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Abstrat. We introdue a new omputationally e�ient algorithm

for onstruting near optimal rational approximations of large (one-

dimensional) data sets. In ontrast to wavelet-type approximations,

these new approximations are e�etively shift invariant. We note that

the omplexity of urrent algorithms for omputing near optimal ratio-

nal approximations prevents their use for large data sets.

In order to obtain a near optimal rational approximation of a large

data set, we �rst onstrut its intermediate B-spline representation.

Then, by using a new rational approximation of B-splines, we arrive

at a suboptimal rational approximation of the data set. We then use a

reently developed fast and aurate redution algorithm for obtaining

a near optimal rational approximation from a suboptimal one. Our ap-

proah requires �rst splitting the data into large segments, whih may

later be merged together, if needed. We also desribe a fast algorithm

for evaluating these rational approximations. In partiular, this allows

us to interpolate the original data to any grid.

One of the pratial appliations of our algorithm is the ompression

of audio signals. To demonstrate the potential ompetitiveness of our

approah, we onstrut a near optimal rational approximation of a piano

reording.

1. Introdution

In this paper we develop an algorithm for onstruting near optimal ra-

tional representations of funtions using as input a large number of equally

spaed samples. Examples of suh data sets inlude, among others, digitized

versions of musial reordings and ontinuous seismi reords. Optimal or

near optimal rational approximations provide both a method for data om-

pression, as well as a useful representation for further data analysis. We

observe that rational approximations are more e�ient than wavelet deom-

positions. In fat, the ability of wavelets to ompress signals may be justi�ed

via optimal rational approximations, see e.g., [11, Chapter 11℄. Furthermore,
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in ontrast to wavelet deompositions, rational funtions are losed under

translations and, thus, optimal rational approximations are shift invariant.

Indeed, shifting an optimal rational approximation yields the optimal ap-

proximation of the shifted funtion or data.

Our rational representations are optimal in the sense that, for a given

auray of approximation, the number of poles is minimal. We say that

the approximation is �near optimal� if, instead of the desired auray ǫ, our
algorithms yield auray ǫ′, where ǫ′ is slightly smaller than ǫ. In suh ase

the number of poles may not be minimal in the strit sense (we note that we

have an a posteriori hek to identify suh situation, if needed). We use the

term �suboptimal�, if we know that the number of poles de�nitely exeeds

the optimal number (for a given auray).

For funtions given analytially or for funtions desribed by a relatively

small number of samples, there are several methods for obtaining their near

optimal rational approximations [5, 6, 7℄. For a large data set these methods

are impratial due to their omputational omplexity. On the other hand,

omputing a wavelet deomposition of a large data set does not present a

di�ulty sine its omputational ost is linear in the number of samples; we

use these fats in our approah.

We �rst ompute a B-spline representation of the data, whih provides a

simple and e�ient method for a transition to a suboptimal rational repre-

sentation. For this purpose, we onstrut a new rational approximation of

B-splines, where the poles are arranged on a retangular grid aligned with

the loation of spline knots. We then split the data into large segments, and

ompute suboptimal rational approximations for eah segment. Finally, we

ompute a near optimal rational approximation using a reently developed,

fast and aurate algorithm in [10℄.

Although the example provided here is ompression of audio reordings,

the algorithm may be used to ompress and analyze other types of signals,

e.g., signals obtained by ontinuous, global seismi monitoring. In partiular,

we view ompression via near optimal rational approximations as the �rst

step in signal analysis sine the poles arry frequeny and time information.

As shown in [6℄, poles of near optimal rational approximations onentrate

near the singularities of funtions. For signals, this orresponds to loations

of rapid hange, suh as ourring when a piano key is struk or at wave

arrivals in seismi reordings. The loation of the poles also arries infor-

mation about loal frequeny ontent of the signal in a manner similar to

wavelets, i.e., the logarithmi distane of these loations from the real axis

orresponds to wavelet sales.

We start in Setion 2 by providing the bakground information on the

key existing algorithms that failitate the development of our new approah.

Next, in Setion 3, we onstrut a rational approximation (with speial prop-

erties) of a B-spline to be used in intermediate omputations. Then, in Se-

tion 4, we desribe in detail the algorithm for onstruting near optimal
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rational approximations of large data sets. We present an overview of the al-

gorithm and examine the spei�s of eah step. Setion 5 ontains numerial

examples that validate the performane of the algorithm. Finally, Setion 6

ontains onluding remarks.

