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Discrete Radon Transform 
GREGORY BEYLKIN 

Abstract-This paper  describes  the  discrete  Radon  transform  (DRT) 
and  the  exact  inversion  algorithm  for  it.  Similar  to  the  discrete  Fourier 
transform  (DFT),  the  DRT  is defined for  periodic  vector-sequences  and 
studied as  a  transform  in  its own right.  Casting  the  forward  transform 
as  a  matrix-vector  multiplication,  the key observation  is  that  the  ma- 
trix-although very large-has  a  block-circulant  structure.  This  obser- 
vation  allows  construction of fast  direct  and  inverse  transforms.  More- 
over, we show  that  the  DRT  can be  used to  compute  various  gen- 
eralizations of the  classical  Radon  transform  (RT)  and,  in  particular, 
the  generalization  where  straight  lines are  replaced by curves  and 
weight  functions are  introduced  into  the  integrals  along  these  curves. 
In  fact, we describe  not  a  single  transform,  but  a  class of transforms, 
representatives of which correspond  in  one way or  another  to  discrete 
versions of the  RT  and  its  generalizations. An interesting  observation 
is that  the  exact  inversion  algorithm  cannot be obtained  directly  from 
Radon’s  inversion  formula. 

Given the  fact  that  the  RT  has  no  nontrivial  one-dimensional  analog, 
exact  invertibility  makes  the  DRT  a  useful  tool  geared  specifically  for 
multidimensional  digital  signal  processing.  Exact  invertibility of the 
DRT,  flexibility  in  its  definition, and  fast  computational  algorithm affect 
present  applications  and  open  possibilities  for new ones.  Some of these 
applications  are  discussed  in  the  paper. 

T 
INTRODUCTION 

HE discrete Radon transform (DRT) is  a  discrete ver- 
sion of the classical Radon transform (RT) [l]  and 

some of its generalizations [2]-[4]. The  DRT defined and 
described in this  paper is exactly invertible in an efficient 
manner. Since  RT  (and,  hence,  DRT)  have no nontrivial 
analog in the one-dimensional space, exact invertibility 
makes DRT  a useful tool geared specifically for multidi- 
mensional digital signal processing. 

Discrete versions of the classical RT  are being used in 
signal processing and there is  an  extensive  literature de- 
voted to this subject. Procedures which are  discrete ver- 
sions of the  RT  are known as slant stack [5], tau? trans- 
form [6], [7 ] ,  velocity filtering [8], [9], fan filtration [9], 
and beam forming [lo]. These procedures were success- 
fully used in various applications such as ground roll  re- 
moval [8], plane wave decomposition [ 111-[  141, P-S sep- 
aration [ 151, interpolation and resampling of data [8],  and, 
also, in procedures such as velocity analysis and beam 
steering. Some of these applications depend on inverti- 
bility of the  RT. 

There  are  two  major classes of algorithms for inversion 
of discrete versions of the  RT:  algebraic reconstruction 
techniques, and backprojection algorithms based upon 
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various discretizations of Radon’s inversion formula. We 
note that in applications mentioned above, algebraic re- 
construction techniques (such as  iterative and row-action 
methods [ 161-1181 developed for image reconstruction 
from projections) were not used. Although these proce- 
dures can,  in  principle, provide an exact inversion of the 
RT, they are not practical in these applications because 
of the size of the linear system to be solved. As a conse- 
quence,  all inversion algorithms used, in practice, have 
been approximate inversions based on Radon’s inversion 
formula. We  show,  however, that a  discrete version of the 
RT can be inverted only approximately if its inversion is 
based on a discretization of Radon’s formula. 

This inversion formula was discovered by J. Radon [l]  
who was also the first to define the transform as such.  The 
transform itself and inversion formula were later redis- 
covered for use in different applications which include as- 
trophysics [19] and computer assisted tomography [20] 
(for  a more complete account of applications,  see [21]). 
In seismics,  the RT is known as the slant stack or the 
tau-P  transform.  The inversion procedure  for  the RT 
was rediscovered for  the purpose of processing seismo- 
grams probably as early as in 1969 [9]. 

Heuristically, the use of the RT in signal processing can 
be explained as  follows:  a seismogram (a multidimen- 
sional signal array) can be viewed as  a superposition of 
different events with energy concentrated along straight 
lines (at least locally).  The  RT maps these  events into 
points thus allowing identification and separation. 

The  RT was used by many investigators for transfor- 
mation and analysis of seismograms [5]-[9], [12]-[14] 
and,  also,  for computing synthetic seismograms [ 1 11.  An 
applicable theory of the generalized RT (integration over 
surfaces or curves with the presence of a weight function) 
was developed in [2]-[4]. Recently, inversion proce- 
dures, known in geophysical literature  as migration al- 
gorithms, were cast as inversions of the causal general- 
ized RT [22]-[24]. This makes it even more important to 
look carefully into the problem of exact and fast inversion 
of discrete versions of the  RT and its generalizations. 

