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ABsTRACT. We introduce a new computationally efficient algorithm
for constructing near optimal rational approximations of large (one-
dimensional) data sets. In contrast to wavelet-type approximations,
these new approximations are effectively shift invariant. We note that
the complexity of current algorithms for computing near optimal ratio-
nal approximations prevents their use for large data sets.

In order to obtain a near optimal rational approximation of a large
data set, we first construct its intermediate B-spline representation.
Then, by using a new rational approximation of B-splines, we arrive
at a suboptimal rational approximation of the data set. We then use a
recently developed fast and accurate reduction algorithm for obtaining
a near optimal rational approximation from a suboptimal one. Our ap-
proach requires first splitting the data into large segments, which may
later be merged together, if needed. We also describe a fast algorithm
for evaluating these rational approximations. In particular, this allows
us to interpolate the original data to any grid.

One of the practical applications of our algorithm is the compression
of audio signals. To demonstrate the potential competitiveness of our
approach, we construct a near optimal rational approximation of a piano
recording.

1. INTRODUCTION

In this paper we develop an algorithm for constructing near optimal ra-
tional representations of functions using as input a large number of equally
spaced samples. Examples of such data sets include, among others, digitized
versions of musical recordings and continuous seismic records. Optimal or
near optimal rational approximations provide both a method for data com-
pression, as well as a useful representation for further data analysis. We
observe that rational approximations are more efficient than wavelet decom-
positions. In fact, the ability of wavelets to compress signals may be justified
via optimal rational approximations, see e.g., [L1, Chapter 11]. Furthermore,

Key words and phrases. optimal rational approximations, nonlinear approximations,
signal compression, fast algorithms, spline interpolation.

This research was partially supported by NSF grant DMS-1009951, DOE/ORNL grant
4000038129 and NSF MCTP grant DMS-0602284. A.D. is currently supported by NSF
Fellowship DGE-1147470.

Appl. Comput. Harmon. Anal., v. 35, no. 2, pp.251-263,
http://dx.doi.org/10.1016/j.acha.2012.08.011.
1



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 2

in contrast to wavelet decompositions, rational functions are closed under
translations and, thus, optimal rational approximations are shift invariant.
Indeed, shifting an optimal rational approximation yields the optimal ap-
proximation of the shifted function or data.

Our rational representations are optimal in the sense that, for a given
accuracy of approximation, the number of poles is minimal. We say that
the approximation is “near optimal” if, instead of the desired accuracy €, our
algorithms yield accuracy €, where €’ is slightly smaller than e. In such case
the number of poles may not be minimal in the strict sense (we note that we
have an a posteriori check to identify such situation, if needed). We use the
term “suboptimal”, if we know that the number of poles definitely exceeds
the optimal number (for a given accuracy).

For functions given analytically or for functions described by a relatively
small number of samples, there are several methods for obtaining their near
optimal rational approximations |5, 6, 7|. For a large data set these methods
are impractical due to their computational complexity. On the other hand,
computing a wavelet decomposition of a large data set does not present a
difficulty since its computational cost is linear in the number of samples; we
use these facts in our approach.

We first compute a B-spline representation of the data, which provides a
simple and efficient method for a transition to a suboptimal rational repre-
sentation. For this purpose, we construct a new rational approximation of
B-splines, where the poles are arranged on a rectangular grid aligned with
the location of spline knots. We then split the data into large segments, and
compute suboptimal rational approximations for each segment. Finally, we
compute a near optimal rational approximation using a recently developed,
fast and accurate algorithm in [10].

Although the example provided here is compression of audio recordings,
the algorithm may be used to compress and analyze other types of signals,
e.g., signals obtained by continuous, global seismic monitoring. In particular,
we view compression via near optimal rational approximations as the first
step in signal analysis since the poles carry frequency and time information.
As shown in [6], poles of near optimal rational approximations concentrate
near the singularities of functions. For signals, this corresponds to locations
of rapid change, such as occurring when a piano key is struck or at wave
arrivals in seismic recordings. The location of the poles also carries infor-
mation about local frequency content of the signal in a manner similar to
wavelets, i.e., the logarithmic distance of these locations from the real axis
corresponds to wavelet scales.