2. Preliminary Considerations

2.1. An algorithm for �nding a near optimal rational approxima-

tion. We start by desribing the method in [5℄ to obtain a near optimal

rational approximation from samples of the Fourier transform of the fun-

tion. For funtions with a fast deaying Fourier transform this method is

losely onneted to the theory developed by Adamjan, Arov and Krein

(AAK) [1, 2, 3℄.

Given samples f̂
(
a k
2N

)
, k = 0, 1, . . . , 2N , (that su�iently oversample

f̂(ξ) on the interval ξ ∈ [0, a]), we seek a representation of f̂(ξ) of the form

(1)

∣∣∣∣∣∣
f̂(ξ)−

M∑

j=1

wje
−ηjξ

∣∣∣∣∣∣
≤ ǫ,

where ǫ is the desired auray. The algorithm proeeds as follows:

• Construt a N+1×N+1 Hankel matrix of the form Hkl = f̂
(
ak+l
2N

)
,

k, l = 0, . . . , N .

• Find a singular vetor u = (u0, . . . , uN ) that solves the on-eigenvalue
problem Hu = σū, with σ seleted aording to the target auray

ǫ. We may �nd u by solving the eigenvalue problem for

(2) H̃ =

[
0 H

H

∗
0

]
,

whih yields the singular values of H, σ0 ≥ σ1 ≥ · · · ≥ σM ≥ · · · ≥
σN . We hoose the singular value σM , so that σM/σ0 ≈ ǫ. Typially
the singular values deay exponentially fast so that M ≪ N .

• Compute M appropriate roots (see [5, 6℄) of the polynomial u(z) =∑N
n=0 unz

n
and denote them γj . Given values γj , the exponents ηj

in (1) are omputed as

(3) ηj = 2N log γj ,

where we use the priniple value of the logarithm.

• Compute the weights wj in (1) by solving the least-squares Vander-

monde system

(4)

M∑

j=1

wjγ
k
j = f̂

(
a

k

2N

)
, 0 ≤ k ≤ 2N.

If no a priori information is available, we may use all N roots of u(z), and
then determine the M neessary roots by seleting those with orresponding

weights of magnitude greater than the target auray.
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Following [6℄, from (1) we obtain the rational representation

f(x) = −2Re




M∑

j=1

wj

2πix− ηj


 = −2Re




M∑

j=1

uj + ivj
x− tj − isj




(5)

= −2

M∑

j=1

uj (x− tj)− vjsj

(x− tj)
2 + s2j

,

where tj, sj , uj , vj are real values suh that

ηj
2πi

= tj + isj and

wj

2πi
= uj + ivj.

As illustrated in [6℄, the positions of the poles tj ± isj arry information

about the loation of singularities of the funtion f . Furthermore, the rep-

resentation for any translate of f(x) in (5) is readily obtained by simply

shifting the poles.

2.2. Algorithm for redution of a suboptimal rational approxima-

tion. An e�etive and aurate algorithm for reduing the number of poles

of a rational funtion while maintaining some target auray is given in [10℄.

The formulation of the problem may also be found in [5℄ and is based on re-

sults in [3℄. Although we present this algorithm for rational trigonometri

funtions, a similar algorithm exists for funtions de�ned on the real line [6℄.

We start with a real valued rational funtion f(z),

(6) f(z) =

M0∑

j=1

dj
z − µj

+

M0∑

j=1

djz

1− µjz
+ d0,

with d0 ∈ R, dj , µj ∈ C and 0 < |µj | < 1. Our goal is to �nd a rational

funtion r(z) of the form

r(z) =
M∑

j=1

rj
z − ηj

+
M∑

j=1

rjz

1− ηjz
+ d0,

with fewer poles than f(z) suh that

∣∣r(e2πix)− f(e2πix)
∣∣ < ǫ ∀x ∈ [0, 1).

The steps of the algorithm in [10℄ are as follows.

• Consider the Cauhy matrix Ckj(µk, dj) ,

Ckj =

√
dk

√
dj ,

1− µkµj

, k, j = 1, . . . ,M0.

We use the algorithm in [10℄ to solve the on-eigenproblem

Cu = σM ū

for a on-eigenvalue σM and on-eigenvetor u = (u1, u2, · · · , uM0
)t.