The approach we adopt in this paper can be illustrated 
by a parallel with the discrete  Fourier transform (DFT). 
Similar to the DFT, the DRT is defined and studied as a 
transform in its own right. The  DFT, of course,  is used 
to compute direct and inverse continuous Fourier trans- 
form integrals, especially using the fast Fourier transform 
(FFT)  algorithm.  Similarly, we show how DRT can be 
used to compute the classical RT,  and  the inversion pro- 
cedure for DRT can be used to invert it. Moreover. we 
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show that DRT  can be used. to  compute various generali- 
zations of the classical RT, in particular, the generaliza- 
tion where straight lines are replaced by curves and  weight 
functions are introduced into  the integrals along those 
curves.  In  fact,  we describe not a single transform, but a 
class of transforms. The representatives of this class cor- 
respond in one  way or another to discrete versions of the 
RT  and  its generalizations. 

We treat the inverse problem as  a  linear algebra prob- 
lem  and  reduce it to solving a  linear  system of equations 
with a block-circulant matrix. This  approach allows us to 
define the DRT in a consistent way and to obtain a’simple 
inversion procedure. Although this inversion procedure 
can  be classified as  an algebraic reconstruction technique, 
it does not require solving a  large linear system.  Instead, 
inversion proceeds  frequency by frequency  without iter- 
ations an requires only solving a small linear  system for 
each frequency. An interesting feature of the DRT is that 
its inversion procedure  is related to the discrete form of 
Radon’s inversion formula, but cannot be derived from 
this formula directly. 

We  also  note that the results of this paper  can  be ex- 
tended  to the case of more than one spatial variable. 

I. CLASSICAL  RADON TRANSFORM 
We start by describing the classical RT and one of  many 

possible discretizations of it. We will use it to motivate 
the definition of DRT  and  make  a  comparison of exact 
inversion to  an  approximate inversion based  on the Ra- 
don’s inversion formula. 

The classical Radon transform of a function u of two 
variables is  a function Ru defined on  a family of straight 
lines.  The value of the Ru on  a  given straight line is the 
integral of u along this line.  We  choose  to describe a  line 
in the plane ( t ,  q) as 

t = 7 + p q ,  

where 7 and p are parameters. Using  terminology  adopted 
in seismic applications, 7 is intercept time and p is slope. 
Thinking of t as  a  time  and q as  a spatial variable, the 
function u(t,  q) represents a  seismogram. The RT in this 
case is 

n +m 

and is known  as the tau? transform or slant stack.  Ra- 
don’s inversion formula  can be written in operator nota- 
tion as 

R*KR = I ,  (1.2) 

where K is a  one-dimensional operator (filter) and R * is 
a dual transform. Given u(7, p )  = (Ru)(T,  p ) ,  it follows 
from identity (1.2) that the original function can  be  found 
as u = R * Ku. Here  the convolutional operator K is given 
by 

P + m  

where 

The dual transform R* (which  also  is  the adjoint trans- 
form in a  proper  space of functions 1251) is  as follows: 

and  also  is  known  as  the backprojection operator. 
Discrete versions of the inversion formula (1.2) are 

being currently used in a multitude of applications. Here 
we  give an example of the discretization to  compare  the 
approach  developed  later in this  paper  to  the direct use of 
this formula. 

Let  a  seismogram u(t, q) contain 2L + 1 traces,  i.e., 
we  have ~ ( t ,  ql) ,  where I = 0, f 1 ,  - - * , +L. Assuming 
that q-L < q-L+  < - - * < qL - < qL, we  approximate 
the integral in (1.1) by 

l = L  

(RU)(T, P )  = c 4 7  + P41, 41) A.41, (1.5) 
I =  -L 

whereAql = (q l+ l  - ql-,) /2forZ = 0, +1, - - + , +(L 
- l),  and AqL = q L  - q L - l ,  Aq-L = q - L + l  - q-L.  To 
obtain a  value of the function u(7 + pql ,  ql ) ,  ‘one might 
use interpolation in the first variable if necessary. Nu- 
merical implementation of the operator R* is  completely 
analogous  to (1.5). Assuming that the function u(7 ,  p )  is 
known for 2 J + I discrete values of the parameter p ,  i.  e., 
given 747, p j ) ,  j = 0, + 1 ,  * - * , fJ, we  approximate  the 
integral in (1.4) by 

j = J  

(R*v)(t ,  4) = u(t - Wj, Pj) APj, (1.6) j =  -J 

where Apj = ( p j + l  - ~ ~ - ~ ) / 2  f o r j  = 0,  i-1, - - - , i-(J 
- l ) , a n d A p J = p J - ~ p J _ , , A p _ J = p _ J + l  - p - ~ . C o n -  
volutional operator K in (1.3)-which is the operator of 
multiplication by I f  1 in the frequency domain-can be 
approximated by the so-called  Shepp-Logan filter [26], 
for example. 

There are many other possibilities to discretize the RT 
and the one presented is just an  example. This simple dis- 
cretization is sufficient for  us to motivate the definition of 
the DRT. 

11. DEFINITION OF THE DRT 

Let xl(n) be  a  two-dimensional  array,  where - L 5 1 
5 L. For  a fixed index E ,  x l  (n) represents a  discrete signal 
which  we will refer to as a  time series or  a seismic trace. 
We  choose  an  odd  number of traces (2L + 1) for conve- 
nience. For  a fixed time point n, n = 0, - * - , N - 1 ,  we 
denote by x(n) the following vector: 
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I * * .  I 

We assume that x(n) is defined for  all integer n and is a 
periodic vector sequence with period N ,  

x(n + N )  = x(n). (i) 

Assumption (i) here is the  same  as in the  case of the DFT 
which is defined for periodic sequences. 

