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Interpolating scaling functions give a faithful representation of a localized charge distribution by its
values on a grid. For such charge distributions, using a fast Fourier method, we obtain highly
accurate electrostatic potentials for free boundary conditions at the cost of O�N log N� operations,
where N is the number of grid points. Thus, with our approach, free boundary conditions are treated
as efficiently as the periodic conditions via plane wave methods. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2335442�
I. INTRODUCTION

Solving Poisson’s equation

�2V = � �1�

to find the electrostatic potential V arising from a charge
distribution � is a basic problem that can be found in nearly
any field of physics and chemistry. It is therefore essential to
have efficient solution methods for it.

A large variety of methods has been developed for sys-
tems of point particles interacting by electrostatic forces.
Formally this problem can be considered as the solution of
Poisson’s equation where the charge distribution is a sum of
delta functions. The classical method for periodic boundary
conditions is the Ewald method.1 For large systems and free
boundary conditions, the fast multipole method2 is a power-
ful method due to its linear scaling with respect to the num-
ber of particles.

The fast multipole method �FMM� has been generalized
for continuous systems where the charge density can be rep-
resented as a sum of Gaussians multiplied by a polynomial.3

This generalization exhibits linear scaling with respect to the
volume but not with respect to the number of Gaussians at
constant volume. It works well in the context of quantum
chemistry calculations with medium size Gaussian basis sets
where the charge density is naturally obtained in the required
form but it is not a general purpose method.

For periodic boundary conditions and smoothly varying
charge densities, plane wave methods are simple and power-
ful because the Laplacian is a diagonal matrix in a plane
wave representation. Given a Fourier representation of the
charge density, one can therefore obtain the potential simply
by dividing each Fourier coefficient by �k�2, where k is the
wave vector of the Fourier coefficient. If the charge density
is originally given in real space, a first fast Fourier transfor-
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mation �FFT� is required to obtain its Fourier coefficients
and a second FFT is required to obtain the potential in real
space from its Fourier coefficients. The overall scaling is
therefore of order N log N, where N is the number of grid
points.

Because of the simplicity of these plane wave methods,
various attempts have been made to generalize them to free
boundary conditions. The most rudimentary method is just to
take a very large periodic volume and to hope that the am-
plitude of the potential is nearly zero on the surface of the
volume. Due to the long range of electrostatic forces, this
condition is, however, not fulfilled for volume sizes that are
affordable with plane waves. Such a scheme is only possible
if adaptive periodic wavelets are used.4 In addition periodic
boundary conditions do not permit to treat systems with
monopoles and dipoles because for such systems no well
defined solution exists under periodic boundary conditions.
The first method to attack the problem in a systematic way
was by Hockney.5 He proposed a Fourier approximation to
the kernel

K�r� =
1

r
�2�

of the Poisson equation. The method was intended for appli-
cations in plasma physics where no high accuracy is re-
quired. In other application such as electronic structure cal-
culations, high accuracy is required and the method is not
optimal. For a spherical geometry, the Fourier coefficients of
the 1/r kernel can be calculated analytically. This is the basis
of the simple and powerful method by Füsti-Molnar and
Pulay.6 Its obvious restriction is that it is efficient only for
spherical geometries. Another method was proposed by Mar-
tyna and Tuckerman. This method gives high accuracy only
in the center of the computational volume. It requires there-
fore artificially large simulation boxes which are numerically
very expensive. All the above discussed methods use FFTs at

some point and have therefore an O�N log N� scaling.
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In this paper we will describe a new Poisson solver for
free boundary conditions on a uniform mesh. Contrary to
Poisson solvers based on plane wave functions, our method
is using interpolating scaling functions to represent the
charge density. It is therefore from the beginning free of
long-range interactions between supercells that falsify results
if plane waves are used to describe nonperiodic systems. Due
to the convolutions we have to evaluate our method that has
an N log N scaling instead of the ideal linear scaling. Due to
its small prefactor the method is, however, most efficient
when dealing with localized densities such as those that can
be found, for example, in the context of ab initio pseudopo-
tential electronic structure calculations using finite
differences,7 finite elements,8 or plane waves for nonperiodic
systems.

