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Abstra
t. We introdu
e a new 
omputationally e�
ient algorithm

for 
onstru
ting near optimal rational approximations of large (one-

dimensional) data sets. In 
ontrast to wavelet-type approximations,

these new approximations are e�e
tively shift invariant. We note that

the 
omplexity of 
urrent algorithms for 
omputing near optimal ratio-

nal approximations prevents their use for large data sets.

In order to obtain a near optimal rational approximation of a large

data set, we �rst 
onstru
t its intermediate B-spline representation.

Then, by using a new rational approximation of B-splines, we arrive

at a suboptimal rational approximation of the data set. We then use a

re
ently developed fast and a

urate redu
tion algorithm for obtaining

a near optimal rational approximation from a suboptimal one. Our ap-

proa
h requires �rst splitting the data into large segments, whi
h may

later be merged together, if needed. We also des
ribe a fast algorithm

for evaluating these rational approximations. In parti
ular, this allows

us to interpolate the original data to any grid.

One of the pra
ti
al appli
ations of our algorithm is the 
ompression

of audio signals. To demonstrate the potential 
ompetitiveness of our

approa
h, we 
onstru
t a near optimal rational approximation of a piano

re
ording.

1. Introdu
tion

In this paper we develop an algorithm for 
onstru
ting near optimal ra-

tional representations of fun
tions using as input a large number of equally

spa
ed samples. Examples of su
h data sets in
lude, among others, digitized

versions of musi
al re
ordings and 
ontinuous seismi
 re
ords. Optimal or

near optimal rational approximations provide both a method for data 
om-

pression, as well as a useful representation for further data analysis. We

observe that rational approximations are more e�
ient than wavelet de
om-

positions. In fa
t, the ability of wavelets to 
ompress signals may be justi�ed

via optimal rational approximations, see e.g., [11, Chapter 11℄. Furthermore,
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in 
ontrast to wavelet de
ompositions, rational fun
tions are 
losed under

translations and, thus, optimal rational approximations are shift invariant.

Indeed, shifting an optimal rational approximation yields the optimal ap-

proximation of the shifted fun
tion or data.

Our rational representations are optimal in the sense that, for a given

a

ura
y of approximation, the number of poles is minimal. We say that

the approximation is �near optimal� if, instead of the desired a

ura
y ǫ, our
algorithms yield a

ura
y ǫ′, where ǫ′ is slightly smaller than ǫ. In su
h 
ase

the number of poles may not be minimal in the stri
t sense (we note that we

have an a posteriori 
he
k to identify su
h situation, if needed). We use the

term �suboptimal�, if we know that the number of poles de�nitely ex
eeds

the optimal number (for a given a

ura
y).

For fun
tions given analyti
ally or for fun
tions des
ribed by a relatively

small number of samples, there are several methods for obtaining their near

optimal rational approximations [5, 6, 7℄. For a large data set these methods

are impra
ti
al due to their 
omputational 
omplexity. On the other hand,


omputing a wavelet de
omposition of a large data set does not present a

di�
ulty sin
e its 
omputational 
ost is linear in the number of samples; we

use these fa
ts in our approa
h.

We �rst 
ompute a B-spline representation of the data, whi
h provides a

simple and e�
ient method for a transition to a suboptimal rational repre-

sentation. For this purpose, we 
onstru
t a new rational approximation of

B-splines, where the poles are arranged on a re
tangular grid aligned with

the lo
ation of spline knots. We then split the data into large segments, and


ompute suboptimal rational approximations for ea
h segment. Finally, we


ompute a near optimal rational approximation using a re
ently developed,

fast and a

urate algorithm in [10℄.

Although the example provided here is 
ompression of audio re
ordings,

the algorithm may be used to 
ompress and analyze other types of signals,

e.g., signals obtained by 
ontinuous, global seismi
 monitoring. In parti
ular,

we view 
ompression via near optimal rational approximations as the �rst

step in signal analysis sin
e the poles 
arry frequen
y and time information.

As shown in [6℄, poles of near optimal rational approximations 
on
entrate

near the singularities of fun
tions. For signals, this 
orresponds to lo
ations

of rapid 
hange, su
h as o

urring when a piano key is stru
k or at wave

arrivals in seismi
 re
ordings. The lo
ation of the poles also 
arries infor-

mation about lo
al frequen
y 
ontent of the signal in a manner similar to

wavelets, i.e., the logarithmi
 distan
e of these lo
ations from the real axis


orresponds to wavelet s
ales.