We  consider  the following transform: 

m = M  

where 2 M  + 1 I N and R, are ( 2 3  + 1) X (2L f 1) 
transform matrices. In (2. l) ,  y(n)  denotes the following 
periodic vector sequence  (with period N ) :  

I . . .  I 

where y,(n) is  a two-dimensional array with the index j ,  
-1 I j I J, representing different slopes.  The number 
M in (2.1) is the number of neighboring vectors on each 
side of the input vector x(n) involved in computing the 
output vector y(n). 

Definition I :  We call any transform of the form (2.1) 
a  discrete Radon transform. 

Remark I :  If x(n)  is not periodic, then we can always 
extend (pad) x(n)  by zeros so that it can be considered as 
a periodic vector sequence with some (sufficiently large) 
period N .  

Remark 2: One can argue that Definition 1 is too 
general,  since it is a definition of a shift-invariant multi- 
channel filter with 2L + 1 inputs and 2 J  + 1 outputs. 
Indeed, Definition 1 is a definition of a class of transforms 
rather than a single transform. In this paper we consider 
the general shift-invariant multichannel filter as a gener- 
alized discrete  RT.  To  arrive at this point of view, let us 
describe an extension of the definition of the classical RT 
so that the transform is defined on an arbitrary parame- 
trized family of geometrical objects. We recall that the 
classical RT is defined on a family of straight lines; we 
also consider generalizations where the family of geo- 
metrical objects consists of curves.  The most general case 
is,  however, when such family consists of arbitrary geo- 
metrical objects.  The value of such generalized RT on a 
given geometrical object is an integral over this object. 

In the discrete  case, these geometrical objects are sub- 

sets of points of the lattice with a weight coefficient as- 
signed to each point. The family of objects is constructed 
by invariant shift of such objects. Given a function de- 
fined  on the lattice, its transform is a new function defined 
on such family. Its value on a given subset is the sum 
over this subset of values of the function weighted by cor- 
responding coefficient at each point. Given an arbitrary 
set of matrices Rm in (2. l ) ,  the family of the subsets O(n, 
j )  of the  lattice parametrized by indexes n,  n = 0, * * * , 
N - 1 a n d j , j  = - J ,  - * , J can be constructed as fol- 
lows: 

O(n, j )  = [{(n + m) mod N ,  j >  1 (Rm)jl f 0, m 
= -M;** , M , I =  -L;** , L ]  

and weight coefficients are nonzero entries of matrices R,. 
Hence, in the discrete  case,  one can view matrices Rm as 
templates so that the multichannel filter has the interpre- 
tation of generalized RT. Since in applications which mo- 
tivated this study the point of view of RT is natural, we 
use the notion of the DRT in this paper. 

Remark 3: Two points need to be clarified with re- 
spect to this definition. First, we have to show how a  dis- 
cretization of the classical RT (1.1) can be written in the 
form (2.1). Second, we have to show how to invert the 
transform in (2.1). The  last question will be addressed in 
the next section.  Here we note, that in order  for  the DRT 
(2.1) to be an  invertible DRT some restrictions on the 
matrices R,  in (2.1) will be imposed. 

Let us give  a  simple  example to illustrate the definition 
and also show how a discretization of the classical RT 
reduces to (2.1). Let L = J = 1, so that we have three 
traces and three slopes.  We choose lines so that they pass 
through the  lattice points as illustrated in Fig. 1 .  The 
transform matrices in this case  are 

\ 1  0 o/ 
and M = 1 .  It is clear that transfornl matrices can  be gen- 
erated in a  similar way for any number of traces. In fact, 
we have as an example of the DRT 

( K n ) j l  = & , j / ,  (2.2) 
where S is the Kronecker symbol with the second sub- 
script being the product of two indexes. 

If lines do not pass through lattice  points, then inter- 
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Trace # 

Time 
[index 1 ' . ' n-2 n-1 n n+l n+2 ' ' . N-2  N-1 

Fig. 1.  Illustration showing that the DRT can be written in form (2.1). 

polation can be used in between  lattice points on  each 
trace. Different interpolation schemes  can  be used-for 
example,  linear or third order-and lead to different en- 
tries for transform matrices Rm. Interpolation also affects 
the number  M of neighbor-vectors involved. However,  we 
will delay the discussion of these questions until we pre- 
sent an alternative way  of defining the transform matrices. 

Entries of transform matrices also incorporate infor- 
mation  on distances between traces in the  form of weight 
coefficients as  can  be seen by comparing  (1.5)  and (2.1). 
The possibilities of defining transform matrices in differ- 
ent ways will be discussed in greater detail in Sections IV 
and VII. 

To  summarize, any specific discretization of (1.1)  can 
always  be written in the  form (2.1).  Moreover,  as  we will 
see in Sections IV and VI, much more general transforms 
than (1.1) yield (2.1) as their discretization. 