II. INTERPOLATING SCALING FUNCTIONS

Scaling functions arise in wavelet theory.9 A scaling
function basis set can be obtained from all the translations by
a certain grid spacing h of the mother wavelet centered at the
origin. What distinguished scaling functions from other basis
functions with compact support such as finite elements or
Lagrange functions is the refinement relation. The refinement
relation establishes a relation between a scaling function
��x− i� and the same scaling functions compressed by a fac-
tor of 2, or, equivalently, between the scaling functions on a
grid with grid spacing h and another one with spacing h /2.
For the scaling function centered at the origin, it reads

��x� = �
j=−m

m

hj��2x − j� , �3�

where the hj’s are the elements of a filter that characterize the
wavelet family. An interpolating wavelet has in addition the
property that it is equal to 1 at the origin and zero at all other
integer points. Because of this property, it is very simple to
find the scaling function expansion coefficients of any func-
tion. The coefficients are just the values of the function to be
expanded on the grid. mth order interpolating scaling func-
tions are generated by �m−1�th order recursive
interpolation.10 Figure 1 shows an 14th order and 100th order
interpolating scaling functions. Three-dimensional scaling
functions can be obtained as the product of their one-
dimensional counterparts,

�i1,i2,i3
�r� = �i1

�x��i2
�y��i3

�z�

= ��x − i1���y − i2���z − i3� , �4�

where r= �x ,y ,z�. The points i1, i2, and i3 are the nodes of a
uniform three-dimensional mesh, with ip=1, . . . ,np, p
=1,2 ,3.

Continuous charge distributions are represented in nu-
merical work typically by their values �i,j,k on a grid. It fol-
lows from the above described properties of interpolating
scaling functions that the corresponding continuous charge

density is given by

Downloaded 13 Nov 2006 to 128.138.249.84. Redistribution subject to
��r� = �
i1,i2,i3

�i1,i2,i3
��x − i1���y − i2���z − i3� . �5�

The mapping of Eq. �5� between the discretized and continu-
ous charge distribution ensures that the first m discrete and
continuous moments are identical for a mth order interpolat-
ing wavelet family, i.e.,

�
i,j,k

i�1j�2k�3�i,j,k =� drx�1y�2z�3��r� , �6�

if �1 ,�2 ,�3�m. The proof of this relation is given in the
Appendix. Since the various multipoles of the charge distri-
bution determine the major features of the potential, the
above equalities tell us that a scaling function representation
gives the most faithful mapping between a continuous and
discretized charge distribution for electrostatic problems.

III. POISSON’S EQUATION IN A BASIS SET
OF INTERPOLATING SCALING FUNCTIONS

As is well known, the following integral equation gives
the potential for free boundary conditions:

V�r� =� dr�
1

�r − r��
��r�� . �7�

We are interested in the values of the potential on the same

FIG. 1. Plots of interpolating scaling functions and wavelets of 14th �a� and
100th �b� orders.
grid that was used for the charge density. Denoting the po-
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tential on the grid point r j1,j2,j3
= �xj1

,yj2
,zj3

� by Vj1,j2,j3
=V�r j1,j2,j3

�, we have

Vj1,j2,j3
= �

i1,i2,i3

�i1,i2,i3� dr�
�i1

�x���i2
�y���i3

�z��

�r j1,j2,j3
− r��

. �8�

The above integral defines the discrete kernel

K�i1, j1;i2, j2;i3, j3�

=� dr��i1
�x���i2

�y���i3
�z��

1

�r j1,j2,j3
− r��

. �9�

Since the problem is invariant under combined translations
of both the source point �i1 , i2 , i3� and the observation point
�j1 , j2 , j3�, the kernel depends only on the difference of the
indices,

K�i1, j1;i2, j2;i3, j3� = K�i1 − j1,i2 − j2,i3 − j3� , �10�

and the potential Vj1,j2,j3
can be obtained from the charge

density �i1,i2,i3
by the following three-dimensional convolu-

tion:

Vj1,j2,j3
= �

i1,i2,i3

K�i1 − j1,i2 − j2,i3 − j3��i1,i2,i3
. �11�

Once the kernel is available in Fourier space, this convolu-
tion can be evaluated with two FFTs at a cost of O�N log N�
operations where N=n1n2n3 is the number of three-
dimensional grid points. Since all the quantities in the above
equation are real, real-to-complex FFTs can be used to re-
duce the number of operations compared to the case where
one would use ordinary complex-complex FFTs. Obtaining
the kernel in Fourier space from the kernel K�j1 , j2 , j3� in real
space requires another FFT. The FFTs are performed using a
modified version of the parallel FFT algorithm described in
Ref. 11 that gives high performance on a wide range of com-
puters.

It remains now to calculate the values of all the elements
of the kernel K�k1 ,k2 ,k3�. Solving a three-dimensional inte-
gral for each element would be much too costly and we use
therefore a separable approximation of 1/r in terms of
Gaussians,12,13

1

r
� �

k

�ke
−pkr2

. �12�

In this way all the complicated three-dimensional integrals
become products of simple one-dimensional integrals. Using
89 Gaussian functions with the coefficients �k and pk suit-
ably chosen, we can approximate 1/r with an error less than
10−8 in the interval �10−9 ,1�. If we are interested in a wider
range, e.g., a variable R going from zero to L, we can use
r=R /L:

L

R
= �

k

�ke
−�pk/L2�R2

, �13�

1

R
=

1

L
� �ke

−PkR2
, �14�
k
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Pk =
pk

L2 . �15�

With this approximation, we have that

Kj1,j2,j3
= �

k=1

89

�kKj1
�pk�Kj2

�pk�Kj3
�pk� , �16�

where

Kj�pk� =� � j�x�e−pkx2
dx �17�

=� �0�x�e−pk�x − j�2
dx . �18�

So we only need to evaluate 89�max�	n1 ,n2 ,n3
� integrals
of the type

Kj�p� =� �0�x�e−p�x − j�2
dx �19�

for some value of p chosen between 3�10−5 and 3�1016.
The accuracy in calculating the integrals can be further

improved by using the refinement relation for interpolating
scaling functions �3�.

From �19�, we can evaluate Ki�4p� as

Ki�4p� =� ��x�e−4p�x − i�2
dx �20�

= 1
2 � ��x/2�e−p�x − 2i�2

dx �21�

= 1
2�

j

hj� � j�x�e−p�x − 2i�2
dx �22�

= 1
2�

j

hjK2i−j�p� . �23�

The best accuracy in evaluating numerically the integral is
attained for p�1. For a fixed value of p given by Eq. �12�,
the relation �23� is iterated n= �log4�p�� times starting with
p0= p /4n. So the numerical calculation of the integrals Ki�p�
is performed as follows: For each p, we compute the number
n of required recursion levels and calculate the integral
Ki�p0�. The value of n is chosen such that p0�1 so we have
a Gaussian function that is not too sharp. The evaluation of
the interpolating scaling functions is fast on a uniform grid
of points so we perform a simple summation over all the grid
points. In Fig. 2, we show that 1024 points are enough to
obtain machine precision. Note that the values of K0�p� vary
over many orders of magnitude as shown in Fig. 2.

IV. NUMERICAL RESULTS AND COMPARISON
WITH OTHER METHODS

We have compared our method with the plane wave
methods by Hockney5 and Martyna and Tuckerman14 as
implemented in the CPMD electronic structure program.15 As

expected Hockney’s method does not allow to attain high
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accuracy. The method by Martyna and Tuckerman has a
rapid exponential convergence rate which is characteristic
for plane wave methods. Our new method has an algebraic
convergence rate of hm with respect to the grid spacing h. By
choosing very high order interpolating scaling functions, we
can get arbitrarily high convergence rates. Since convolu-
tions are performed with FFT techniques, the numerical ef-