We start in Se
tion 2 by providing the ba
kground information on the

key existing algorithms that fa
ilitate the development of our new approa
h.

Next, in Se
tion 3, we 
onstru
t a rational approximation (with spe
ial prop-

erties) of a B-spline to be used in intermediate 
omputations. Then, in Se
-

tion 4, we des
ribe in detail the algorithm for 
onstru
ting near optimal
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rational approximations of large data sets. We present an overview of the al-

gorithm and examine the spe
i�
s of ea
h step. Se
tion 5 
ontains numeri
al

examples that validate the performan
e of the algorithm. Finally, Se
tion 6


ontains 
on
luding remarks.

2. Preliminary Considerations

2.1. An algorithm for �nding a near optimal rational approxima-

tion. We start by des
ribing the method in [5℄ to obtain a near optimal

rational approximation from samples of the Fourier transform of the fun
-

tion. For fun
tions with a fast de
aying Fourier transform this method is


losely 
onne
ted to the theory developed by Adamjan, Arov and Krein

(AAK) [1, 2, 3℄.

Given samples f̂
(
a k
2N

)
, k = 0, 1, . . . , 2N , (that su�
iently oversample

f̂(ξ) on the interval ξ ∈ [0, a]), we seek a representation of f̂(ξ) of the form

(1)

∣∣∣∣∣∣
f̂(ξ)−

M∑

j=1

wje
−ηjξ

∣∣∣∣∣∣
≤ ǫ,

where ǫ is the desired a

ura
y. The algorithm pro
eeds as follows:

• Constru
t a N+1×N+1 Hankel matrix of the form Hkl = f̂
(
ak+l
2N

)
,

k, l = 0, . . . , N .

• Find a singular ve
tor u = (u0, . . . , uN ) that solves the 
on-eigenvalue
problem Hu = σū, with σ sele
ted a

ording to the target a

ura
y

ǫ. We may �nd u by solving the eigenvalue problem for

(2) H̃ =

[
0 H

H

∗
0

]
,

whi
h yields the singular values of H, σ0 ≥ σ1 ≥ · · · ≥ σM ≥ · · · ≥
σN . We 
hoose the singular value σM , so that σM/σ0 ≈ ǫ. Typi
ally
the singular values de
ay exponentially fast so that M ≪ N .

• Compute M appropriate roots (see [5, 6℄) of the polynomial u(z) =∑N
n=0 unz

n
and denote them γj . Given values γj , the exponents ηj

in (1) are 
omputed as

(3) ηj = 2N log γj ,

where we use the prin
iple value of the logarithm.

• Compute the weights wj in (1) by solving the least-squares Vander-

monde system

(4)

M∑

j=1

wjγ
k
j = f̂

(
a

k

2N

)
, 0 ≤ k ≤ 2N.

If no a priori information is available, we may use all N roots of u(z), and
then determine the M ne
essary roots by sele
ting those with 
orresponding

weights of magnitude greater than the target a

ura
y.
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Following [6℄, from (1) we obtain the rational representation

f(x) = −2Re




M∑

j=1

wj

2πix− ηj


 = −2Re




M∑

j=1

uj + ivj
x− tj − isj




(5)

= −2

M∑

j=1

uj (x− tj)− vjsj

(x− tj)
2 + s2j

,

where tj, sj , uj , vj are real values su
h that

ηj
2πi

= tj + isj and

wj

2πi
= uj + ivj.

As illustrated in [6℄, the positions of the poles tj ± isj 
arry information

about the lo
ation of singularities of the fun
tion f . Furthermore, the rep-

resentation for any translate of f(x) in (5) is readily obtained by simply

shifting the poles.

2.2. Algorithm for redu
tion of a suboptimal rational approxima-

tion. An e�e
tive and a

urate algorithm for redu
ing the number of poles

of a rational fun
tion while maintaining some target a

ura
y is given in [10℄.

The formulation of the problem may also be found in [5℄ and is based on re-

sults in [3℄. Although we present this algorithm for rational trigonometri


fun
tions, a similar algorithm exists for fun
tions de�ned on the real line [6℄.