111. INVERSION OF THE DRT 
In this section we describe the inversion of the DRT by 

treating the inverse problem  as  a  linear algebra problem. 
Here  we consider the  transform matrices R, given in the 
time  domain  while  an alternative definition of these ma- 
trices in the  frequency  domain  is explained in the next 
section. If we  denote by x the N X (2L + 1) vector 

LC(N - 1)/ 
then (2.1)  can  be written as 

Y = k, 
where R is the following block-circulant matrix: 

R =  

This is the key observation which follows from the peri- 
odicity condition (i). (Discussion of properties of the 
block-circulant matrices can  be found in [27], for  exam- 
ple.) We also consider the adjoint matrix R* 

and  the transform associated with it 
m = M  

where 
m ' = M - m  

and 

H-, = H:, (3.3) 

for0  I'm I 2M. 

condition (i) of Section 111, then 
Lemma 1: If z(n) is given by (3.2), and x(n)  satisfies 

2(k) = &(k) P(k), (3 $4) 

f o r k = 0 , 1 ,  * . .  ,N-l,wherez^(k)andR(k)areDFT's 
of z(n) and n(n) 

n = N -  1 

(3.5) 

and matrices f i (k )  are as follows: 

The  proof of Lemma 1 can  be  found in the Appendix. 
Since x(n)  is  a real vector-sequence P(N - k)  = $k) for 

k = 1, * - , (N - 1)/2, where  the bar denotes complex 
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conjugation,  it is sufficient to  consider (3.4) for k = 0, 

should be replaced by (N - 1)/2 if N is odd.) 
DeJinition 2: We say that the DRT in (2.1) is uniquely 

invertible within the normalized frequency band [kminlN, 
km,,/m, 0 5 kmin/N, km,,/N I 0.5, if for  all k = kmin, 

det @(k) # 0. (ii) 

If (ii) is satisfied within the normalized frequency band 
[kminlN,  km,,lN], then the inversion procedure for  a seis- 
mogram band-limited to  this band is  as  follows. Given the 
transform matrices R,, matrices f i ( k ) ,  k = 0,  - , N/2 
are precomputed using (3.3) and (3.7) (We will present a 
better way of computing matrices f i ( k )  in Section IV.) 
Now, given the vector sequence y(n) [the DRT of x ( n ) ] ,  
we compute the following. 

1) The  adjoint transform of y(n)  by using (3 .1)  to ob- 
tain z(n), n = 0,  * - * , N - 1. 

2) The  FFT of z(n). 
3) A solution to a  linear (2L + 1)  X (2L + 1) system 

(3.4) for k = kmin, * * , k,,, (det f i (k)  # 0) to obtain 
R(k). We set f ( k )  = 0 outside  the frequency band, i.e., 
fork = 0, * , kmin - 1 andk = kmax + 1 ,  * , Nl2. 
4) Inverse FFT of R(k) to obtain x(n). 
If (ii) holds for  all k = 0,  - , N / 2 ,  then the  DRT is 

invertible for all frequencies.  In  some important exam- 
ples,  det fi(0) = 0, where k = 0 corresponds to  the  dc 
level of the  traces.  Indeed, R(0) = ZtZ;-' x@), and det 
&(O) = 0 means that we  cannot  recover  the  dc  level. In 
practice,  we can always assume that the  dc level is zero. 

We note that the inversion procedure is based on the 
identity 

1 ,  - - -  , N/2. (Here and elsewhere in the  paper, N/2 

. . .  
3 kmax 

(R*R) - '   R*R = I ,  (3.8) 

and  steps 2)-4) describe  an efficient way of applying the 
operator (R   *R) - ' .  

IV.  FAST  DRT 

By considering the transform matrices Rm in the  fre- 
quency domain and making use of the FFT, we show in 
this section that the  DRT can be implemented as  a fast 
algorithm. 

Lemma 2: If y(n)  is given by (2.1) and x(n) satisfies 
condition (i) of Section 11, then 

jyk) = R(k) f ( k ) ,  (4.11 

fork = 0, 1, - * , N - 1 ,  where j ( k )  and R(k) are  DFT's 
of y(n) and x@), respectively. 

n = N -  1 

9(k) = c Y ( 4  e 2ni(nk/N) , (4.2) 
n=O 

n = N -  1 

f ( k )  = x(n)  e*ai(n''N) (4.3) 
n=O 

and matrices &(k) are  as follows' 
m = M  

R(k) = C ~ ~ ~ - 2 r i ' i ( m k / N )  (4.4) 
Since x(n) is a real vector-sequence, it  is  sufficient to 

consider (4.1) for k = 0 ,  1 ,  - , N / 2 .  
Lemma 2 is completely analogous to Lemma 1 ,  and its 

proof can be found in the Appendix. This lemma makes 
the DRT a fast algorithm.  Indeed, to compute the  DRT 
of a signal array x(n) ,  we perform the following. 

1)  FFT of x(n). The number of operations is of order 
(215 + 1) * N * Log ( N ) .  