We start in Section 2 by providing the background information on the
key existing algorithms that facilitate the development of our new approach.
Next, in Section 3, we construct a rational approximation (with special prop-
erties) of a B-spline to be used in intermediate computations. Then, in Sec-
tion 4, we describe in detail the algorithm for constructing near optimal
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rational approximations of large data sets. We present an overview of the al-
gorithm and examine the specifics of each step. Section 5 contains numerical
examples that validate the performance of the algorithm. Finally, Section 6
contains concluding remarks.

2. PRELIMINARY CONSIDERATIONS

2.1. An algorithm for finding a near optimal rational approxima-
tion. We start by describing the method in [5] to obtain a near optimal
rational approximation from samples of the Fourier transform of the func-
tion. For functions with a fast decaying Fourier transform this method is
closely connected to the theory developed by Adamjan, Arov and Krein
(AAK) [1, 2, 3].

Given samples f( LN), k= 0,1,...,2N, (that sufficiently oversample
f(€) on the interval ¢ € [0,

. M
(1) 16 =3 wgeé| <
=1

a)), we seek a representation of f(€) of the form

where € is the desired accuracy. The algorithm proceeds as follows:

e Construct a NV+1x N+ 1 Hankel matrix of the form Hy = f(a%),
k,l=0,...,N.

e Find a singular vector u = (ug, . . . , uy ) that solves the con-eigenvalue
problem Hu = ou, with o selected according to the target accuracy
€. We may find u by solving the eigenvalue problem for

~ 0 H
2 Al g b
which yields the singular values of H, 09 > 01 > --- > 0op > -+ >
on. We choose the singular value o, so that o / 0op R €. Typlcally
the singular values decay exponentially fast so that M < N.
e Compute M appropriate roots (see [5, 6]) of the polynomial u(z) =

N: upz" and denote them ~;. Given values ;, the exponents 7;
n=0 J J i
in (1) are computed as

(3) nj = 2N log;,

where we use the principle value of the logarithm.
e Compute the weights w; in (1) by solving the least-squares Vander-
monde system

(4) Zw]% = < 21;\[), 0<k<2N.

If no a priori information is available, we may use all N roots of u(z), and
then determine the M necessary roots by selecting those with corresponding
weights of magnitude greater than the target accuracy.
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Following [6], from (1) we obtain the rational representation

M M

W, uj + 1,
5 x) =—2Re —J | = 2Re — )
(5) /(@) Z2m’x—n Zaz—t‘—is-
]:1 J ,7:1 J J
M
2y (x —t;) —v;s;
2 2
j=1 (33 - tj) + S5
where t;, s;,u;,v; are real values such that
U/ . w; .
o =t; +1s; and o = u; + ;.

As illustrated in [6], the positions of the poles t; £ is; carry information
about the location of singularities of the function f. Furthermore, the rep-
resentation for any translate of f(z) in (5) is readily obtained by simply
shifting the poles.

2.2. Algorithm for reduction of a suboptimal rational approxima-

tion. An effective and accurate algorithm for reducing the number of poles

of a rational function while maintaining some target accuracy is given in [10].

The formulation of the problem may also be found in [5] and is based on re-

sults in [3]. Although we present this algorithm for rational trigonometric

functions, a similar algorithm exists for functions defined on the real line [6].
We start with a real valued rational function f(z),

& d; < d;z
(6) fz) = — 4+ —— + do,
]Zzzl Z = ; 1 -5z

with dy € R, dj,p; € C and 0 < |p;| < 1. Our goal is to find a rational
function r(z) of the form

with fewer poles than f(z) such that
|r(e2m””) - f(ezmm)‘ <e VYrelll).
The steps of the algorithm in [10] are as follows.
e Consider the Cauchy matrix Cy;(ug,d;) ,

ij = 1_7_, k,jg=1,..., M.
g
We use the algorithm in [10] to solve the con-eigenproblem
Cu = oyt
for a con-eigenvalue o); and con-eigenvector u = (u1,uz, -, upg )"