We start with a real valued rational fun
tion f(z),

(6) f(z) =

M0∑

j=1

dj
z − µj

+

M0∑

j=1

djz

1− µjz
+ d0,

with d0 ∈ R, dj , µj ∈ C and 0 < |µj | < 1. Our goal is to �nd a rational

fun
tion r(z) of the form

r(z) =
M∑

j=1

rj
z − ηj

+
M∑

j=1

rjz

1− ηjz
+ d0,

with fewer poles than f(z) su
h that

∣∣r(e2πix)− f(e2πix)
∣∣ < ǫ ∀x ∈ [0, 1).

The steps of the algorithm in [10℄ are as follows.

• Consider the Cau
hy matrix Ckj(µk, dj) ,

Ckj =

√
dk

√
dj ,

1− µkµj

, k, j = 1, . . . ,M0.

We use the algorithm in [10℄ to solve the 
on-eigenproblem

Cu = σM ū

for a 
on-eigenvalue σM and 
on-eigenve
tor u = (u1, u2, · · · , uM0
)t.

The 
on-eigenvalues are ordered σ0 ≥ σ1 ≥ . . . ≥ σM0−1 and σM/σ0 ≈
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ǫ. In 
ontrast to standard algorithms, the 
on-eigenvalues (and 
on-

eigenve
tors) are 
omputed with high relative a

ura
y in O
(
M2M0

)

operations.

• Find all the roots inside the unit disk of the fun
tion

v(z) =
1

σM

M0∑

j=1

√
dj uj

1− µjz
.

Note that there are exa
tly M roots νl of v(z) inside the unit disk

based on results from [3℄.

• Finally solve for the residuals rl of r(z) by solving the M ×M linear

system

M∑

j=1

rj
1− νjνk

=

M0∑

j=1

dj
1− µjνk

.

Using this algorithm, we obtain ‖f−r‖ ≈ σM , whi
h provides a near optimal

representation of f(z) using only M pairs of 
onjugate-re
ipro
al poles, νl
and ν−1

l . The 
omputational 
omplexity of this algorithm is O
(
M2M0

)
,

where M is the number of resulting poles and M0 is the original number

of poles. Sin
e typi
ally M ≪ M0, this algorithm is e�e
tively linear in its

pra
ti
al use.

2.3. Spline representations. We use an intermediate representation via

B-splines as the �rst step towards 
omputing the (near) optimal rational

approximation. Although theoreti
ally we may use s
aling fun
tions of any

wavelet-type basis, the 
hoi
e of B-splines redu
es the 
omputational 
ost of

this intermediate step.

We re
all the de�nition of the mth
degree B-spline as

βm(x) = βm−1(x) ∗ β0(x),

with

β0(x) =

{
1, |x| ≤ 1

2

0, otherwise,

(see e.g., [8℄). For 
onvenien
e, we only use B-splines of odd degree. It is

easy to show that, in this 
ase, βm is a pie
ewise polynomial of degree m
with knots on the integers and supported on [− (m+ 1) /2, (m+ 1) /2]. To
represent periodi
 fun
tions, we use periodized versions of B-splines. Let us

introdu
e the 1-periodi
 fun
tion

am(ω) =
∑

j∈Z

|β̂m(ω + j)|2 =

m−1

2∑

l=−m−1

2

βm(l)e−2πilω.
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Given a uniformly sampled 1-periodi
 fun
tion f , we seek the 
oe�
ients

αj su
h that

(7) f

(
k

2N

)
=

2N∑

j=0

αjβm(k − j), k = 0, . . . , 2N.

The algorithm in [4, 12℄ rapidly 
omputes the 
oe�
ients αj in (7) using

the Fast Fourier Transform (FFT). It performs the following steps:

• Set fk = f( k
2N ) and 
ompute, for k = 0, . . . , 2N ,

f̂k =

2N∑

n=0

fne
−2πi
2N+1

kn

using the FFT.

• Compute, for k = 0, . . . , 2N ,

α̂k =
f̂k

am( k
2N+1 )

.