The on-eigenvalues are ordered σ0 ≥ σ1 ≥ . . . ≥ σM0−1 and σM/σ0 ≈



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 5

ǫ. In ontrast to standard algorithms, the on-eigenvalues (and on-

eigenvetors) are omputed with high relative auray in O
(
M2M0

)

operations.

• Find all the roots inside the unit disk of the funtion

v(z) =
1

σM

M0∑

j=1

√
dj uj

1− µjz
.

Note that there are exatly M roots νl of v(z) inside the unit disk

based on results from [3℄.

• Finally solve for the residuals rl of r(z) by solving the M ×M linear

system

M∑

j=1

rj
1− νjνk

=

M0∑

j=1

dj
1− µjνk

.

Using this algorithm, we obtain ‖f−r‖ ≈ σM , whih provides a near optimal

representation of f(z) using only M pairs of onjugate-reiproal poles, νl
and ν−1

l . The omputational omplexity of this algorithm is O
(
M2M0

)
,

where M is the number of resulting poles and M0 is the original number

of poles. Sine typially M ≪ M0, this algorithm is e�etively linear in its

pratial use.

2.3. Spline representations. We use an intermediate representation via

B-splines as the �rst step towards omputing the (near) optimal rational

approximation. Although theoretially we may use saling funtions of any

wavelet-type basis, the hoie of B-splines redues the omputational ost of

this intermediate step.

We reall the de�nition of the mth
degree B-spline as

βm(x) = βm−1(x) ∗ β0(x),

with

β0(x) =

{
1, |x| ≤ 1

2

0, otherwise,

(see e.g., [8℄). For onveniene, we only use B-splines of odd degree. It is

easy to show that, in this ase, βm is a pieewise polynomial of degree m
with knots on the integers and supported on [− (m+ 1) /2, (m+ 1) /2]. To
represent periodi funtions, we use periodized versions of B-splines. Let us

introdue the 1-periodi funtion

am(ω) =
∑

j∈Z

|β̂m(ω + j)|2 =

m−1

2∑

l=−m−1

2

βm(l)e−2πilω.
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Given a uniformly sampled 1-periodi funtion f , we seek the oe�ients

αj suh that

(7) f

(
k

2N

)
=

2N∑

j=0

αjβm(k − j), k = 0, . . . , 2N.

The algorithm in [4, 12℄ rapidly omputes the oe�ients αj in (7) using

the Fast Fourier Transform (FFT). It performs the following steps:

• Set fk = f( k
2N ) and ompute, for k = 0, . . . , 2N ,

f̂k =

2N∑

n=0

fne
−2πi
2N+1

kn

using the FFT.

• Compute, for k = 0, . . . , 2N ,

α̂k =
f̂k

am( k
2N+1 )

.

• The B-spline oe�ients are now obtained via the FFT as

αj =
1

2N + 1

2N∑

n=0

α̂ne
2πi

2N+1
jn, j = 0, . . . , 2N

This algorithm requires O(N logN) operations. The details may be found

in the appendix in [12℄.

3. Rational representation of B-splines

In this setion we onstrut rational approximations of B-splines. In our

onstrution we fore the real parts of the poles to be integers l ∈ Z, so that

the poles are aligned with the knots of the B-spline. As we explain below,

this redues the ost of intermediate omputations.

Spei�ally, we are looking for a suboptimal rational approximation of the

form (5), with poles l ± iτk, so that

(8)

∣∣∣∣∣∣∣
βm(x) + 2

m+1

2∑

l=−m+1

2

R∑

k=1

uk,l(x− l)− vk,lτk
(x− l)2 + τ2k

∣∣∣∣∣∣∣
≤ ǫ,

where the number of rows of poles, R, will be hosen later. We note that

the onstraint on the real part of the poles arranges them on a retangular

grid (see Figure 2).

We start by omputing a near optimal rational approximation of a B-spline

following the approah in [6℄. For a given m, we evaluate β̂ at a su�ient

number of samples; spei�ally for m = 7 we have

(9) hn = β̂m

( n

32

)
, n = 0, 1, . . . , 800,



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 7

where

(10) β̂m(ξ) =

(
sinπξ

πξ

)m+1

,

and use the algorithm in Setion 2.1 to onstrut a near optimal rational

approximation.