2) At most, N/2 matrix-vector multiplications (4.1). 
The number of operations is  at most of order (2L + 1) 

m =  -M 

(25 + 1) * N .  
3) Inverse FFT to obtain y(n). The number of opera- 

tions is of order (2.7 + 1) * N * Log ( N ) .  
If N >> (2L + 1) and N >> (2.7 + 1) (which is the 

case in seismic  applications), then the algorithm 1)-3) is 
a fast algorithm. For band-limited signals,  step 2) re- 
quires even fewer  operations. All three steps are  ex- 
tremely well suited for  parallel processing since each step 
contains parallel computations within itself. 

The adjoint transform differs from the direct fast DRT 
only by step 2 )  where matrix &(k) is replaced by R *(k) ,  

(R*) , (k )  = Z j d h  

the adjoint to I?@). Therefore, steps 1) and 2 )  in the in- 
version scheme in Section IV can be replaced by steps 1) 
and 2)  of this procedure.  Also, it is clear that the matrix 
B(k) in (3.4) can be written as 

fi(k) = R *(k) R(k), (4.5) 

for  all k .  If the number of slopes is equal to the number 
of traces (i.e., &(k) are  square matrices) then det f i (k )  = 
(det Z?(k))2. In this case,  one can perform the inverse fast 
DRT by replacing step 2) in algorithm 1)-3) by the so- 
lution of a  linear system involving matrices R(k) .  

Alternative DeJinition of the DRT: Since R(N - k)  = 
&k), it is sufficient to consider matrices R(k) only for k 
= 0,  1 ,  - , N/2. Given (4.4), we have . k = N - 1  

and,  therefore, matrices &k) k = 0 ,  1 ,  , N / 2 ,  Define 
transform matrices R, and the  DRT as described in Defi- 
nition 1 .  If det (l?*(k) Z?(k)) # 0 within some frequency 
band (Definition 2) then the DRT is uniquely invertible 
within this frequency band. 

In many cases,  the direct description of matrices &k) 
is simpler than that of matrices R,. Consider the follow- 
ing matrices for k = 0, 1, - - * , N/2: 

f i j l  (k )  = e - 2 n i d W N )  (4.7) 

'The unconventional minus  sign in  the phase of  the exponent in the D F T  
in (4.4) comes from the choice of  the plus sign in  definition (2.1) which, 
in turn, matches the plus sign  in  definition (1.1) adopted  in seismic  appli- 
cations. 
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It follows from (4 .6)  that if u = 1, matrices R, are given 
by 

These  are  the matrices considered in the example  in Sec- 
tion 11. In  the definition (4 .7) ,  the description of straight 
lines is the  description of the phase function. The recip- 
rocal of the parameter u in (4 .7) ,  l /u ,  plays the  role of 
‘‘number of slopes  per  time  step” and eliminates  the use 
of interpolation. 

Another choice of matrices @k), 

defines the  DRT  for  the  case with curves. Again,  the  de- 
scription of curves is  the description of the phase func- 
tion. Entries of the matrix A ( j ,  I )  are interpreted as weight 
coefficients. 

In  the most general  case, by analogy with (4 .8) ,  we can 
write the transform matrices in the following form: 

Rjl(k) = A ( j ,  1 k/N) e-2Ti+(j,f*k’N) (4.9) 

Since both the direct and  inverse  transforms  are computed 
in the frequency domain,  the  direct description of the ma- 
trices in (4 .9)  is a convenient way  of defining the DRT. 
Matrices R(k) in (4 .8)  describe  an important special case 
since  to define the transform in this  case it is sufficient to 
supply just two matrices 4 ( j ,  I )  and A( j ,  Z ) ,  j = 
- J ,  . . . , J , E =  - L ,   , L .  

v. THE  DRT AND DIGITAL PROLATE  FUNCTIONS 
(DPF) 

For  general definitions of the  DRT  as those in (4 .8)  and 
(4 .9) ,  the matrix &k) in (4 .5)  is formed numerically and 
the stability of the  inversion is checked  for  all k of interest 
within the LU decomposition step of the solution of the 
corresponding linear  system. If det B(k) is numerically 
small for  some k ,  then it means that  a nonzero seismo- 
gram can be generated  containing  periodic signals of this 
frequency and having an almost zero  DRT. Inversion in 
this case becomes numerically unstable.  There is a num- 
ber of approaches to  stabilize  the  inversion.  These ap- 
proaches can be considered as  part  of  the design of the 
transform and will be  treated  elsewhere.  Here  we will dis- 
cuss the  connection of the  DRT  as defined in (4 .7)  with 
the DPF. This connection allows  to understand the inver- 
sion issue  for this particular  case. 

The  DPF play a fundamental role in  the analysis of the 
maximum-energy-concentration problem for periodic 
functions [28] and are closely related to prolate spheroidal 
wave functions [29]-[33] .  It  appears  that in a slightly 
modified form they also play a role in the  DRT as defined 
in (4.7).  