• The B-spline 
oe�
ients are now obtained via the FFT as

αj =
1

2N + 1

2N∑

n=0

α̂ne
2πi

2N+1
jn, j = 0, . . . , 2N

This algorithm requires O(N logN) operations. The details may be found

in the appendix in [12℄.

3. Rational representation of B-splines

In this se
tion we 
onstru
t rational approximations of B-splines. In our


onstru
tion we for
e the real parts of the poles to be integers l ∈ Z, so that

the poles are aligned with the knots of the B-spline. As we explain below,

this redu
es the 
ost of intermediate 
omputations.

Spe
i�
ally, we are looking for a suboptimal rational approximation of the

form (5), with poles l ± iτk, so that

(8)

∣∣∣∣∣∣∣
βm(x) + 2

m+1

2∑

l=−m+1

2

R∑

k=1

uk,l(x− l)− vk,lτk
(x− l)2 + τ2k

∣∣∣∣∣∣∣
≤ ǫ,

where the number of rows of poles, R, will be 
hosen later. We note that

the 
onstraint on the real part of the poles arranges them on a re
tangular

grid (see Figure 2).

We start by 
omputing a near optimal rational approximation of a B-spline

following the approa
h in [6℄. For a given m, we evaluate β̂ at a su�
ient

number of samples; spe
i�
ally for m = 7 we have

(9) hn = β̂m

( n

32

)
, n = 0, 1, . . . , 800,
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where

(10) β̂m(ξ) =

(
sinπξ

πξ

)m+1

,

and use the algorithm in Se
tion 2.1 to 
onstru
t a near optimal rational

approximation.

An example of a near optimal rational approximation of a B-spline of

degree m = 3 may be found in [6℄. As observed in that paper, the poles


on
entrate towards the lo
ations of the knots of the B-spline sin
e its third

derivative is dis
ontinuous at these points. In our appli
ation we would like

to use a higher degree B-spline to lessen the impa
t of dis
ontinuities and

obtain fewer poles. In Figure 1 we present the results for a near optimal

approximation of a 7th degree B-spline using the same approa
h as in [6℄.

Sin
e the poles, tj ± isj , appear in 
omplex 
onjugate pairs, in Figure 1 we

display (on a log10 s
ale) only those with negative imaginary part.

We then seek a suboptimal rational representation of β(x) with poles in

the lo
ations indi
ated in (8) and use the near optimal approximation to

sele
t the parameters τk in (8). Taking into a

ount that the poles 
loser to

the real line are responsible for the high frequen
y 
ontent of the represen-

tation, whereas those furthest away 
apture the lower frequen
y 
ontent, we

limit the range for the imaginary parts of our suboptimal poles by using the


orresponding maximum, s+, and minimum, s−, of the near optimal poles.

We sele
t three rows of poles, i.e., R = 3 in (8), by 
hoosing imaginary parts

τ1 = s+, τ3 = s−, and

τ2 = e
1

2
(log τ1+log τ3).

The real part for all of these poles are at lo
ations l, where l = −m+1
2 , . . . , m+1

2
(re
all that m is odd). The 
hoi
e of three rows of poles is based on the de-

gree of the B-spline and our a

ura
y requirements (see Figure 2(b)) and

may be di�erent in other appli
ations.

On
e the lo
ation of poles is �xed, the weights in (8) are obtained by

solving a linear system of equations. Unlike in the 
ase of the near optimal

approximation, the 
omputation of weights in the Fourier domain leads to

a severely ill-
onditioned Vandermonde system (4). Instead, we dire
tly

dis
retize the representation for β(x) in (8) and 
ompute the weights by

minimizing the l∞-norm of the residual. We note that while a B-spline has

a 
ompa
t support, its rational approximation does not and, therefore, we

must 
ontrol the error to within the desired a

ura
y outside the B-spline

support as well. This property of the approximation is parti
ularly important

for the merging algorithm in Se
tion 4.