The con-eigenvalues are ordered g > 01 > ... > op,—1 and oy /0 =~
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e. In contrast to standard algorithms, the con-eigenvalues (and con-
eigenvectors) are computed with high relative accuracy in O (M 2Mo)
operations.

e Find all the roots inside the unit disk of the function

oM o 1 -5z
Note that there are exactly M roots v; of v(z) inside the unit disk
based on results from |[3].
e Finally solve for the residuals r; of r(z) by solving the M x M linear

system
M My
e R e
Sl-vie 1ot

Using this algorithm, we obtain || f —r|| & oas, which provides a near optimal
representation of f(z) using only M pairs of conjugate-reciprocal poles, v
and ﬁl_l. The computational complexity of this algorithm is O (M 2MO),
where M is the number of resulting poles and My is the original number
of poles. Since typically M < My, this algorithm is effectively linear in its
practical use.

2.3. Spline representations. We use an intermediate representation via
B-splines as the first step towards computing the (near) optimal rational
approximation. Although theoretically we may use scaling functions of any
wavelet-type basis, the choice of B-splines reduces the computational cost of
this intermediate step.

We recall the definition of the m! degree B-spline as

/Bm(x) = /Bm—l(x) * ,80(%),

with

0, otherwise,

1
Bo(x) = {17 o< 2

(see e.g., [8]). For convenience, we only use B-splines of odd degree. It is
easy to show that, in this case, §,, is a piecewise polynomial of degree m
with knots on the integers and supported on [—(m + 1) /2,(m + 1) /2]. To
represent periodic functions, we use periodized versions of B-splines. Let us
introduce the 1-periodic function

m—1

2

am(w) = Z |Bm(w +j)|2 = Z ﬁm(l)e—Qm'lw‘

i _ —1
JEZ l—_mT
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Given a uniformly sampled 1-periodic function f, we seek the coefficients
o such that

k 2N
(7) f<ﬁ> => a;Bm(k—j), k=0,...,2N.
7=0

The algorithm in [4, 12| rapidly computes the coefficients a; in (7) using
the Fast Fourier Transform (FFT). It performs the following steps:

e Set fr = f(%) and compute, for k =0,...,2N,
2N s
Jr= anezN«Lk"
n=0

using the FFT.
e Compute, for k =0,...,2N,
ayp = 7fk
i (3x7)
e The B-spline coefficients are now obtained via the FFT as
1 2N i
05 = g A T = 0, 2N
n=0
This algorithm requires O(N log N) operations. The details may be found
in the appendix in [12].

3. RATIONAL REPRESENTATION OF B-SPLINES

In this section we construct rational approximations of B-splines. In our
construction we force the real parts of the poles to be integers [ € Z, so that
the poles are aligned with the knots of the B-spline. As we explain below,
this reduces the cost of intermediate computations.

Specifically, we are looking for a suboptimal rational approximation of the
form (5), with poles [ + i1y, so that

m—+1
2 R
ukl(az — l) — VEITk
(8) Bm(x) + 2 : — | <¢
R T T

2

where the number of rows of poles, R, will be chosen later. We note that
the constraint on the real part of the poles arranges them on a rectangular
grid (see Figure 2).

We start by computing a near optimal rational approximation of a B-spline
following the approach in [6]. For a given m, we evaluate 5 at a sufficient
number of samples; specifically for m = 7 we have

9) hnzﬁm(%>, n=01,... 800,
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where

(10) Bn©) = (

sin w€ mtl
€ ’

and use the algorithm in Section 2.1 to construct a near optimal rational
approximation.

An example of a near optimal rational approximation of a B-spline of
degree m = 3 may be found in [6]. As observed in that paper, the poles
concentrate towards the locations of the knots of the B-spline since its third
derivative is discontinuous at these points. In our application we would like
to use a higher degree B-spline to lessen the impact of discontinuities and
obtain fewer poles. In Figure 1 we present the results for a near optimal
approximation of a 7th degree B-spline using the same approach as in [6].
Since the poles, t; - is;, appear in complex conjugate pairs, in Figure 1 we
display (on a log;, scale) only those with negative imaginary part.