An example of a near optimal rational approximation of a B-spline of

degree m = 3 may be found in [6℄. As observed in that paper, the poles

onentrate towards the loations of the knots of the B-spline sine its third

derivative is disontinuous at these points. In our appliation we would like

to use a higher degree B-spline to lessen the impat of disontinuities and

obtain fewer poles. In Figure 1 we present the results for a near optimal

approximation of a 7th degree B-spline using the same approah as in [6℄.

Sine the poles, tj ± isj , appear in omplex onjugate pairs, in Figure 1 we

display (on a log10 sale) only those with negative imaginary part.

We then seek a suboptimal rational representation of β(x) with poles in

the loations indiated in (8) and use the near optimal approximation to

selet the parameters τk in (8). Taking into aount that the poles loser to

the real line are responsible for the high frequeny ontent of the represen-

tation, whereas those furthest away apture the lower frequeny ontent, we

limit the range for the imaginary parts of our suboptimal poles by using the

orresponding maximum, s+, and minimum, s−, of the near optimal poles.

We selet three rows of poles, i.e., R = 3 in (8), by hoosing imaginary parts

τ1 = s+, τ3 = s−, and

τ2 = e
1

2
(log τ1+log τ3).

The real part for all of these poles are at loations l, where l = −m+1
2 , . . . , m+1

2
(reall that m is odd). The hoie of three rows of poles is based on the de-

gree of the B-spline and our auray requirements (see Figure 2(b)) and

may be di�erent in other appliations.

One the loation of poles is �xed, the weights in (8) are obtained by

solving a linear system of equations. Unlike in the ase of the near optimal

approximation, the omputation of weights in the Fourier domain leads to

a severely ill-onditioned Vandermonde system (4). Instead, we diretly

disretize the representation for β(x) in (8) and ompute the weights by

minimizing the l∞-norm of the residual. We note that while a B-spline has

a ompat support, its rational approximation does not and, therefore, we

must ontrol the error to within the desired auray outside the B-spline

support as well. This property of the approximation is partiularly important

for the merging algorithm in Setion 4.

To disretize β(x) in (8), we hoose a set of points {xn}Ns

n=0,

xn =





−50 + 46n
499 , n = 0, . . . , 499,

−4 + 8(n−499)
232 , n = 500, . . . , 730,

4 + 46(n−731)
499 , n = 731, . . . , 1230,
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Figure 1. (a) Near optimal rational representation of a B-

spline of degree 7 and its 16 poles (displayed on a log10 sale
for their imaginary part). (b) Assoiated error on a log10
sale.

whih generates a dense grid within the support of the B-spline and a rel-

atively sparse grid outside. We then onsider the overdetermined linear

system

βm(xn) = −2

m+1

2∑

l=−m+1

2

R∑

k=1

(
uk,l(xn − l)

(xn − l)2 + τ2k
− vk,lτk

(xn − l)2 + τ2k

)
, n = 0, . . . , Ns,

and solve for the real oe�ients uk,l and vk,l. This linear system is of size

(Ns + 1) × 2 · (m+ 2) (where in our ase Ns = 1230, m = 7 and R = 3)
and we solve the problem by minimizing the l∞-norm of the residual using
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the optimization pakage CVX [9℄. The resulting absolute error is shown in

Figure 2(b).

−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

−4 −3 −2 −1 0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−11

−10

−9

−8

−7

(b)

Figure 2. (a) Rational representation in (8) of the B-spline

of degree 7 and its 27 poles arranged on a retangular grid

(displayed using a log10 sale for their imaginary part). (b)

Assoiated approximation error on a log10 sale. Outside

[−10, 10] the error is smaller than within this interval.

The purpose of this suboptimal representation of the B-spline is to on-

vert a B-spline deomposition of the original signal to a suboptimal rational

representation. The speial hoie of pole loations implies that the number

of poles of the resulting suboptimal representation exeeds the number of B-

spline oe�ients in (7) only by a fator of 3. In fat, our hoie of B-splines

as a basis was motivated by this moderate inrease in the number of terms

in omparison to other wavelet-type deompositions. The hoie of the 7th
degree spline is ditated by the target auray for our �nal signal approx-

imation. For greater auray, higher order B-splines should be used and

their suboptimal approximation may be obtained by the same proedure.
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4. Near optimal rational approximations

We now brie�y desribe the key steps of our algorithm for omputing

near optimal rational representations of large data sets. We assume that the

signal is negligible at its start and end and has a large number of samples so

that it is impratial to use the algorithm in Setion 2.1 diretly. Instead,

our algorithm involves the following steps:

1: In order to apply the algorithm desribed in Setion 2.3, we use a

partition of unity to subdivide the signal into overlapping setions

so that we may treat eah setion as a periodi funtion. The size of

these setions should be appropriate for an e�ient use of the FFT

but otherwise is arbitrary. We ompute the B-spline oe�ients for

eah setion. We then ombine the B-spline oe�ients from eah

setion to get the B-spline oe�ients for the entire signal.