To dis
retize β(x) in (8), we 
hoose a set of points {xn}Ns

n=0,

xn =





−50 + 46n
499 , n = 0, . . . , 499,

−4 + 8(n−499)
232 , n = 500, . . . , 730,

4 + 46(n−731)
499 , n = 731, . . . , 1230,
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Figure 1. (a) Near optimal rational representation of a B-

spline of degree 7 and its 16 poles (displayed on a log10 s
ale
for their imaginary part). (b) Asso
iated error on a log10
s
ale.

whi
h generates a dense grid within the support of the B-spline and a rel-

atively sparse grid outside. We then 
onsider the overdetermined linear

system

βm(xn) = −2

m+1

2∑

l=−m+1

2

R∑

k=1

(
uk,l(xn − l)

(xn − l)2 + τ2k
− vk,lτk

(xn − l)2 + τ2k

)
, n = 0, . . . , Ns,

and solve for the real 
oe�
ients uk,l and vk,l. This linear system is of size

(Ns + 1) × 2 · (m+ 2) (where in our 
ase Ns = 1230, m = 7 and R = 3)
and we solve the problem by minimizing the l∞-norm of the residual using
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the optimization pa
kage CVX [9℄. The resulting absolute error is shown in

Figure 2(b).

−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

−4 −3 −2 −1 0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−11

−10

−9

−8

−7

(b)

Figure 2. (a) Rational representation in (8) of the B-spline

of degree 7 and its 27 poles arranged on a re
tangular grid

(displayed using a log10 s
ale for their imaginary part). (b)

Asso
iated approximation error on a log10 s
ale. Outside

[−10, 10] the error is smaller than within this interval.

The purpose of this suboptimal representation of the B-spline is to 
on-

vert a B-spline de
omposition of the original signal to a suboptimal rational

representation. The spe
ial 
hoi
e of pole lo
ations implies that the number

of poles of the resulting suboptimal representation ex
eeds the number of B-

spline 
oe�
ients in (7) only by a fa
tor of 3. In fa
t, our 
hoi
e of B-splines

as a basis was motivated by this moderate in
rease in the number of terms

in 
omparison to other wavelet-type de
ompositions. The 
hoi
e of the 7th
degree spline is di
tated by the target a

ura
y for our �nal signal approx-

imation. For greater a

ura
y, higher order B-splines should be used and

their suboptimal approximation may be obtained by the same pro
edure.
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4. Near optimal rational approximations

We now brie�y des
ribe the key steps of our algorithm for 
omputing

near optimal rational representations of large data sets. We assume that the

signal is negligible at its start and end and has a large number of samples so

that it is impra
ti
al to use the algorithm in Se
tion 2.1 dire
tly. Instead,

our algorithm involves the following steps:

1: In order to apply the algorithm des
ribed in Se
tion 2.3, we use a

partition of unity to subdivide the signal into overlapping se
tions

so that we may treat ea
h se
tion as a periodi
 fun
tion. The size of

these se
tions should be appropriate for an e�
ient use of the FFT

but otherwise is arbitrary. We 
ompute the B-spline 
oe�
ients for

ea
h se
tion. We then 
ombine the B-spline 
oe�
ients from ea
h

se
tion to get the B-spline 
oe�
ients for the entire signal.

2: We group the 
omputed B-spline 
oe�
ients from Step 1 into 
on-

se
utive segments (whi
h are unrelated to the subdivision used in

Step 1). The size of these segments should be appropriate to guar-

antee e�
ien
y of the redu
tion algorithm in Se
tion 2.2. By using

the B-spline approximation 
onstru
ted in Se
tion 3, we obtain a

suboptimal rational representation of ea
h segment.

3: On ea
h segment we use the redu
tion algorithm in Se
tion 2.2 to

obtain a near optimal rational approximation for that segment.

4: We now merge the rational representations of adja
ent segments. As

we explain below, only adja
ent segments intera
t with ea
h other

so that this step does not have to be done globally. Furthermore,

only poles near the boundary between segments need to be merged

and then redu
ed. This step may be 
onsidered optional sin
e the

overlap of the fun
tions asso
iated with adja
ent segments is small

in 
omparison to the length of ea
h segment, so that the potential

redu
tion of the number of poles is a small per
entage of their total

number.

On
e a near optimal rational representation has been 
onstru
ted, we need

a fast algorithm (see below) for its evaluation to generate samples. We note

that besides re
overing the original signal, rational representations also allow

us to interpolate the original signal to an arbitrary grid. This property of the

representation is useful in many appli
ations; for example, a higher sampling

rate improves the quality of sound reprodu
ed by speakers.