Consider  a  discrete periodic sequence w(l ) ,  w(Z + 2L 
+ 1) = w(Z) and the following transform: 

l = L  

wherej = 0, 21, - * + J .  This  transform reduces to 
the ordinary DFT  for CY = 1 and L = J .  We consider now 
the following problem: given a and G J j )  for j = 0, 
k 1, - - , +J ,  find w ( l ) .  To solve  this  problem,  we ap- 
ply the normalized adjoint transform (if a = 1 and L = J 
this is the  inverse  DFT) 

i = J  

W ’ ( I ’ )  = ___ a ’x Ga( j )  , - 2 a i d j / ( 2 J + l )  
25  + 1 j = - ~  7 

and obtain  a  linear system 

c WCZ) 

l = L  sin na(Z’ - E )  

sin na - 
2J + 1 

. W ’ ( l ’ )  = ___ 
2J + 1 l = - ~  (I’ - 1 )  * 

Introducing the matrix 

this system can be written as 
l = L  

W‘(Z‘) = c Pl, lW(Z).  
I =  -L 

If the parameter a is bounded and 2 J + 1 goes to infinity, 
the matrix Pill becomes 

P ;  = 
sin m ( Z ’  - I )  

n(Z’ - I )  

The matrix P E  in (5.2) has 2L + 1 positive  eigenvalues, 
and its eigenvectors  form an orthonormal system. If we 
denote by #? the  eigenvector  corresponding  to  the eigen- 
value X,, then 

1 = t  
*” (s) = yy p o r l s ,  

1 =  -L 

are  the DPF  as described in [28] .  In  fact, a  similar con- 
struction of eigenvectors  for  the matrix Plnl leads to the 
analogs of the  DPF  for  discrete periodic band-limited 
functions. 

For  the DRT, the  connection with the  DPF provides 
additional insight into  the invertibility of the  transform. 
By writing (4 .7)  as 

Rjl(k) = e-2aicu j l i (2J + 1 )  9 

where a = uk(2J + l)/N, and  applying  the  adjoint trans- 
form,  we  obtain’ 

@,(k)  = 
sin m ( / ’  - Z) 

sin ra - 
25  + 1 
(I’ - I )  * 

This. establishes  the  connection with the  DPF  since  the 
matrix Glt1 (k) differs from  the matrix Pill in (5.1) only by 
a normalizing factor. By making the number of slopes 2 J 
+ 1 sufficiently large  (while a = k/k0 is bounded and u 
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= N/k0(2J + l) ,  where kmin 5 ko 5 k,,,), estimates of 
the eigenvalues of the matrix Hl.[ (k )  can be obtained using 
those of the eigenvalues of the matrix PE in (5.2).  Hence, 
the frequency band within which the transform in (4.7)  is 
invertible and the inversion is  stable can be  estimated. 

VI.  THE  DRT AND RADON’S INVERSION FORMULA 

So far we considered the inversion of the DRT as an 
algebraic reconstruction technique. In this section we de- 
scribe the relation of our inversion algorithm to algo- 
rithms based on Radon’s inversion formula. 

Instead of the identity in (3.8), we can write 

R*(RR*)-’R = I .  (6.1) 

This formula produces an  alternative inversion procedure. 
We compute the following. 

la) The FFT of y(n),  where y(n) is the  DRT of x(n) in 
(2.1). 

2a) A solution to  a  linear (2J  + 1) X (21  + 1) system 

j ( k )  = &k) $(k), (6.2) 

for k = kmin, * * , k,,, to obtain $(k) .  We set G(k) = 0 
outside  the frequency band, i.e.,   fork = 0, * 9 kmin  - 
1, and k = k,,, + 1, - * , N/2. In (6.2),  the matrices 
B(k) are  as follows: 

&k) = &k) I?*@). (6.3) 

3a) Inverse  FFT of &(k) to obtain w(n). 
4a) The adjoint transform (3.1) of the sequence w(n) 

to obtain x(n). 
We note that if the adjoint transform is computed by 

the procedure described in Section IV, then step 3a) is not 
necessary. 

The significance of considering (6.1) becomes clear 
when the inversion procedure la)-4a) is compared to the 
inversion based on Radon’s inversion formula (1.2). It 
follows from (6.1) and (1.2) that the  operator R corre- 
sponds to the discretization of the continuous Radon 
transform (1. I ) ,  the  operator R* to the dual transform 
(backprojection) (1.4) and,  therefore, the operator 
( R R * ) - ’  must correspond to a discretization of the one- 
dimensional filter K (1.3). 

The one-dimensional filter K in (1.3) can be imple- 
mented as an operator s9lving  the  linear system in (6.2) 
only if all the matrices g ( k )  are  diagonal.  This is because 
whatever discretization is used to implement the oper2tor 
K in (1.3) it cannot produce nondiagonal matrices D(k) 
since the operator K is applied to each’trace independently 
of other traces.  It is ea5y to check that, in (6.3), at least 
some of the matrices g(k) are  nondiagonal,  and, there- 
fore, the exact inversion procedure described here does 
not follow from discretizations of Radon’s inversion for- 
mula. In other words, the discrete transform must be con- 
sidered as such to obtain its exact inversion procedure 
since it cannot be deduced from Radon’s inversion for- 
mula by means of discretization. 