2: We group the omputed B-spline oe�ients from Step 1 into on-

seutive segments (whih are unrelated to the subdivision used in

Step 1). The size of these segments should be appropriate to guar-

antee e�ieny of the redution algorithm in Setion 2.2. By using

the B-spline approximation onstruted in Setion 3, we obtain a

suboptimal rational representation of eah segment.

3: On eah segment we use the redution algorithm in Setion 2.2 to

obtain a near optimal rational approximation for that segment.

4: We now merge the rational representations of adjaent segments. As

we explain below, only adjaent segments interat with eah other

so that this step does not have to be done globally. Furthermore,

only poles near the boundary between segments need to be merged

and then redued. This step may be onsidered optional sine the

overlap of the funtions assoiated with adjaent segments is small

in omparison to the length of eah segment, so that the potential

redution of the number of poles is a small perentage of their total

number.

One a near optimal rational representation has been onstruted, we need

a fast algorithm (see below) for its evaluation to generate samples. We note

that besides reovering the original signal, rational representations also allow

us to interpolate the original signal to an arbitrary grid. This property of the

representation is useful in many appliations; for example, a higher sampling

rate improves the quality of sound reprodued by speakers.

4.1. Steps of the algorithm. We now desribe eah step in some detail.

1: We use a partition of unity as our windows, and we note that there

may be signi�ant overlap between adjaent windows. The only re-

quirement for the windows is a smoothly deaying transition region

as to avoid introduing additional frequeny ontent into the signal,

and su�ient deay as to obtain partitions that are appropriate for

the use of the FFT. We then use the algorithm in Setion 2.3 to
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ompute the B-spline oe�ients for eah setion of the signal. One

the B-spline oe�ients for eah setion are found, by adding om-

ponents from di�erent setions, we obtain the B-spline oe�ients

for the entire data set. The ost of this step is O(Nsignal logNpart),
where Nsignal is the total number of samples and Npart is the number

of samples in eah setion (assuming they are of the same length).

As a result, we obtain a representation

(11) f(x) =

Nsignal−1∑

j=0

αjβm(x− j).

2: Given the signal in the form (11), we split the sum into segments of

length P for further proessing,

(12) fp(x) =

(p+1)P−1∑

j=pP

αjβm(x− j) =

P−1∑

j=0

αj+pPβm(x− j − pP ),

where

(13) p = 0, . . . ,

⌊
Nsignal − 1

P

⌋
.

In our onstrution we allow inomplete segments.

For eah segment we replae the B-splines by their suboptimal ratio-

nal representation onstruted in Setion 3 and obtain the subopti-

mal representation

(14) f̃p(x) = −2
P−1∑

j=0


αj+pP

m+1

2∑

l=−m+1

2

R∑

n=1

un,l(x− j − pP − l)− vn,lτn
(x− j − pP − l)2 + τ2n


 .

Thus, the suboptimal approximation in eah segment requires (P +m+ 1)·
R poles (with our hoie of seventh degree B-splines, R = 3, see Se-
tion 3).

3: For eah p in (13), we apply the redution algorithm desribed in

Setion 2.2 to the suboptimal approximation f̃p(x). We obtain a near

optimal representation with Mopt
p poles,

f̃ opt
p (x) = −2Re

M
opt
p∑

k=1

wp
k

2πix− ηpk
,

∥∥∥f̃ opt
p (x)− fp(x)

∥∥∥ < ǫ.