4.1. Steps of the algorithm. We now des
ribe ea
h step in some detail.

1: We use a partition of unity as our windows, and we note that there

may be signi�
ant overlap between adja
ent windows. The only re-

quirement for the windows is a smoothly de
aying transition region

as to avoid introdu
ing additional frequen
y 
ontent into the signal,

and su�
ient de
ay as to obtain partitions that are appropriate for

the use of the FFT. We then use the algorithm in Se
tion 2.3 to
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ompute the B-spline 
oe�
ients for ea
h se
tion of the signal. On
e

the B-spline 
oe�
ients for ea
h se
tion are found, by adding 
om-

ponents from di�erent se
tions, we obtain the B-spline 
oe�
ients

for the entire data set. The 
ost of this step is O(Nsignal logNpart),
where Nsignal is the total number of samples and Npart is the number

of samples in ea
h se
tion (assuming they are of the same length).

As a result, we obtain a representation

(11) f(x) =

Nsignal−1∑

j=0

αjβm(x− j).

2: Given the signal in the form (11), we split the sum into segments of

length P for further pro
essing,

(12) fp(x) =

(p+1)P−1∑

j=pP

αjβm(x− j) =

P−1∑

j=0

αj+pPβm(x− j − pP ),

where

(13) p = 0, . . . ,

⌊
Nsignal − 1

P

⌋
.

In our 
onstru
tion we allow in
omplete segments.

For ea
h segment we repla
e the B-splines by their suboptimal ratio-

nal representation 
onstru
ted in Se
tion 3 and obtain the subopti-

mal representation

(14) f̃p(x) = −2
P−1∑

j=0


αj+pP

m+1

2∑

l=−m+1

2

R∑

n=1

un,l(x− j − pP − l)− vn,lτn
(x− j − pP − l)2 + τ2n


 .

Thus, the suboptimal approximation in ea
h segment requires (P +m+ 1)·
R poles (with our 
hoi
e of seventh degree B-splines, R = 3, see Se
-
tion 3).

3: For ea
h p in (13), we apply the redu
tion algorithm des
ribed in

Se
tion 2.2 to the suboptimal approximation f̃p(x). We obtain a near

optimal representation with Mopt
p poles,

f̃ opt
p (x) = −2Re

M
opt
p∑

k=1

wp
k

2πix− ηpk
,

∥∥∥f̃ opt
p (x)− fp(x)

∥∥∥ < ǫ.

4: In order to merge the near optimal approximations from adja
ent

segments, we may use the redu
tion algorithm on
e again. We note

that, for our purposes, we need to merge only poles near the bound-

ary between adja
ent segments keeping un
hanged the poles far away

from the boundary region. To a

omplish this, we 
onsider the fun
-

tion (we wish to redu
e) generated by the poles and their 
orre-

sponding residues. By requesting a slightly higher a

ura
y a
ross
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the support of both segments, we preserve the overall a

ura
y of

the merged approximation. In our experiments, we redu
e the set of

poles lo
ated at most 64 units (measured by step size of the original

signal) from the midpoint of the overlapping region between adja
ent

segments. This sele
tion is made to assure that the positions of the

nodes possibly a�e
ted by the splitting of the data into segments are

adjusted by the redu
tion algorithm. The slightly higher a

ura
y

(of one half extra digit) assures that the untou
hed poles are not im-

pa
ted by this merge, and hen
e we do not need to re
ompute their

weights. We obviously do not obtain the optimal approximation over

the support of the two segments, but we 
laim that the approxima-

tion is near optimal, both in terms of the number of poles and their

lo
ations.

Given the optimal representations f̃ opt
p (x) for p in (13), we merge the

adja
ent representations and denote the entire merged representation

as

f̃(x) =
∑

p

f̃merged
p (x).

We also note that the observed redu
tion in the number of poles

within two adja
ent segments is minimal and, therefore, this step

may be 
onsidered optional in pra
ti
e.