FIG. 3. Accuracy comparison between our method with interpolating scal-
ing functions of different orders and the Hockney of Martyna-Tuckerman
method as implemented in CPMD. The accuracy of our method is finally

FIG. 2. Plots of the value of K0�p� �a� and error of the integration defining
its value �b� of for 1024 integration points for all the values of p used in the
tensor decomposition of 1/r in Gaussian functions.
limited by the accuracy of the expansion of Eq. �12� with 89 terms.
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fort does not increase as the order m is increased. The accu-
racy shown in Fig. 3 for the method of Martyna and
Tuckerman is the accuracy in the central part of the cube that
has 1/8 of the total volume of the computational cell. Out-
side this volume, errors blow up. So the main disadvantage
of this method is that a very large computational volume is
needed in order to obtain accurate results in a sufficiently
large target volume. For this reason the less accurate Hock-
ney method is generally preferred in the CPMD program.16

There is, however, a modification of the method by Yarne
et al.17 �implemented in their PINY-MD code� that reduces the
computational cost due to the large volume, but at the price
of using different levels of resolutions for the long- and the
short-range components.

A strictly localized charge distribution, i.e., a charge dis-
tribution that is exactly zero outside a finite volume, cannot
be represented by a finite number of plane waves. This is an
inherent contradiction in all the plane wave methods for the
solution of Poisson’s equation under free boundary condi-
tions. For the test shown in Fig. 3, we used a Gaussian
charge distribution whose potential can be calculated analyti-
cally. The Gaussian was embedded in a computational cell
that was so large that the tails of the Gaussian were cut off at
an amplitude of less than 1�10−16. A Gaussian can well be
represented by a relatively small number of plane waves, and
so the above described problem is not important. For other
localized charge distributions that are less smooth, a finite
Fourier representation is worse and leads to a spilling of the
charge density out of the original localization volume. This
will lead to inaccuracies in the potential.

Table I shows the required CPU time for a 1283 problem
as a function of the number of processors on a Cray parallel
computer. The parallel version is based on a parallel three-
dimensional FFT.

A package for solving Poisson’s equation according to
the method described here can be downloaded from Ref. 18.

In conclusion, we have presented a method that allows to
obtain the potential of a localized charge distribution under
free boundary conditions with an O�N log N� scaling in a
mathematically clean way. Even though our method has the
same scaling behavior as existing plane wave methods, it is
not a plane wave method in the sense that neither the charge
density nor the potential is ever represented by plane waves.
Instead interpolating scaling functions are used for the rep-
resentation of the charge density.
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APPENDIX: PROOF OF EQ. „6…

In the present appendix, we are going to prove Eq. �6�.
Let ��x� be an interpolating scaling function of Delauriers-
Dubuc, of the order m, and �i1,i2,i3

be a three-dimensional
array of constant coefficients. Let, further,

��r� = �
i1,i2,i3

�i1,i2,i3
��x − i1���x − i2���x − i3� . �A1�
Then,
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�
i1,i2,i3

i1
l1i2

l2i3
l3�i1,i2,i3

=� drxl1yl2zl3��r� if 0 � l1,l2,l3 � m . �A2�

This follows from the fact, proven in Ref. 19 that the
first m moments of the scaling function obey the formula

Ml =� ��x�xldx = 	l, l = 0, . . . ,m − 1. �A3�

Shift the integration variable, we have

� ��x − j�xldx =� ��t��t + j�ldt

=� ��t��
p=0

l

Cl
ptpjl−pdt = jl
Then, inserting �A1� into the right side of �A2�, we get
� drxl1yl2zl3��r� =� xl1yl2zl3 �
i1,i2,i3

�i1,i2,i3
��x − i1���x − i2���x − i3�dr

= �
i1,i2,i3

�i1,i2,i3� xl1��x − i1�dx� yl2��y − i2�dy �� zl3��z − i3�dz = �
i1,i2,i3

�i1,i2,i3
i1
l1i2

l2i3
l3.
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