We then seek a suboptimal rational representation of f(x) with poles in
the locations indicated in (8) and use the near optimal approximation to
select the parameters 7 in (8). Taking into account that the poles closer to
the real line are responsible for the high frequency content of the represen-
tation, whereas those furthest away capture the lower frequency content, we
limit the range for the imaginary parts of our suboptimal poles by using the
corresponding maximum, s, and minimum, s~, of the near optimal poles.
We select three rows of poles, i.e., R = 3 in (8), by choosing imaginary parts
71 =8, 73 =5, and

Ty = e%(logﬁ—f—log 73) )

The real part for all of these poles are at locations [, where [ = m; mtl m+1

(recall that m is odd). The choice of three rows of poles is based on the de—
gree of the B-spline and our accuracy requirements (see Figure 2(b)) and
may be different in other applications.

Once the location of poles is fixed, the weights in (8) are obtained by
solving a linear system of equations. Unlike in the case of the near optimal
approximation, the computation of weights in the Fourier domain leads to
a severely ill-conditioned Vandermonde system (4). Instead, we directly
discretize the representation for S(z) in (8) and compute the weights by
minimizing the [,-norm of the residual. We note that while a B-spline has
a compact support, its rational approximation does not and, therefore, we
must control the error to within the desired accuracy outside the B-spline
support as well. This property of the approximation is particularly important
for the merging algorithm in Section 4.

To discretize 5(x) in (8), we choose a set of points {a, })=

n=0>
46
—50 460 n=0,...,499,
wy = —44 B9, — 500,730,
46(n—731)

4+T’ n:731,,1230,
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-0.3,
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F1GURE 1. (a) Near optimal rational representation of a B-
spline of degree 7 and its 16 poles (displayed on a log, scale
for their imaginary part). (b) Associated error on a log
scale.

which generates a dense grid within the support of the B-spline and a rel-
atively sparse grid outside. We then consider the overdetermined linear
system

N‘S
A

R
up(z, — 1) VI Th
m n :_2 : - . 9 :07"'7N87
o) = m+1 k:1<(x"_l)2+7—/§ (xn—l)2—|-7-]§> !

NF

and solve for the real coefficients us; and vy ;. This linear system is of size
(Ns+1) x2-(m+2) (where in our case Ny = 1230, m = 7 and R = 3)
and we solve the problem by minimizing the l.-norm of the residual using
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the optimization package CVX [9]. The resulting absolute error is shown in
Figure 2(b).

o
|
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—]10 -8 -6 -4 -2 0 2 4 6 8 10

FIGURE 2. (a) Rational representation in (8) of the B-spline
of degree 7 and its 27 poles arranged on a rectangular grid
(displayed using a logy scale for their imaginary part). (b)
Associated approximation error on a log;, scale. Outside
[—10,10] the error is smaller than within this interval.

The purpose of this suboptimal representation of the B-spline is to con-
vert a B-spline decomposition of the original signal to a suboptimal rational
representation. The special choice of pole locations implies that the number
of poles of the resulting suboptimal representation exceeds the number of B-
spline coefficients in (7) only by a factor of 3. In fact, our choice of B-splines
as a basis was motivated by this moderate increase in the number of terms
in comparison to other wavelet-type decompositions. The choice of the 7th
degree spline is dictated by the target accuracy for our final signal approx-
imation. For greater accuracy, higher order B-splines should be used and
their suboptimal approximation may be obtained by the same procedure.
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4. NEAR OPTIMAL RATIONAL APPROXIMATIONS

We now briefly describe the key steps of our algorithm for computing
near optimal rational representations of large data sets. We assume that the
signal is negligible at its start and end and has a large number of samples so
that it is impractical to use the algorithm in Section 2.1 directly. Instead,
our algorithm involves the following steps:

1: In order to apply the algorithm described in Section 2.3, we use a
partition of unity to subdivide the signal into overlapping sections
so that we may treat each section as a periodic function. The size of
these sections should be appropriate for an efficient use of the FFT
but otherwise is arbitrary. We compute the B-spline coefficients for
each section. We then combine the B-spline coefficients from each
section to get the B-spline coefficients for the entire signal.