4: In order to merge the near optimal approximations from adjaent

segments, we may use the redution algorithm one again. We note

that, for our purposes, we need to merge only poles near the bound-

ary between adjaent segments keeping unhanged the poles far away

from the boundary region. To aomplish this, we onsider the fun-

tion (we wish to redue) generated by the poles and their orre-

sponding residues. By requesting a slightly higher auray aross
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the support of both segments, we preserve the overall auray of

the merged approximation. In our experiments, we redue the set of

poles loated at most 64 units (measured by step size of the original

signal) from the midpoint of the overlapping region between adjaent

segments. This seletion is made to assure that the positions of the

nodes possibly a�eted by the splitting of the data into segments are

adjusted by the redution algorithm. The slightly higher auray

(of one half extra digit) assures that the untouhed poles are not im-

pated by this merge, and hene we do not need to reompute their

weights. We obviously do not obtain the optimal approximation over

the support of the two segments, but we laim that the approxima-

tion is near optimal, both in terms of the number of poles and their

loations.

Given the optimal representations f̃ opt
p (x) for p in (13), we merge the

adjaent representations and denote the entire merged representation

as

f̃(x) =
∑

p

f̃merged
p (x).

We also note that the observed redution in the number of poles

within two adjaent segments is minimal and, therefore, this step

may be onsidered optional in pratie.

4.2. Fast algorithm for evaluation of rational representations. A

Fast Multipole type-method provides a fast algorithm for the evaluation

of rational funtions. An e�ient approah (see [13, 5℄) is based on approxi-

mating samples of rational funtions of the form 1/(x− tj± i sj) by deaying

exponentials. Spei�ally, we need to evaluate the funtion f in (5) at values

x1 < x2 < · · · < xK . Denoting fk = −f(xk), we have

(15) fk =
M∑

j=1

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)
, k = 1, . . . K,

where both M and K are large. We observe that, for the appliations of

osillatory signal ompression, the parameters sj desribing the distane of

poles from the real axis are bounded, |sj| ≤ s, where s is small in omparison

with the range of tj , j = 1, . . . ,M . We split the summation in (15) into three
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parts,

fk = f+
k + f−

k + f local
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)

+
∑

tj−xk≥αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)
(16)

+
∑

|xk−tj |<αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)
,

and evaluate f+
k , f−

k and f local
k separately, where that of f local

k proeeds

diretly. The ondition on the fator α is deribed below (α = 5 is a typial

hoie). It remains to desribe an algorithm for evaluating f+
k sine f−

k is

omputed in a similar manner.

We have

f+
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)

= 2
∑

xk−tj≥αs

ˆ ∞

−∞
e−ey(xk−tj)+y (uj cos(e

ysj)− vj sin(e
ysj)) dy.(17)

The e�etive range of integration in (17) is �nite due to the exponential (y →
−∞) and super-exponential (y → ∞) deay of the integrand. Our hoie

of the fator α prevents an exessive osillatory behavior of the integrand

within that range. In order to obtain an exponential approximation of the

form

(18) f+
k =

∑

tj≤xk

L∑

l=1

λl,je
−µl(xk−tj), αs ≤ xk − tj ≤ T, Re(µl) > 0,

(where T is su�iently large to aommodate a given segment of the signal),

we may now proeed as in [5, 7℄. Indeed, we disretize the integral in (17) to

any desired preision and use an appropriate algorithm to redue the number

of terms.

In (18) we may swith the order of summation and, as a result, onstrut

a reursion (see [13, 5℄). Denoting

qk,l =
∑

tj≤xk

λl,je
−µl(xk−tj),

we obtain

qk+1,l =
∑

tj≤xk+1

λl,je
−µl(xk+1−tj)

= e−µl(xk+1−xk)qk,l +
∑

xk<tj≤xk+1

λl,je
−µl(xk+1−tj).

This reursion leads to an O(L ·K)+O(L ·M) algorithm for omputing f+
k .
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5. Numerial Examples

We have omputed several approximations using the algorithm from Se-

tion 4. Sine one of the potential appliations for this method is a ompres-

sion sheme, we illustrate our algorithm using a large data set from a high

quality audio reording. Generally, audio reordings are done with 16 bits

per sample. This means that the maximum auray possible is 2−15
, pro-

vided that the maximum amplitude of the signal is 1. This setion ontains

an example of �nding a near optimal approximation for a single segment,

fp(x), and then demonstrates the proedure of merging the approximations

of adjaent segments and, thus, onstruting a rational representation of the

whole data set.

5.1. Rational representation for a single segment. First, using the

algorithm in Setion 4, we ompute a B-spline representation for the entire

signal. We then onsider the performane of our algorithm to approximate,

with auray 6 × 10−4
, the funtion fp(x) in (12). Figure 3 displays the

rational approximation with 44 poles, the loations of those poles, and the

assoiated error. We display the error

∣∣∣fp(x)− f̃p(x)
∣∣∣, where f̃p(x) is the

resulting rational approximation and note that we ahieve the same auray

vis-à-vis the original signal (in a slightly smaller interval) due to the fat

that the omputation of a B-spline representation is aurate to mahine

preision.