Inversion formula (6.1) also implies the discrete Par- 
seval’s identity. In the continuous case, Parseval’s iden- 
tity for  the classical Radon transform was discussed in 
[25]. We define the inner product for seismograms in the 
time-space domain as 

n = N - I  l = L  

(x, x’) = c c x&) xI(n) ,  
n = O  I = - L  

and in the  tau-P domain as 
n = N - 1  i = J  

Given the inner product in the time-space domain,  the 
norm of a seismogram is 

/ n = N - l  I = L  \ 112 

It follows from (6.1) that 

(X, X) = (R*(RR*)-’ RX, X) = [ (RR*)-’  RX, RX], 

11x1I2 = [ ( R R * ) - ’ y ,  Y l ,  

and,  therefore, that 

where y = Rx is the DRT of the seismogram x. The ma- 
trix RR* is always self-adjoint and nonnegative definite. 
If the transform is  invertible  for all frequencies then this 
matrix is positive definite. In this case,  the negative pow- 
ers of RR* are well defined and we obtain 

11x1I2 = ll~1’2y1127 (6.4) 

where K”2 = (RR*)- ’ ’2 .  The relation (6.4)  is Parseval’s 
identity for  the  DRT. If the transform is invertible within 
a frequency band, then (6.4) holds for seismograms band- 
limited to this band. 

VII. APPLICATION OF THE DRT To COMPUTATION OF 
GENERALIZED  RADON  TRANSFORMS 

If instead of (1.1) we consider the generalized Radon 
transform, 

P += 
( W ( 7 ,  PI = 1 4 7  + w >  q),  4) 4)  dq, 

--m 

(7.1) 

i.e., an integral along curves t = 7 + q5(p, q) with a 
weight function a ( p ,  q),  the  same considerations apply. 
Discretization of (7.1) can be written in the form (2.1) 
and,  therefore,  the inversion procedure for  the  DRT can 
be used. The expression (7.1) [and (1.1) as a  particular 
case of (7. l)] can be written in the following form: 
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One can see now that  the expression in (4.8) is a  discrete 
analog of the kernel in the inner integral in (7.2). If we 
consider  an  even  more general transform 

( R 4  (7, P )  

II i m  n + m  

= \ ~ df e-2r$T 1 dq a( f, q) a ( p ,  q, f )  e-2T’’(p,q,f), 
-. m -m 

(7.3) 

then (4.9) provides a  discrete version of its kernel. In all 
of these cases,  the  discrete formulation falls within the 
definition of the  DRT.  Therefore,  the algorithm for com- 
puting the  DRT and the  inverse transform can be  utilized. 

The geometrical objects  over which we  integrate need 
not be simple curves (see remark 2 of Section 11). These 
objects can be of any shape as long as we  can  discretize 
the integral in the form (2.1).  This  opens  a number of  new 
possibilities in digital processing of seismograms as well 
as image processing. 

In signal processing of seismograms there  are situations 
where it might be advantageous to integrate along curves 
or strips bounded by curves,  hyperbolas,  for  example. 
Also,  the ability to  compute integrals as those in (7.2) and 
(7.3) with the  DRT algorithm combined with results in 
[22]-[24] might help to cast inversion and migration pro- 
cedures as  a signal processing algorithm employing the 
DRT as the main computational engine. 

In image processing, integration over different shapes 
is used for pattern recognition.  The classical RT is known 
-as the Hough transform [34] in these  applications, and the 
generalized RT in this case can be viewed as  a process of 

comparing”  a given pattern produced by transform ma- 
trices R, with the  signal  array. The  tau-P domain in this 
case is the domain of responses. If, in  this  domain, re- 
sponses for different shapes can be isolated, then the in- 
version procedure makes it possible to  separate patterns 
in the original domain. 

Since weight functions can be adequately implemented 
in transform matrices,  we can choose these weights for 
each given seismogram separately.  This can be achieved 
by using some statistical measure on  the data set.  For  ex- 
ample,  we can use semblance criteria [35] to compute 
weights. This  leads  to  the nonlinear transform as  follows. 

1) Given a multidimensional signal array,  we choose 
transform matrices R, in (2.1) [or k(k) in (4.4)] according 
to some statistical measure computed for  this array and so 
that the transform is invertible within the frequency band 
of interest. 

2) Given the transform matrices, we apply the trans- 
form to the signal array and obtain generalized t a u 2  rep- 
resentation of this array.  We can then analyze  this repre- 
sentation,  separate  events, apply windows, filters, etc. 

3) Now we apply the inverse transform.  The inversion 
procedure obtains the original representation without los- 
ing any information due  to inaccuracies in reconstruction. 
All modifications are  due to operations performed at step 
2). 

6 ‘  

TIME 
0.000 0.025 0.050 0.075 0.100 0.125 0.150 

8:: 9 0 9 0 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 

Fig. 2. Example 1. Synthetic VSP section. 

VIII. EXAMPLES 
We present two examples  to  illustrate the use of the 

DRT.  We  choose synthetic VSP (vertical seismic profile) 
seismograms as signal arrays. A VSP seismogram is a 
recording of the  seismic signal in a  borehole with the 
source on the surface.  One of the signal processing tasks 
in this context is the separation of the upgoing waves from 
the downgoing waves. 