2: We group the computed B-spline coefficients from Step 1 into con-
secutive segments (which are unrelated to the subdivision used in
Step 1). The size of these segments should be appropriate to guar-
antee efficiency of the reduction algorithm in Section 2.2. By using
the B-spline approximation constructed in Section 3, we obtain a
suboptimal rational representation of each segment.

3: On each segment we use the reduction algorithm in Section 2.2 to
obtain a near optimal rational approximation for that segment.

4: We now merge the rational representations of adjacent segments. As
we explain below, only adjacent segments interact with each other
so that this step does not have to be done globally. Furthermore,
only poles near the boundary between segments need to be merged
and then reduced. This step may be considered optional since the
overlap of the functions associated with adjacent segments is small
in comparison to the length of each segment, so that the potential
reduction of the number of poles is a small percentage of their total
number.

Once a near optimal rational representation has been constructed, we need
a fast algorithm (see below) for its evaluation to generate samples. We note
that besides recovering the original signal, rational representations also allow
us to interpolate the original signal to an arbitrary grid. This property of the
representation is useful in many applications; for example, a higher sampling
rate improves the quality of sound reproduced by speakers.

4.1. Steps of the algorithm. We now describe each step in some detail.

1: We use a partition of unity as our windows, and we note that there
may be significant overlap between adjacent windows. The only re-
quirement for the windows is a smoothly decaying transition region
as to avoid introducing additional frequency content into the signal,
and sufficient decay as to obtain partitions that are appropriate for
the use of the FFT. We then use the algorithm in Section 2.3 to
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compute the B-spline coefficients for each section of the signal. Once
the B-spline coefficients for each section are found, by adding com-
ponents from different sections, we obtain the B-spline coefficients
for the entire data set. The cost of this step is O(Nsignai 1og Npart),
where Ng;gnq is the total number of samples and Npqy¢ is the number
of samples in each section (assuming they are of the same length).
As a result, we obtain a representation

Nsignal_l
f@)y = Y afm(z—3j).
j=0
: Given the signal in the form (11), we split the sum into segments of
length P for further processing,
(p+1)P—1

@)=Y aiBn@—35)=>_ ajppBulz—j—pP),

j=pP

"
L

<.
Il
o

where
Nsignal -1
=0,...,| ————|.
p ) 9y \‘ P

In our construction we allow incomplete segments.

For each segment we replace the B-splines by their suboptimal ratio-
nal representation constructed in Section 3 and obtain the subopti-
mal representation

f: un7l($ —Jj—pP— l) — Un,iTn
(

P-1
o) = =2 ]z::o Qjipp x—j—pP—1)2+ 72

[
|
‘3
it
=
3
Il
A

Thus, the suboptimal approximation in each segment requires (P + m + 1)-

R poles (with our choice of seventh degree B-splines, R = 3, see Sec-
tion 3).

: For each p in (13), we apply the reduction algorithm described in
Section 2.2 to the suboptimal approximation f;(m) We obtain a near
optimal representation with My? tpoles,

MP* P

~ w ~

fgpt(l') = —2Re Z m, ‘ fgpt(fﬂ) - fp($)H < €.
k=1 k

: In order to merge the near optimal approximations from adjacent
segments, we may use the reduction algorithm once again. We note
that, for our purposes, we need to merge only poles near the bound-
ary between adjacent segments keeping unchanged the poles far away
from the boundary region. To accomplish this, we consider the func-
tion (we wish to reduce) generated by the poles and their corre-
sponding residues. By requesting a slightly higher accuracy across
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the support of both segments, we preserve the overall accuracy of
the merged approximation. In our experiments, we reduce the set of
poles located at most 64 units (measured by step size of the original
signal) from the midpoint of the overlapping region between adjacent
segments. This selection is made to assure that the positions of the
nodes possibly affected by the splitting of the data into segments are
adjusted by the reduction algorithm. The slightly higher accuracy
(of one half extra digit) assures that the untouched poles are not im-
pacted by this merge, and hence we do not need to recompute their
weights. We obviously do not obtain the optimal approximation over
the support of the two segments, but we claim that the approxima-
tion is near optimal, both in terms of the number of poles and their
locations. _

Given the optimal representations fJ**(z) for p in (13), we merge the
adjacent representations and denote the entire merged representation
as

}-V(x) _ Z f’;merged(x).

p

We also note that the observed reduction in the number of poles
within two adjacent segments is minimal and, therefore, this step
may be considered optional in practice.