Although this level of ompression is reasonable, we note that in order to

develop a omplete ompression sheme additional steps should be taken to

enode the parameters of the near optimal rational approximation. Further-

more, by taking into aount the level of signal noise, we may redue the

number of poles in the representation. Indeed, by examining the deay of

the singular values of the Cauhy matrix formed for the redution algorithm,

we an develop an approximation tailored to the level of noise in the signal

[6℄.

5.2. Merging of adjaent segments. One of the key bene�ts of the ap-

proximation method used is that eah pole of the near optimal rational repre-

sentation only loally in�uenes the reonstrution. For this reason merging

the near optimal rational approximations of adjaent segments minimally

alters the original pole loations for the two segments. To illustrate this, we

ompute near optimal rational approximations for two adjaent segments,

fp(x) and fp+1(x), eah of length 512. Figure 4 shows the near optimal ap-

proximations of the two adjaent segments along with the error. The �rst

segment requires 30 poles and the seond requires 29 poles.

Figure 5 shows the representation for the merged windows, pole loations

and assoiated error.

The poles that were within 64 sample distanes of the boundary between

segments were merged. The merged approximation required 58 poles, whih

means that a minimal redution has taken plae with respet to the total
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Figure 3. (a) Rational approximation of 768 sampled data

points using 44 nodes. (b) Pole loations (displayed using a

log10 sale for their imaginary part). () Assoiated error on

a log10 sale.

number of poles required for the two segments. This shows that due to the

ompat support of the B-splines, and onsequently the good loalization of

their rational approximations, the ombined representations of the individual

segments provide a near optimal representation for the ombined segments.

Furthermore, these results demonstrate that the step of merging adjaent

representations may be onsidered optional.
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Figure 4. (a) Near optimal rational approximations on

adjaent segments. (b) Pole loations (displayed using a log10
sale for their imaginary part). () Assoiated error on a log10
sale.

5.3. Combined rational representations. We now present an example

of onstruting a rational representation of a large signal. For this purpose

we hose a portion of a piano reording ontaining 200, 000 samples. This

reording was sampled at 44.1 kHz with 16 bits per sample. Segments of

size P = 6, 250 were used, yielding a rational representation with 18, 373
poles (the merging proess was not applied to further redue the number

of poles). Counting only one pole and one weight in a onjugate pair, re-

sults in the total of 74948 real numbers to represent this signal, i.e., the

ompression fator ≈ 2.72 relative to the original number of samples. For

a high quality ompression of musi, it is a good fator sine no quantiza-

tion or arithmeti oding has been used to inrease the ompression rate.

The maximum absolute error is 4.83 · 10−4
and there is no audible di�erene

between the original signal and its reonstruted version. In Figure 6 we

display the error of approximating the signal in this example. We note that,

one the rational approximation is onstruted, we an reonstrut the signal

with an arbitrary sampling rate. This is a desirable property for a faithful

reprodution of sound in loudspeakers.

6. Final Remarks

We have developed, by ombining several algorithms, a new approah

to ompute near optimal rational approximations for large data sets. The

speed of these algorithms allows us to onstrut suh approximations even for
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Figure 5. (a) Merged representation using 58 poles. (b)

Pole loations (displayed using a log10 sale for their imag-

inary part). () Assoiated approximation error on a log10
sale.

signals that are generated by ontinuous monitoring, e.g., seismi monitoring.

We observe that many parts of the algorithm an be trivially parallelized. In

a modi�ation of the approah, we an split the signal into sub-bands and

onstrut rational approximations within eah sub-band separately. This

o�ers several advantages whih we plan to address elsewhere.

The results also show promise for the development of a ompetitive algo-

rithm for musi ompression. The building bloks of these representations

ontain information about loal frequeny ontent and are shift invariant.

This property failitates further proessing of signals as the parameters are

pratially independent of the initial shift of the input data; this also opens

up the possibility of reognizing reurring signal features at loations sepa-

rated in time.
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Figure 6. Error displayed on a log10 sale of signal reon-

strution (a musi reording) using a rational representation

with 18, 373 poles. The original signal had 200, 000 samples.
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