In the first example,  we explain the role of the tau? 
representation. We apply the  DRT  (4.7)  to  the  synthetic 
VSP data set  in  Fig. 2. In  this  example,  the number of 
time samples is N = 100, and  the number of traces 2L + 
1 = 1 1. We choose the number of slopes  to  be 2 J  + 1 = 
11 and the parameter u = 1. The result of the transform 
is shown in Fig. 3. The  lower portion of the tau? rep- 
resentation in Fig.  3 corresponds to the downgoing waves 
(positive slopes) and the  upper portion corresponds to the 
upgoing waves (negative slopes).  Inverse transform gives 
us back the original seismogram in Fig.  2  and,  therefore, 
the tau-P representation of the seismogram contains as 
much information as the original seismogram.  However, 
in this example,  the accuracy of the reconstruction is low 
(3 significant digits).  This is caused by small determinants 
of the corresponding linear systems for low frequencies. 

To avoid this problem in the second example,  we uni- 
formly shift  the spectrum of the  VSP seismogram in Fig. 
4 to higher frequencies, and incorporate such shift  into 
the  DRT. In this example,  the number of time  samples is 
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fNTERCEPT TIME 
7 0.000 0.025  0.050  0.075  0.100  0.125 C 

~ " " ' " ' " " " " " " " " " " '  

- I 4 

I 
0.000 0.025  0.050  0.075  ,0.100  0.125 c 

I " " , " " ,   I " , ' " ' . '  

Fig, 3.  The  tau-P representation of data in Fig. 2. The DRT is described 
in (4.7). 

0. 

- 
--; 

- 
c 

I " "  
000 0.025  0.050  0.075  0.100  0.125  0.150 

Fig. 4. Example 2. Synthetic VSP section. 

INTERCEPT  TIME 
* 0,000 0.025  0.050  0.075 0.100 0.125  O.!5OTa 

I I 

0.000 0.025  0.050  0.075  0.100  0.125 0.150 

Fig. 5. The tau-P representation of data in Fig. 4. The DRT is described 
in (7.1). 

N = 600,  and  the  number of traces is 2L + 1 = 21. We 
choose the number of slopes to  be 2 J + 1 = 61. The shift 
of the spectrum is incorporated into  the  DRT by the fol- 
lowing transform matrices: 

8, (k) = e -2a io j l (k+ks ) /N  
JI > (8.11 

for k = kmin, * * , k,,,, where kmin = 1 and k,,, = 20. 
The shift of the  spectrum is described by the  parameter k, 
and, in our  example, k, = 199. The parameter CJ we choose 
to be CJ = N / ( 2 J  + l)ks. Applying the DRT in (8.1), we 
obtain the tau-P representation shown in  Fig. 5.  If  we 
apply the  inverse DRT,  we obtain  the  original  data  set. 

To demonstrate  the application of the DRT to  the  ve- 
locity filtering (upgoing  and downgoing  waves separation 
in this case), we mask a part of the tau? representation. 
The  mask  is  shown in Fig. 6 and is chosen to remove one 
upgoing event in seismogram in Fig. 4. The effect of such 
masking can  be seen by comparing  Fig. 4 and Fig. 7. The 
seismogram in  Fig. 7 is obtained by applying  the  inverse 
DRT to the masked tau-P representation in Fig. 6. The 
event  is "surgically" removed  with a very good preser- 
vation of the  amplitude  information. In any case, all 
changes  in  the  amplitude are  due  to  the effects of the mask 
itself. To underscore  the robustness of masking in  the tau- 
P domain, the mask was obtained by merely setting to 
zero all the values within the window  in Fig. 6. We note 
that the  difficulty in distinguishing between  effects  of the 
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INTERCEPT TIME 
* 0.000 0.025 0.050 0.075 0.100 0.125 0.150~o ‘0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 
* i  t *  

0 1  1 0  
l b  I I 1 ’  

o a  W 

v) 

. o  CJ 

c r- 

t 
I I ’ ” ’ , ’ ’ . ’ “ . ’ ’ ” ’ ” , ’ . . . , . . . . ~  

0.000 0.025 0.050 0.075 0.100 0.125 0.150 

Fig. 6. Example of mask in the  tau-P domain to remove one upgoing event 
in seismogram in Fig. 4. 

TIME 

I I 
0,000 0.025 0.050 0.075 0.100 0.125 0.150 

I . . . .  I .  . . .  I . . . . , . . , , ,  

I 

0.000 0.025 0.050 0.075  0.100 0.125 0.150 
, ” ’ . , ” ” , ’ . ’ . , . . . . , . . . . , . . . .  f 

F.ig. 7. Reconstruction by applying the inverse DRT to the masked tau-P 
representation in Fig. 6. The effect of masking can be seen by compar- 
ison to Fig. 4. 

mask  and  the  approximate inversion was a problem in 
using the  tau? representation for  the velocity filtering. 

APPENDIX 
Lemma 1 and  Lemma  2  are essentially similar.  Their 

proof  is elementary. We  use the notation of Lemma 1. 
Applying  the DFT  to both sides of (3.2), we obtain 

m = 2 M   n = N - 1  

or 
m=2M f i = N + m - 1  

Condition (i) implies that 
f i = m - l  f i = N + m - l  

for m 2 1.  A similar identity holds for m 5 - 1 
hence, 

m = 2 M   A = N -  1 

which  is exactly (3.4). 

and 
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