4.2. Fast algorithm for evaluation of rational representations. A

Fast Multipole type-method provides a fast algorithm for the evaluation

of rational fun
tions. An e�
ient approa
h (see [13, 5℄) is based on approxi-

mating samples of rational fun
tions of the form 1/(x− tj± i sj) by de
aying

exponentials. Spe
i�
ally, we need to evaluate the fun
tion f in (5) at values

x1 < x2 < · · · < xK . Denoting fk = −f(xk), we have

(15) fk =
M∑

j=1

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)
, k = 1, . . . K,

where both M and K are large. We observe that, for the appli
ations of

os
illatory signal 
ompression, the parameters sj des
ribing the distan
e of

poles from the real axis are bounded, |sj| ≤ s, where s is small in 
omparison

with the range of tj , j = 1, . . . ,M . We split the summation in (15) into three
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parts,

fk = f+
k + f−

k + f local
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)

+
∑

tj−xk≥αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)
(16)

+
∑

|xk−tj |<αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)
,

and evaluate f+
k , f−

k and f local
k separately, where that of f local

k pro
eeds

dire
tly. The 
ondition on the fa
tor α is de
ribed below (α = 5 is a typi
al


hoi
e). It remains to des
ribe an algorithm for evaluating f+
k sin
e f−

k is


omputed in a similar manner.

We have

f+
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj
+

uj − ivj
xk − tj + isj

)

= 2
∑

xk−tj≥αs

ˆ ∞

−∞
e−ey(xk−tj)+y (uj cos(e

ysj)− vj sin(e
ysj)) dy.(17)

The e�e
tive range of integration in (17) is �nite due to the exponential (y →
−∞) and super-exponential (y → ∞) de
ay of the integrand. Our 
hoi
e

of the fa
tor α prevents an ex
essive os
illatory behavior of the integrand

within that range. In order to obtain an exponential approximation of the

form

(18) f+
k =

∑

tj≤xk

L∑

l=1

λl,je
−µl(xk−tj), αs ≤ xk − tj ≤ T, Re(µl) > 0,

(where T is su�
iently large to a

ommodate a given segment of the signal),

we may now pro
eed as in [5, 7℄. Indeed, we dis
retize the integral in (17) to

any desired pre
ision and use an appropriate algorithm to redu
e the number

of terms.

In (18) we may swit
h the order of summation and, as a result, 
onstru
t

a re
ursion (see [13, 5℄). Denoting

qk,l =
∑

tj≤xk

λl,je
−µl(xk−tj),

we obtain

qk+1,l =
∑

tj≤xk+1

λl,je
−µl(xk+1−tj)

= e−µl(xk+1−xk)qk,l +
∑

xk<tj≤xk+1

λl,je
−µl(xk+1−tj).

This re
ursion leads to an O(L ·K)+O(L ·M) algorithm for 
omputing f+
k .
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5. Numeri
al Examples

We have 
omputed several approximations using the algorithm from Se
-

tion 4. Sin
e one of the potential appli
ations for this method is a 
ompres-

sion s
heme, we illustrate our algorithm using a large data set from a high

quality audio re
ording. Generally, audio re
ordings are done with 16 bits

per sample. This means that the maximum a

ura
y possible is 2−15
, pro-

vided that the maximum amplitude of the signal is 1. This se
tion 
ontains

an example of �nding a near optimal approximation for a single segment,

fp(x), and then demonstrates the pro
edure of merging the approximations

of adja
ent segments and, thus, 
onstru
ting a rational representation of the

whole data set.

5.1. Rational representation for a single segment. First, using the

algorithm in Se
tion 4, we 
ompute a B-spline representation for the entire

signal. We then 
onsider the performan
e of our algorithm to approximate,

with a

ura
y 6 × 10−4
, the fun
tion fp(x) in (12). Figure 3 displays the

rational approximation with 44 poles, the lo
ations of those poles, and the

asso
iated error. We display the error

∣∣∣fp(x)− f̃p(x)
∣∣∣, where f̃p(x) is the

resulting rational approximation and note that we a
hieve the same a

ura
y

vis-à-vis the original signal (in a slightly smaller interval) due to the fa
t

that the 
omputation of a B-spline representation is a

urate to ma
hine

pre
ision.

Although this level of 
ompression is reasonable, we note that in order to

develop a 
omplete 
ompression s
heme additional steps should be taken to

en
ode the parameters of the near optimal rational approximation. Further-

more, by taking into a

ount the level of signal noise, we may redu
e the

number of poles in the representation. Indeed, by examining the de
ay of

the singular values of the Cau
hy matrix formed for the redu
tion algorithm,

we 
an develop an approximation tailored to the level of noise in the signal

[6℄.

