derives a relation between the iterated spherical mean and
the spherical mean of a function. Using this relation, we have
obtained a generalization of an important inversion formula
that was recently derived by Devaney for use in diffraction
tomography?> and inverse scattering.?

Scattering experiments are usually designed to yield the
scattered field as a function of two unit vectors which repre-
sent the direction of the incident wave and the direction at
which the scattered field is recorded. The inversion formu-
lae*™ reconstruct the scatterer from the measured scattered
field which is a function of two unit vectors.

The relation we derive here can also be considered as
the representation of a function in terms of the iterated
spherical mean of its Fourier transform, provided the Four-
ier transform has compact support.

Our derivation is independent of the dimension of the
space and thus generalizes the formulae derived in Refs. 2—4
to spaces of n dimensions.

Il. THE FUNDAMENTAL IDENTITY FOR ITERATED
SPHERICAL MEANS

Let fbe a continuous function in a domain DCR ". Set

Sl + ) day, 1)

Iix,r)=
n JIE]=1
where @, = 27""%/I" (n/2) is the surface area of the unit
sphere in R ", xéR ", £eR " is a unit vector, and dw, is the
solid angle differential form.

The function I (x,r) is the average of the function fon a
sphere of radius || about the point x. The spherical mean
I (x,r) is even with respect to 7.

Let us define the iterated spherical mean M (x,4,u) by
the following formula:

1
MxAu)= a)_f\ \ 1I(x + Anp)do,,
=

n
where A,z are real numbers and »eR " is a unit vector. Alter-
natively, we can write

L U+ A + pf ) do, doo,. (2)
o) g1 =1Jm =1

M(x’l’.u) =

* Written while a summer employee at Schlumberger-Doll Research, P.O.
Box 307, Ridgefield, CT.
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John obtained the fundamental identity for the iterated
spherical mean M (x,4,u) (formula 4.9¢'):

M) = [20, /4, ]
A+ A
xj b= AN AN+

XA —r+w)]" 2 (x,r) dr. (3)
In the next section we use this identity to derive a formula
relating a function to the iterated spherical mean of its Four-
ier transform.

ill. THE INVERSION FORMULA FOR DIFFRACTION
TOMOGRAPHY AND INVERSE SCATTERING

Weset A = u = k in (3) and obtain

@,
Mxkk) = ——
2k

n

2k
Xj (@k? — P =32 —2x Adr.  (4)
0

Let Fbe a function with support inside the n-dimensional
ball B,

By = [ p:| p| <2k .
In scattering theory the surface of this ball is called the
Ewald limiting sphere.

Consider the function

5(p) =1 pl/(&k* = | p)" =21 (ple?,

where peR " and yeR " is a parameter.
We compute the spherical mean I, (0,r) for the function
/.| p). From the definition (1) it follows that

f F (rE)e"™” do, .
[§1=1

1 r
1,001) = ; (k% — pPn—372

Making use of relation (4), we find

2k
M,(0,kk) = ——‘f’;‘_—f r=dr
2"—3k2n-—4wi o

xf F(re)es do,. (5)
El=1

Since the support of the function F { p) is contained in
the ball B,, the function F (y) defined by

1 ~ ;
F — F ip-y
W= fl TP ap (6)

~
coincides with the inverse Fourier transform of F. Thus we
have from (5)
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M,(0.kk) = (87w, _,/k*"~ wp)F (y). (7)

Also, from the definition (2) of the iterated spherical
mean for the function f,( p) we obtain
|5 + 7]

1
M)'(O’k’k)= k™42 f _ f _ 2y(n — 3)/2
" Jigi=1Jmi=1 (4 — |8+ 7))
X F (k& + knp)e* €+ do,do,. (8)

We can replace the unit vector 7 by — # in the formula (8).
Comparing (7) and (8) we finally obtain the representation

[ /]
Fy)= 817'"&) -I‘§!A1J;ﬂl~1(4—|§—n|2)("“3?/2

n—1

X F (k& — kny)e™ &= dw,dw,. (9)

Forn =2and forn = 3 the identity (9) reduces to the formu-
lae obtained by Devaney

If the support of Fin (6) is not restricted to the ball B,,,
then (6) defines the so-called low-pass-filtered version of the
function whose Fourier transform is F and (9) provides a
representation for the low pass filtered version of that func-
tion.

In diffraction tomography and in inverse scattermg the
function F (k& — kn) represents the measured data.”™

In the case of diffraction tomaography the function F ()
defined by (6) is the low-pass-filtered version of the two-di-
mensional object profile.?
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In the case of inverse scattering the function F (y) de-
fined by (6) is the low-pass-filtered version of the so called
interatomic distance function.*

In both cases formula (9) provides the basis for recon-
struction algorithms.”™

We note that formula (9) can also be written in the form

1/2
e I =
2‘"+’ 0, §1=1Jmi=1 ( +§7I)("

XF(kg" - kn)e"“5 " dw, do, . (10)
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