4.2. Fast algorithm for evaluation of rational representations. A
Fast Multipole type-method provides a fast algorithm for the evaluation
of rational functions. An efficient approach (see [13, 5]) is based on approxi-
mating samples of rational functions of the form 1/(z —t; £ s;) by decaying
exponentials. Specifically, we need to evaluate the function f in (5) at values
x1 < x9 < -+ < xg. Denoting fr = —f(x), we have

M u; + 1v; Ui — 105
(15) fk=§< T >,l<::1,...K,
Jj=1

a:k—tj—isj xk—tj—i-isj

where both M and K are large. We observe that, for the applications of
oscillatory signal compression, the parameters s; describing the distance of
poles from the real axis are bounded, |s;| < s, where s is small in comparison
with the range of t;, 7 = 1,..., M. We split the summation in (15) into three
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parts,
uj + 105 U; — 105
fk — f++f_ +flocal — ( J J‘ + J J‘ >
K K k xk—Et:jzas TR —t; —1s; X —1t; +1s;
uj + 105 U; — 105
(16) + > ( e T )
t—oroas T —t; —18;  xp —t; +18;
J =
n Z < uj + 1v; n uj — ivj )
. . )
(exty] <as T —t; —18; X —t; +1i8;

and evaluate f,j , fr and f,i"cal separately, where that of f,lfml proceeds
directly. The condition on the factor « is decribed below (o =5 is a typical
choice). It remains to describe an algorithm for evaluating f,j since f, is
computed in a similar manner.

We have
f]:—: Z < Uj +ivj' i Uj—ivj' )
ety zas T —t; —18; T —t; +1is;
o
A7) =2,y oo / e @Y () cos(eVs;) — v sin(eVs;)) dy.
— 0o

The effective range of integration in (17) is finite due to the exponential (y —
—o0) and super-exponential (y — oo0) decay of the integrand. Our choice
of the factor a prevents an excessive oscillatory behavior of the integrand
within that range. In order to obtain an exponential approximation of the
form

L
(18) fif = Z Z)\Me_“l(x’“_tj), as <ap—t; <T, Re(u) >0,

tj<wxj [=1

(where T is sufficiently large to accommodate a given segment of the signal),
we may now proceed as in [5, 7]. Indeed, we discretize the integral in (17) to
any desired precision and use an appropriate algorithm to reduce the number
of terms.

In (18) we may switch the order of summation and, as a result, construct
a recursion (see [13, 5|). Denoting

Qo= D Age Mo,

ti<zp
we obtain
Gty = Y Nge M)
ti<Tpi1
— — — —ts
= e #l(mkﬂ wk)qu_‘_ E )\l,je Hl(mk+1 ])‘

Tp<tj<Tg41

This recursion leads to an O(L- K)+ O(L- M) algorithm for computing f;'.
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5. NUMERICAL EXAMPLES

We have computed several approximations using the algorithm from Sec-
tion 4. Since one of the potential applications for this method is a compres-
sion scheme, we illustrate our algorithm using a large data set from a high
quality audio recording. Generally, audio recordings are done with 16 bits
per sample. This means that the maximum accuracy possible is 2715, pro-
vided that the maximum amplitude of the signal is 1. This section contains
an example of finding a near optimal approximation for a single segment,
fp(z), and then demonstrates the procedure of merging the approximations
of adjacent segments and, thus, constructing a rational representation of the
whole data set.