5.2. Merging of adja
ent segments. One of the key bene�ts of the ap-

proximation method used is that ea
h pole of the near optimal rational repre-

sentation only lo
ally in�uen
es the re
onstru
tion. For this reason merging

the near optimal rational approximations of adja
ent segments minimally

alters the original pole lo
ations for the two segments. To illustrate this, we


ompute near optimal rational approximations for two adja
ent segments,

fp(x) and fp+1(x), ea
h of length 512. Figure 4 shows the near optimal ap-

proximations of the two adja
ent segments along with the error. The �rst

segment requires 30 poles and the se
ond requires 29 poles.

Figure 5 shows the representation for the merged windows, pole lo
ations

and asso
iated error.

The poles that were within 64 sample distan
es of the boundary between

segments were merged. The merged approximation required 58 poles, whi
h

means that a minimal redu
tion has taken pla
e with respe
t to the total
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Figure 3. (a) Rational approximation of 768 sampled data

points using 44 nodes. (b) Pole lo
ations (displayed using a

log10 s
ale for their imaginary part). (
) Asso
iated error on

a log10 s
ale.

number of poles required for the two segments. This shows that due to the


ompa
t support of the B-splines, and 
onsequently the good lo
alization of

their rational approximations, the 
ombined representations of the individual

segments provide a near optimal representation for the 
ombined segments.

Furthermore, these results demonstrate that the step of merging adja
ent

representations may be 
onsidered optional.
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Figure 4. (a) Near optimal rational approximations on

adja
ent segments. (b) Pole lo
ations (displayed using a log10
s
ale for their imaginary part). (
) Asso
iated error on a log10
s
ale.

5.3. Combined rational representations. We now present an example

of 
onstru
ting a rational representation of a large signal. For this purpose

we 
hose a portion of a piano re
ording 
ontaining 200, 000 samples. This

re
ording was sampled at 44.1 kHz with 16 bits per sample. Segments of

size P = 6, 250 were used, yielding a rational representation with 18, 373
poles (the merging pro
ess was not applied to further redu
e the number

of poles). Counting only one pole and one weight in a 
onjugate pair, re-

sults in the total of 74948 real numbers to represent this signal, i.e., the


ompression fa
tor ≈ 2.72 relative to the original number of samples. For

a high quality 
ompression of musi
, it is a good fa
tor sin
e no quantiza-

tion or arithmeti
 
oding has been used to in
rease the 
ompression rate.

The maximum absolute error is 4.83 · 10−4
and there is no audible di�eren
e

between the original signal and its re
onstru
ted version. In Figure 6 we

display the error of approximating the signal in this example. We note that,

on
e the rational approximation is 
onstru
ted, we 
an re
onstru
t the signal

with an arbitrary sampling rate. This is a desirable property for a faithful

reprodu
tion of sound in loudspeakers.

6. Final Remarks

We have developed, by 
ombining several algorithms, a new approa
h

to 
ompute near optimal rational approximations for large data sets. The

speed of these algorithms allows us to 
onstru
t su
h approximations even for
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Figure 5. (a) Merged representation using 58 poles. (b)

Pole lo
ations (displayed using a log10 s
ale for their imag-

inary part). (
) Asso
iated approximation error on a log10
s
ale.

signals that are generated by 
ontinuous monitoring, e.g., seismi
 monitoring.

We observe that many parts of the algorithm 
an be trivially parallelized. In

a modi�
ation of the approa
h, we 
an split the signal into sub-bands and


onstru
t rational approximations within ea
h sub-band separately. This

o�ers several advantages whi
h we plan to address elsewhere.

The results also show promise for the development of a 
ompetitive algo-

rithm for musi
 
ompression. The building blo
ks of these representations


ontain information about lo
al frequen
y 
ontent and are shift invariant.

This property fa
ilitates further pro
essing of signals as the parameters are

pra
ti
ally independent of the initial shift of the input data; this also opens

up the possibility of re
ognizing re
urring signal features at lo
ations sepa-

rated in time.
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Figure 6. Error displayed on a log10 s
ale of signal re
on-

stru
tion (a musi
 re
ording) using a rational representation

with 18, 373 poles. The original signal had 200, 000 samples.
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