5.1. Rational representation for a single segment. First, using the
algorithm in Section 4, we compute a B-spline representation for the entire
signal. We then consider the performance of our algorithm to approximate,
with accuracy 6 x 1074, the function f,(x) in (12). Figure 3 displays the
rational approximation with 44 poles, the locations of those poles, and the

associated error. We display the error ‘fp(aj) - f’;,(a:)‘, where E,(a:) is the

resulting rational approximation and note that we achieve the same accuracy
vis-a-vis the original signal (in a slightly smaller interval) due to the fact
that the computation of a B-spline representation is accurate to machine
precision.

Although this level of compression is reasonable, we note that in order to
develop a complete compression scheme additional steps should be taken to
encode the parameters of the near optimal rational approximation. Further-
more, by taking into account the level of signal noise, we may reduce the
number of poles in the representation. Indeed, by examining the decay of
the singular values of the Cauchy matrix formed for the reduction algorithm,
we can develop an approximation tailored to the level of noise in the signal

[6].

5.2. Merging of adjacent segments. One of the key benefits of the ap-
proximation method used is that each pole of the near optimal rational repre-
sentation only locally influences the reconstruction. For this reason merging
the near optimal rational approximations of adjacent segments minimally
alters the original pole locations for the two segments. To illustrate this, we
compute near optimal rational approximations for two adjacent segments,
fp(z) and fp41(z), each of length 512. Figure 4 shows the near optimal ap-
proximations of the two adjacent segments along with the error. The first
segment requires 30 poles and the second requires 29 poles.

Figure 5 shows the representation for the merged windows, pole locations
and associated error.

The poles that were within 64 sample distances of the boundary between
segments were merged. The merged approximation required 58 poles, which
means that a minimal reduction has taken place with respect to the total
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FIGURE 3. (a) Rational approximation of 768 sampled data
points using 44 nodes. (b) Pole locations (displayed using a
log, scale for their imaginary part). (c¢) Associated error on
a log,( scale.

number of poles required for the two segments. This shows that due to the
compact support of the B-splines, and consequently the good localization of
their rational approximations, the combined representations of the individual
segments provide a near optimal representation for the combined segments.
Furthermore, these results demonstrate that the step of merging adjacent
representations may be considered optional.
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FIGURE 4. (a) Near optimal rational approximations on
adjacent segments. (b) Pole locations (displayed using a log;
scale for their imaginary part). (c) Associated error on a log;
scale.

5.3. Combined rational representations. We now present an example
of constructing a rational representation of a large signal. For this purpose
we chose a portion of a piano recording containing 200,000 samples. This
recording was sampled at 44.1 kHz with 16 bits per sample. Segments of
size P = 6,250 were used, yielding a rational representation with 18,373
poles (the merging process was not applied to further reduce the number
of poles). Counting only one pole and one weight in a conjugate pair, re-
sults in the total of 74948 real numbers to represent this signal, i.e., the
compression factor &~ 2.72 relative to the original number of samples. For
a high quality compression of music, it is a good factor since no quantiza-
tion or arithmetic coding has been used to increase the compression rate.
The maximum absolute error is 4.83-10~* and there is no audible difference
between the original signal and its reconstructed version. In Figure 6 we
display the error of approximating the signal in this example. We note that,
once the rational approximation is constructed, we can reconstruct the signal
with an arbitrary sampling rate. This is a desirable property for a faithful
reproduction of sound in loudspeakers.

6. FINAL REMARKS

We have developed, by combining several algorithms, a new approach
to compute near optimal rational approximations for large data sets. The
speed of these algorithms allows us to construct such approximations even for
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signals that are generated by continuous monitoring, e.g., seismic monitoring.
We observe that many parts of the algorithm can be trivially parallelized. In
a modification of the approach, we can split the signal into sub-bands and
construct rational approximations within each sub-band separately. This
offers several advantages which we plan to address elsewhere.

The results also show promise for the development of a competitive algo-
rithm for music compression. The building blocks of these representations
contain information about local frequency content and are shift invariant.
This property facilitates further processing of signals as the parameters are
practically independent of the initial shift of the input data; this also opens
up the possibility of recognizing recurring signal features at locations sepa-
rated in time.
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